List of figures

Figures No.	Title	Page
Fig. 1.1 a and b;1.2	Baidya Fish Farm, Tankisinwari, Morang (Site1)	6
Fig.1.3,1.4a and b	Babiya Birta Fish Farm, Morang (Site 2)	7
Fig.1.5 a and b; 1.6	Tarahara Fish Farm, Sunsari (Site 3)	8
Fig. 1.7 a and b;1.8	Betana Wetland, Belbari, Morang (Site 4)	9
Fig. 1.9 a and b	Singhia River (Near Hatkhola bridge) Morang (Site 5)	10
Fig. 1.10a and b	Budhi River (Near Duhabi bridge) (Site 6)	10
Fig. 1.11	Map of Sunsari and Morang Districts showing sampling sites	11
	(Source: OCHA, UN, Nepal)	
Fig. 3.1	EUS affected countries across the Asia-Pacific regions (Lilley <i>et al.</i> , 1998).	27
Fig. 3.2	Original endemic areas of EUS (Mudenda, 2012)	27
Fig. 3.3	Spread of EUS in Nepal (Source: Nepal vista.com).	28
Fig. 3.4	EUS affected areas in Southern Africa (Mudenda, 2012).	28
Fig. 4.1	Intramuscular injection of isolated saline suspension of bacteria given to the healthy <i>Heteropneustes fossilis</i> .	65
Fig. 4.2	Intramuscular injection of isolated fungus zoospores saline solution given to the healthy <i>Heteropneustes fossilis</i> .	71
Fig. 5.1	Monthly variations in air temperature at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).	79
Fig. 5.2	Monthly variations in water temperature at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).	79
Fig. 5.3	Monthly variations in pH at Site1 during the first and second	79

year study periods (Nov. 2008- Oct. 2010).

Fig. 5.4	Monthly variations in free CO_2 at Site 1 during the first and second year study periods (Nov. 2008- Oct.2010).	80
Fig. 5.5	Monthly variations in DO at Site 1 during the first and second year study periods (Nov.2008- Oct.2010).	80
Fig. 5.6	Monthly variations in BOD at Site 1 during the first and second year study periods (Nov.2008- Oct.2010).	80
Fig. 5.7	Monthly variations in chloride at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).	81
Fig. 5.8	Monthly variations in total alkalinity at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).	81
Fig. 5.9	Monthly variations in total hardness at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).	81
Fig. 5.10	Line graph of monthly variations in air temperature at Site1 during the first and second year study periods (Nov. 2008 - Oct.2010).	82
Fig. 5.11	Line graph of monthly variations in water temperature at Site1 during the first and second year study periods (Nov. 2008 - Oct.2010).	82
Fig. 5.12	Line graph of monthly variations in Total alkalinity at Site1 during the first and second year study periods (Nov. 2008 - Oct.2010).	82
Fig. 5.13	Line graph of monthly variations in Total Hardness at Site1 during the first and second year study periods (Nov. 2008 - Oct.2010).	83
Fig. 5.14	Monthly variations in air temperature at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).	90
Fig. 5.15	Monthly variations in water temperature at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).	90
Fig. 5.16	Monthly variations in pH at Site 2 during the first and second	90

year study periods (Nov.2008- Oct.2010).

Fig. 5.17	Monthly variations in CO_2 at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).	91
Fig. 5.18	Monthly variations in DO at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).	91
Fig. 5.19	Monthly variations in BOD at Site 2 during the first and second year study periods (Nov.2008-Oct.2010).	91
Fig. 5.20	Monthly variations in chloride at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).	92
Fig. 5.21	Monthly variations in total alkalinity at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).	92
Fig. 5.22	Monthly variations in total hardness at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).	92
Fig. 5.23	Line graph of monthly variations in air temperature at Site2 during the first and second year study periods (Nov. 2008 - Oct.2010).	93
Fig. 5.24	Line graph of monthly variations in water temperature at Site2 during the first and second year study periods (Nov. 2008 - Oct.2010).	93
Fig. 5.25	Line graph of monthly variations in total alkalinity at Site2 during the first and second year study periods (Nov. 2008 - Oct.2010).	93
Fig. 5.26	Line graph of monthly variations in total hardness at Site2 during the first and second year study periods (Nov. 2008 - Oct.2010).	94
Fig. 5.27	Monthly variations in air temperature at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).	101
Fig. 5.28	Monthly variations in water temperature at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).	101

Fig. 5.29	Monthly variations in pH at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).	101
Fig. 5.30	Monthly variations in Free CO_2 at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).	102
Fig. 5.31	Monthly variations in DO at Site 3 during the first and second year study periods (Nov.2008- Oct.2010).	102
Fig. 5.32	Monthly variations in BOD at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).	102
Fig. 5.33	Monthly variations in Chloride at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).	103
Fig. 5.34	Monthly variations in TA at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).	103
Fig. 5.35	Monthly variations in TH at Site 3 during the first and second year study periods (Nov.2008- Oct. 2010).	103
Fig. 5.36	Line graph of monthly variations in air temperature at Site3 during the first and second year study periods (Nov. 2008 - Oct.2010).	104
Fig. 5.37	Line graph of monthly variations in water temperature at Site3 during the first and second year study periods (Nov. 2008 - Oct.2010).	104
Fig. 5.38	Line graph of monthly variations in total alkalinity at Site3 during the first and second year study periods (Nov. 2008 - Oct.2010).	104
Fig. 5.39	Line graph of monthly variations in total hardness at Site3 during the first and second year study periods (Nov. 2008 - Oct.2010).	105
Fig. 5.40	Monthly variations in air temperature at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).	112
Fig. 5.41	Monthly variations in water temperature at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).	112

Fig. 5.42	Monthly variations in pH at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).	112
Fig. 5.43	Monthly variations in CO_2 at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).	113
Fig. 5.44	Monthly variations in DO at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).	113
Fig. 5.45	Monthly variations in BOD at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).	113
Fig. 5.46	Monthly variations in chloride at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).	114
Fig. 5.47	Monthly variations in total alkalinity at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).	114
Fig. 5.48	Monthly variations in total hardness at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).	114
Fig. 5.49	Line graph of monthly variations in air temperature at Site 4 during the first and second year study periods (Nov. 2008 - Oct.2010).	115
Fig. 5.50	Line graph of monthly variations in water temperature at Site 4 during the first and second year study periods (Nov. 2008 - Oct.2010).	115
Fig. 5.51	Line graph of monthly variations in total alkalinity at Site 4 during the first and second year study periods (Nov. 2008 - Oct.2010).	115
Fig. 5.52	Line graph of monthly variations in total hardness at Site 4 during the first and second year study periods (Nov. 2008 - Oct.2010).	116
Fig. 5.53	Monthly variations in air temperature at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).	123
Fig. 5.54	Monthly variations in water temperature at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).	123

Fig. 5.55	Monthly variations in pH at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).	123
Fig. 5.56	Monthly variations in turbidity at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).	124
Fig. 5.57	Monthly variations in CO_2 at Site 5 during the first and second year study periods (Nov.2008- Oct.2010).	124
Fig. 5.58	Monthly variations in DO at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).	124
Fig. 5.59	Monthly variations in BOD at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).	125
Fig. 5.60	Monthly variations in chloride at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).	125
Fig. 5.61	Monthly variations in total alkalinity at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).	125
Fig. 5.62	Monthly variations in total hardness at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).	126
Fig. 5.63	Line graph of monthly variations in air temperature at Site 5 during the first and second year study periods (Nov. 2008 - Oct.2010).	126
Fig. 5.64	Line graph of monthly variations in water temperature at Site 5 during the first and second year study periods (Nov. 2008 - Oct.2010).	126
Fig. 5.65	Line graph of monthly variations in total alkalinity at Site 5 during the first and second year study periods (Nov. 2008 - Oct.2010).	127
Fig. 5.66	Line graph of monthly variations in total hardness at Site 5 during the first and second year study periods (Nov. 2008 - Oct.2010).	127
Fig. 5.67	Monthly variations in air temperature at Site 6 during the	134

	first and second year study periods (Nov. 2008- Oct. 2010).	
Fig. 5.68	Monthly variations in water temperature at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).	134
Fig. 5.69	Monthly variations in pH at Site 6 during the first and second year study periods (Nov.2008- Oct.2010).	134
Fig. 5.70	Monthly variations in turbidity at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).	135
Fig. 5.71	Monthly variations in free carbon dioxide at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).	135
Fig. 5.72	Monthly variations in dissolved oxygen at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010)	135
Fig. 5.73	Monthly variations in BOD at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).	136
Fig. 5.74	Monthly variations in chloride at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).	136
Fig. 5.75	Monthly variations in total alkalinity at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).	136
Fig. 5.76	Monthly variations in total hardness at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).	137
Fig. 5.77	Line graph of monthly variations in air temperature at Site 6 during the first and second year study periods (Nov. 2008 - Oct.2010).	137
Fig. 5.78	Line graph of monthly variations in water temperature at Site 6 during the first and second year study periods (Nov. 2008 - Oct.2010).	137
Fig. 5.79	Line graph of monthly variations in total alkalinity at Site 6 during the first and second year study periods (Nov. 2008 - Oct.2010).	138
Fig. 5.80	Line graph of monthly variations in total hardness at Site 6	138

during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig. 5.81 a and b	Naturally EUS infected Cirrhinus mrigala	157
Fig. 5.82 a and b	Naturally EUS infected Labeo rohita	157
Fig. 5.83	Naturally EUS infected Catla catla	158
Fig. 5.84 a and b	Naturally EUS infected Labeo bata	158
Fig. 5.85 a and b	Naturally EUS infected Channa striata	158
Fig. 5.86 a and b	Naturally EUS infected Puntius sp.	159
Fig. 5.87 a and b	Naturally EUS infected Mystus tengara	159
Fig. 5.88 a and b	Naturally EUS infected Clarias batrachus	159
Fig. 5.89	Naturally infected H. fossilis	160
Fig. 5.90	Naturally infected Lepidocephalichthys guntea	160
Fig. 5.91	Naturally EUS affected fish <i>C. mrigala, C. striatus, L.bata, C. catla</i> and <i>M. tengara</i> (in group)	160
Fig. 5.92	Naturally EUS affected <i>C. mrigala</i> and <i>Labeo bata</i> (in group)	160
Fig. 5.93	Infected tilapia	161
Fig. 5.94	Infected tilapia in concrete pond	161
Fig. 5.95	Infected Cyprinus carpio at Site 3	161
Fig. 5.96	Infected Cyprinus carpio	161
Fig. 5.97	Dropsy in Labeo rohita	162
Fig. 5.98	Gas bubble filled in intestine of naturally dropsy infected tilapia	162

Fig. 5.99	Tilapia fin rot	162
Fig. 5.100	Body lesion with fin rot in Cirrhinus mrigala	162
Fig. 5.101	Section of the ulcer of naturally infected <i>Cirrhinus mrigala</i> showing granuloma formation in the muscle layer and myonecrosis (H-E., x 400).	168
Fig. 5.102	Section of the ulcer of naturally infected <i>Labeo rohita</i> showing the presence of fungal hyphae and accumulation of cells around it (GMS, x 400).	168
Fig. 5.103	Section of the liver of naturally infected <i>Cirrhinus mrigala</i> showing infiltration of blood capillaries and vacuolation of hepatocytes (H-E., x 400).	168
Fig. 5.104	Section of liver of naturally infected <i>Labeo rohita</i> (PAS x 400)	168
Fig. 5.105	Section of the kidney of naturally infected <i>Cirrhinus mrigala</i> showing tubular vacuolation and haemorrhages in certain haemopoietic region (H-E., x 400).	168
Fig. 5.106	Section of kidney of naturally infected <i>Labeo rohita</i> (H-E, x 400)	168
Fig. 5.107	Section of the ulcer of naturally infected <i>Labeo bata</i> showing the presence of fungal hyphae and degenerative changes (GMS, x 400).	169
Fig. 5.108	Section of ulcer of naturally infected <i>Catla catla</i> showing fungal (<i>Aphanomyces invadans</i>) hyphae (GMS, x400).	169
Fig. 5.109	Section of liver of naturally infected <i>Labeo bata</i> showing necrosis and vacuolation (GMS,x400).	169
Fig. 5.110	Section of liver of naturally infected <i>Catla catla</i> showing vacuolation (GMS,x400).	169

Fig. 5.111	Section of kidney of naturally infected <i>Labeo bata</i> showing necrotic changes, haemorrhages and tubular vaculation (H-E,x400)	169
Fig. 5.112	Section of kidney of naturally infected <i>Catla catla</i> showing necrotic changes, haemorrhages and tubular vaculation (H-E,x400	169
Fig. 5.113	Section of the ulcer of naturally infected <i>Channa striata</i> showing the presence of fungal hyphae (GMS, x 400).	170
Fig. 5.114	Section of muscle of heavily infected <i>Channa striata</i> (GMS, x 400)	170
Fig. 5.115	Section of liver of Channa striata (H-E, x 400)	170
Fig. 5.116	Section of the kidney of naturally infected <i>Channa striata</i> showing tubular vacuolation and haemorrhages in certain haemopoietic region (H-E., x 400).	170
Fig. 5.117	Section of the ulcer of naturally infected <i>Puntius sp.</i> showing the presence of fungal hyphae (GMS, x 400).	170
Fig.5.118	Section of ulcer of naturally infected <i>Catla catla</i> (PAS,x 400)	170
Fig. 5.119	Section of the liver of naturally infected <i>Puntius sp.</i> showing infiltration of blood capillaries and vacuolation of hepatocytes (H-E., x 400).	171
Fig. 5.120	Section of the kidney of naturally infected <i>Puntius sp.</i> showing tubular vacuolation and haemorrhages in certain haemopoietic region (H-E., x 400).	171
Fig. 5.121	Section of muscle of <i>Clarias batrachus</i> Showing <i>Aphanomyces</i> filament (GMS, x 400).	171
Fig. 5.122	Section of the ulcer of naturally infected <i>Mystus tengara</i> showing the presence of fungal hyphae (GMS, x 400).	171

Fig. 5.123	Section of liver of Clarias batrachus (GMS,x 400)	171
Fig. 5.124	Section of the liver of naturally infected <i>Mystus tengara</i> showing infiltration of blood capillaries and vacuolation of hepatocytes (H-E., x 400).	171
Fig. 5.125	Section of the Kidney of Clarias batrachus (H-E, x 400)	172
Fig. 5.126	Section of the kidney of naturally infected <i>Mystus tengara</i> showing tubular vacuolation and haemorrhages in certain haemopoietic region (H-E., x 400).	172
Fig. 5.127	Aeromonas caviae, Cs ₂ (X400)	180
Fig. 5.128	Micrococcus sp., P ₄ (x400)	180
Fig. 5.129	Pseudomonas sp. Cc ₄ (X1000)	181
Fig. 5.130	Bacterial culture after 48 hrs of incubation	181
Fig. 5.131	Pure culture of bacteria in agar slant	181
Fig. 5.132	Aeromonas hydrophila Cm ₁ , (x400)	181
Fig. 5.133	Aeromonas sp. Confirmatory test	181
Fig. 5.134	Bacterial culture after 48 hrs of incubation	181
Fig. 5.135	<i>H. fossilis</i> showing manifestation of ulcer after 24 hrs of intramuscular injection with the culture of <i>A. hydrophila</i> , Cm_1 .	182
Fig. 5.136	<i>H. fossilis s</i> howing manifestation of ulcer after 48 hrs of intramuscular injection with <i>A. hydrophila</i> , Cc ₄	183
Fig. 5.137	<i>H. fossilis</i> showing manifestation of ulcer after 96 hrs of intramuscular injection with <i>A. hydrophila</i> , P2.	183
Fig. 5.138	Zoosporangia of <i>Aphanomyces</i> sp. isolated from naturally infected <i>Cirrhinus mrigala</i> (A1) (GMS, x400)	184

Fig. 5.139	Zoosporangia of <i>Aphanomyces</i> sp. isolated from naturally infected <i>Catla catla</i> (A2) (Cotton blue x400)	184
Fig 5.140	Zoosporangia of <i>Aphanomyces</i> sp. isolated from naturally infected <i>Labeo bata</i> (A3) (Cotton blue x400)	185
Fig. 5.141	Zoosporangia of <i>Aphanomyces</i> sp. isolated from naturally infected <i>Puntius</i> sp. (A4) (GMS, x400)	185
Fig. 5.142	<i>H. fossilis showing manifestation of ulcer after 48 hrs of intramuscular injection with Aphanomyces sp. zoospores.</i>	185
Fig. 5.143	<i>H. fossilis showing manifestation of ulcer after 72 hrs of intramuscular injection with Aphanomyces sp. zoospores.</i>	185
Fig. 5.144	Section of ulcer of experimentally infected <i>H. fossilis</i> with <i>Aphanomyces</i> sp.(GMS,x 400)	187
Fig. 5.145	Section of liver of experimentally infected <i>H. fossilis</i> (H-E,x 400)	187
Fig. 5.146	Section of kidney of experimentally infected <i>H. fossilis</i> (H-E, x 400)	187
Fig. 5.147	Section of normal muscle of H. fossilis (control)	187
Fig. 5.148	Section of normal liver of <i>H. fossilis</i> (control)	187
Fig. 5.149	Section of normal kidney of <i>H. fossilis</i> (control)	187