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                           Abstract 
 

Quantum transport of electrons through graphene has attracted increased interest in the 

field of nano-technology. Quantum transport through mesoscopic systems explains a 

wide range of interesting experimental findings, such as: rectification, switching 

mechanism and transistor actions. We focused our research on the quantum transmission 

of electrons through graphene and carbon nanotubes. Graphene and nanotube devices 

operated between source and drain shows a peculiar negative differential resistance 

behavior (NDR)   while drawing current- voltage characteristics. This property is used in 

many electronic devices. The main feature of graphene is that the electron has zero 

effective mass at Dirac points, but gains mass when the graphene sheet is folded into a 

nanotube. Scientists have analyzed the vanishing mass of the electron inside graphene 

and explain the observed mass gain through Higgs mechanism. We focus our study on 

the Klein Paradox which deals with the reflection probability greater than one as well as a 

negative transmission probability. This has been predicted by Oscar Klein and remained a 

mystery until 1929; the Klein Paradox finally was proven with experimental and 

theoretical evidence by Geim and Novoselov. In the case of graphene, conductivity is an 

exponential function of temperature, whereas nanotubes follow a power law. This is a 

very characteristic feature of quantum dots. 
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  1   Chapter 

1.1 Motivations and objectives 

Quantum transport of electron pathways has recently attracted increased interest in 

the field of nano-technology. Quantum transport through mesoscopic systems, i.e., 

transport through small molecules like fullerene, graphene, nanotubes etc. explain a 

wide range of interesting experimental findings such as rectification, switching 

mechanisms and transistor actions. In 1974, the first theoretical proposal for a single 

molecular rectifier was published by Aviram and Ratner [1], but due to the 

limitations of technology at that time, it did not receive all of the deserved attention. 

With the advance of technology, their ideas gradually led to the notion of intra-

molecular transport phenomena. Molecular electronics, using single molecules as 

active elements, is now an active technological concept. Molecular devices are 

considered as promising candidates for the fabrication of smaller, faster and cheaper 

nano-sized electronic devices in the fields of photoelectric, information technology 

and material science. Important examples have been studied theoretically and 

experimentally such as molecular diodes, molecular transistors, molecular logical 

circuits and atomic switching devices. These days, scientists are interested in the 

properties of graphene and nanotubes. Graphene was fabricated experimentally by 

A. K. Geim and Novoselov [2] in 2004 and previously was supposed to not be 

possible. The main characteristics of graphene are that due to the interaction of 

electrons with potential of the lattice, its effective mass becomes zero and the 

transmission coefficient seemed to be independent of barrier width which motivated 



2 
 

me to study relativistic quantum transport phenomena through graphene and 

nanotubes. The band structure of graphene was derived in 1947 using a tight binding 

model and Bloch waves, and can be given by the following expression: 

                                          ⃗  ∑    ⃗   ⃗  ⃗  (    ⃗ )                                             [1.1.1] 

where ɸ indicates the one-electron atomic wave functions (            . The 

following energy dispersion relation [3] is obtained                 

                                √      √ 
 
       

 
 
        

 
 
    .            [1.1.2] 

The two solutions correspond to the bonding (-) and anti-bonding (+) orbitals. The 

two energy bands touch each other at six points at the edges of the Brillouin zone, 

out of which two pair of points are known as the Dirac points [2] where effective 

mass of the electron is zero. A peculiarity of graphene is that its charge carriers do 

not show the typical dispersion relation                 a characteristic of free 

electrons in metals and semiconductors, but rather follow a linear dispersion relation          

             . In the vicinity of Dirac points, Fermi velocity is [4]         

 .  An electron in graphene has very high Fermi velocity, so motion of it is described 

by Dirac relativistic quantum mechanics and electrons are termed as Dirac fermions. 

If we calculate the effective mass of the electron, we give the following expression:               

                                             ( 
  
   
)
  

 .                                                        [1.1.3]                                                                                  

Using the above energy dispersion relationship, we find that    is zero. This is    

another peculiar property of graphene in that it shows a “Klein Paradox”. 
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 E 

V0 

V(Z) 

Z 0 

1.2 Klein Paradox for spin-0 particle 

 

 

 

 

 

 

 

Figure1.1: A particle of energy      incident upon potential step. 

 

The Klein Paradox [5]  deals with the scattering of a particle from a potential step of a 

strong potential          . After scattering from such a strong potential, the 

transmission coefficient is negative and reflection coefficient is greater than one. The 

accepted interpretation is that, for such a strong potential, particle-antiparticle pairs are 

created and these created particles add to the reflected beam and so we obtain R   . But 

A.K.Geim and Novoselov resolved the Klein Paradox experimentally and proved that R  

can never be greater than 1, rather it can be equal to zero and     [6] when Klein 

tunneling takes place. They received the Nobel Prize for this work as well as for the 

fabrication of graphene. 
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1.3 Organization of the Dissertation 

The organization of this dissertation is as follows: In chapter 1, we describe the so called 

Klein Paradox and its resolution by A.K. Geim and Novoselov. In chapter 2, we briefly 

present features of the graphene and nanotubes, and theories to progress the dissertation. 

Chapter 3 gives the detailed theory about Green’s function and Feynman diagrams to 

understand transport phenomena. Chapter 4 gives the detailed theory about relativistic 

quantum mechanics and Dirac plane wave solution to understand “Klein tunneling.” 

Chapter 5 gives the detailed theory of Landauer-Buttiker formalism to progress the 

dissertation work. In chapter 6, we discuss Higgs mechanism that deals with the gain of 

mass by the particle after an interaction with Higgs field. Finally, analysis of results is 

presented in chapter 7. In chapter 8, conclusions and applications are included. In chapter 

9, we gave appendices A and B which contain the detailed steps of the calculations and 

some useful theoretical aspects of Landauer-Buttiker formalism and codes used to plot 

graphs. At the end in chapter 10, we listed the presentations, publications and the 

references used in this work. 
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2   Chapter 

 2.1 Theoretical background 

 2.1.1 Introduction of the graphene sheet                                                                                                                                                      

Graphite is a three dimensional (3D) layered hexagonal lattice of carbon atoms. A single 

layer of graphite forms a two-dimensional (2D) material, 2D graphite or a graphene layer. 

Even in 3D graphite, the interaction between two adjacent layers is small compared with 

intra-layer interactions, since the layer separation of 3.35 Å is much larger than the 

nearest-neighbor distance between two carbon atoms which is 1.42 Å [3]. Thus the 

electronic structure of 2D graphite is a first approximation of that for 3D graphite.   

 

 

 

 

 

                                                

   

                   Figure: 2.1 Three dimensional structure of graphite [30]. 
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       Figure 2.2: Graphene lattice in real                        Figure 2.3: Brillouin zones of    

       reciprocalspace with basis vectors     and    .        lattice with basis vectors  ⃗   and  ⃗     

                               

  2.1.2 Translation vectors and periodicity  

The most important property of a Bravais lattice is its translational symmetry or 

translational periodicity. Three vectors                  correspond to elementary 

translations along three different directions. These vectors are the fundamental translation 

vectors. To have a translational symmetry, let    be any position in the lattice and consider 

another position   ⃗⃗  which is obtained from r such that:  

                                 ⃗⃗                       ,                                                   [2.1.1] 

where              are integers. 

Translational symmetry requires that the lattice arrangement appear the same at   ⃗⃗  ⃗ as at   . 

The translation vector can be expressed as  
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                                    ⃗                     .                                                      [2.1.2] 

The two-dimensional graphene lattice in real space can be created by translating one unit 

cell defined by           

                                     ⃗             ,                                                                    [2.1.3] 

where      and     are called basis vectors as shown in fig 2.2 and expressed as shown 

below 

                                          (
√ 
 
    

 
)           (

√ 
 
      

 
)   

   Where a = 2.46 Å is the lattice constant of two dimensional graphite.  

Correspondingly the unit vectors  ⃗   and  ⃗   of the reciprocal lattice shown in figure 2.3 

can be expressed as below 

                                           ⃗    (
  
 √ 
    
 
)       ⃗   (

  
 √ 
     

 
)  

2.1.3 Tight-binding energy dispersion 

The tight binding model, which includes one pz orbital per carbon atom and the nearest 

neighbor interaction, is used to calculate the graphene band structure. In the tight binding 

model, a suitable wave function is constructed that satisfies Bloch’s theorem [7] 

                              (    ⃗ )     ⃗   ⃗                                                                            [2.1.4] 

For graphene, the tight binding wave function is a weighted sum of the two sub-lattice 

Bloch functions [3]: 
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                            ( ⃗    )      ( ⃗    )        ⃗     ,                                              [2.1.5]  

where the subscripts A and B denote the two different atoms in a unit cell of the graphene 

and     and    are weight factors. The Bloch functions can be expressed as a linear 

combination of the atomic wave functions [3] 

                                 
 
√ 
 ∑    ⃗

   ⃗         ⃗    
 
 ,                                                [2.1.6A]                                  

                                  
 
√ 
 ∑    ⃗

   ⃗         ⃗    
 
 ,                                               [2.1.6B] 

where   is the number of unit cells in the lattice and  ⃗       ⃗   are the Bravias lattice 

vectors which identify the positions of all types of atoms in the graphene lattice. Here   
√ 

 

serves as normalization constant for the Bloch function. 

Bloch functions must satisfy Bloch’s theorem stated in the equation [2.1.4] 

                                (    ⃗   )    
  ⃗   ⃗          .                                                     [2.1.7] 

Schrodinger eigenvalue equation is 

                                   .                                                                                     [2.1.8] 

Inserting equation [2.1.5] into Schrodinger equation, we obtain 

     ( ⃗    )       ( ⃗    )           ( ⃗    )          ( ⃗    ).                   [2.1.9]     

Multiplying by the complex conjugate of ɸA, and separately by  

the complex conjugate of ɸB, we obtain 

                                        ,                                        [2.1.10]                                                          

                                        ,                                       [2.2.11]                                             

Integrating both equations over the entire space, we obtain 

  ∫           ∫            ∫           ∫        .              [2.1.12]          
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  ∫           ∫            ∫           ∫        .              [2.1.13]      

 It is customary to employ the following symbolic representation 

                               ∫                       ∫        ,                                    [2.1.14]                

where     are the matrix elements of the Hamiltonian and     are the overlap matrix 

elements between Bloch functions. Since the two atoms in the unit cell are identical, 

therefore, the overlap matrix between all type-A atoms must be same as the overlap 

matrix between all type-B atoms. So we have                            

Then, 

                                                     .                                         [2.1.15] 

                                                       .                                         [2.1.16] 

Now solving    from equation [2.1.15] and then substituting into equation [2.1.16] 

 We obtain 

  

                          √                                                 
                    

   .              [2.1.17] 

with 

                                                              .                [2.1.18] 

The positive and negative energy branches in equation [2.1.17] are meant for the 

conduction                                       . 

Nearest neighbor tight binding model: 

The wave function of an electron in any primitive unit cell only overlaps with the wave 

functions of its nearest neighbors. This means the nearest neighbors of a type-A atom in 

the graphene interacts with all three types-B atoms. Therefore, according to the nearest 

neighbor tight binding model, the pz wave function of a type-A atom overlaps with the pz 



10 
 

wave function of its three nearest neighbors and does not overlap anymore with wave 

functions from atoms farther apart. 

 Furthermore this simplifies equation [2.1.14] considerably [3] 

    ∫          
 
 
∑ ∑     ⃗

   ⃗           
 

 
  ∫  (    ⃗   )  (    ⃗   )   ,                                       

                                                                                                                                   [2.1.19] 

                         
 
 
∑ ∑    ⃗

    ⃗     ⃗           
 

 
       .                                        [2.1.20] 

Where     is the Kronecker delta function. 

Overlap matrix can written as 

        ∫         
 
 
∑∑    ⃗

   ⃗      ⃗   ⃗   
 

 

 

 

 ∫  (    ⃗   )  (    ⃗   )     

                              
 
 
∑ ∑    ⃗

    ⃗     ⃗        
 

 
   .                                            [2.1.21]                                   

Here we taken advantage of the normalized feature of Wannier functions, 

                       ∫  (    ⃗   ) (    ⃗   )    .      

Electron-hole symmetry: It has been observed by ab-initio dispersion in the 

neighborhood of the Fermi energy that the           have similar structure, at least for 

energies close to the Fermi energy EF. Since electrons are the mobile charges in the     

band and holes are the mobile charges in the    band, so this approximation is called the 

electron-hole symmetry. Mathematically, electron hole symmetry leads to                      

Therefore, we can reduce equation [2.1.17] can be further reduced to    

                                          √               .                                          [2.1.22]                              
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This energy dispersion relation was originally proposed by Wallace in 1947 [8]. We can 

further simplify the equation by setting       [3] because the reference potential  

is the Fermi energy and is customarily set to 0 eV. 

 So we can write equation [2.1.22] as [3] 

                                         √              .                                                 [2.1.23] 

The Hamiltonian matrix element         can be calculated as follows: 

           ∫         
 
 
∑ ∑    ⃗

    ⃗     ⃗     
 

 
   ∫  (    ⃗   )  (    ⃗   )   . 

                                                                                                                                   [2.1.24] 

Each type-A atom overlaps with three nearest neighbor type-B atoms and let the 

 nearest neighbor distances be 

                                             ,  

where j, j+1, and j-1 are the indices of the primitive unit cells. Three type-B nearest 

neighbor atoms are located with respect to atom A in the cell j. 

Therefore, 

                                         
 
 
∑ ∑     ⃗   ⃗   

 
 
    ,                                             [2.1.25] 

where    is the finite value obtained the integration of the nearest neighbor Wannier 

 function. We simply set its value    which is called the hopping energy. 
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The Hamiltonian matrix element now reduces to the following terms 

                                      (    ⃗
   ⃗       ⃗   ⃗       ⃗   ⃗  ) .                                [2.1.26] 

and  

                 (    ⃗
   ⃗       ⃗   ⃗       ⃗   ⃗  )     ⃗   ⃗      ⃗   ⃗      ⃗   ⃗     

      [     ⃗    ⃗    ⃗        ⃗    ⃗    ⃗        ⃗    ⃗    ⃗        ⃗⃗
    ⃗⃗    ⃗⃗         ⃗    ⃗    ⃗         ⃗    ⃗    ⃗   ]                 

                                                                                                                                   [2.1.27]                                                                                                                                               

Now using Euler’s formula                  , we can reduce equation [2.1.27] 

into the following form: 

                 {         ⃗    ⃗    ⃗            ⃗    ⃗    ⃗            ⃗    ⃗    ⃗    } , 

                                                                                                                                   [2.1.28] 

Thus, 

                                (      
√  
 
      

 
 
        

 
 
  ) .            [2.1.29] 

Now inserting equation [2.1.29] into equation [2.1.23], we obtain 

                          √      √ 
 
       

 
 
        

 
 
        .                   [2.1.30] 

This formula is widely used for graphene. 
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2.1.4 Hybridization 

 Carbon has four valence electrons in the outermost orbit and tends to interact with 

neighboring carbon atoms to produce the different types of carbon allotrope. The ground 

state of carbon atom is shown as below.  

The ground state configuration of carbon                

   

                                                                                     

 

                                

Figure 2.4: Ground state configuration of the carbon atom. 

 

Excited state configuration of the carbon                

 

                                                                                              

 

                                 

Figure 2.5: Excited State configuration of the carbon atom. 

 

The four valence electrons occupy the 2s and 2p orbitals as shown above. When carbon 

atoms come together to form a crystal, one of the 2s electrons is excited to the 2pz orbital 

from energy gained from neighboring nuclei, thus lowering the overall energy of the 

system. The mixing of atomic orbitals is known as hybridization and new orbitals so 

  

2s
1
 2px 2pY 2pZ 

  

2s
2
 2px 2pY 2pZ 
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formed are called hybrid orbitals. In the case of the graphene, there is sp2 hybridization 

and one of the unhybridized orbitals 2pz which is perpendicular to the plane of the hybrid 

orbitals overlaps with the corresponding 2pz orbital of another carbon atom to form a π-

bond. The hybridized orbitals form three σ-bonds with neighboring carbon atoms. 

Graphene is considered as the mother of three carbon allotropes. When graphene is 

wrapped into a sphere, it produces buckyball, folding into a cylinder produces nanotube 

and stacking several sheets of it results in graphite. Quantum mechanically the 

hybridization can be expressed as follows: 

Angular distribution of orbitals are given by [9] 

                                                
√  

  .                                                                 [2.1.31A] 

                                              
 
√ 
            √

 
  
           .                  [2.1.31B] 

                                             
 
√ 
           √

 
  
           .                   [2.1.31C] 

                                              √
 
  
       .                                                      [2.1.31D] 
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Now we are going to discussing sp3 hybridization which takes place in the case of 
diamond. 

 

 

                Figure 2.6: sp3 hybridization in carbon atom in case of Diamond. 

 

The wave function of a hybrid orbital [9] can be expressed as below 

                                                                 ,                    [2.1.32]             

                                                where ∑     
     . 
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Figure 2.7: Orientation of hybrid orbitals with carbon atom at the center in the case of   
Diamond. 

 

Let the largest possible magnitude to yield maximum overlap of orbitals be along the 

direction (1,1,1) of cube with carbon atom at its center with the choice 

                                                        . 

So the normalization condition is given by 

                                                    .                                                                [2.1.33] 

                          Therefore,  √          . 

The bond forming strength [9] of          is given by 

                                                     √         . 

The bond forming strength will be the maximum if the differentiation of the above 
expression is zero. 

                                              
   
[   √        ]    , 
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                                                              . 

                                                              . 

The wave functions of hybrid orbitals can be expressed as follows:  

                                             
 
                     .                [2.1.34A]    

                                              
 
                     .          [2.1.34B]    

                                              
 
                     .           [2.1.34C]    

                                               
 
                     .          [2.1.34D]    

The condition of maximum charge cloud density [9] in the direction of (1,1,1) is given by 

                                      
  

  √                           .                [2.1.35]            

and  

                                     
  

  √                       .                            [2.1.36] 

Solving the above equations [2.1.35] and [2.1.36], we obtain 

                                                                  

   
                                                                                           

                                                        
 
                       

                      
                                                 

 
                     

                       
                                                      

 
                     

                                                π                
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𝑒             𝑖   𝑗   𝑘                                 𝑒             𝑖   𝑗   𝑘  . 

𝑒               𝑖   𝑗   𝑘                                   𝑒               𝑖   𝑗   𝑘  . 

The angle between, say,  𝑒              and  𝑒               is  

𝑒            ∙ 𝑒                𝑒              𝑒              𝑐𝑜𝑠𝜃 ,  

𝑐𝑜𝑠𝜃        , 

𝜃     9  8  . 

 

 

  The vectors along these directions are given as below  
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2.2.1Carbon nanotube 

A carbon nanotube can be viewed as a graphene sheet rolled along its circumferential 

direction [10]                ,                                                                              [2.2.1] 

where             are the basis vectors of a graphene sheet. The unrolled honeycomb 

lattice of the nanotube is shown in figure 9. The vector   ⃗⃗ ⃗⃗  ⃗ points in the direction of the 

nanotube axis, and the direction   ⃗⃗⃗⃗  ⃗ is perpendicular to the tube axis. The vectors   ⃗⃗⃗⃗  ⃗ and 

  ⃗⃗ ⃗⃗  ⃗ are defined as the chiral vector     and the translational vector  ⃗  of a nanotube, 

respectively. The chiral vector     can be expressed by the real space unit vectors 

            of the hexagonal lattice as 

                                                     

 

       

 

 

 

 

 

 

        Figure 2.8: Representation of translation and circumferential vector. 
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The diameter of the carbon nanotube D is given by [10] 

                                                
 
                                                                              [2.2.2] 

                                               . 

                                              √  ∙     √         .                        [2.2.3]                  

                                         ∙          ∙             ∙           . 

  

There are three types of nanotubes: 

a) Armchair nanotube: An armchair nanotube corresponds to the case if 

                      [10]. All armchair nanotubes exhibit metallic conduction. 

The nanotubes which satisfy this relation (given below) are metallic in nature, 

otherwise semiconducting. 

                                          

 

 

 

 

 

 

 

  Figure 2.9:  The red line represents the circumference of the armchair variety [31].  
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b) Zigzag nanotube: A zigzag nanotube corresponds to the case where  

                          [10]. 

 

 

 

 

 

                                    

                                         

               Figure 2.10: The blue line represents the circumference of the zigzag type [31]. 

                 
c) Chiral nanotube: A chiral nanotube [10] corresponds to the case where  

                    . 

 

 

 

                                                       

               Figure 2.11: The red line shows the joining method of the chiral nanotube [31]. 
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2.2.2: The energy dispersion of the armchair nanotube: 

The periodic boundary conditions that are used to get the energy eigenvalues for the 

armchair nanotube can be defined by wave vectors       in the circumferential  

direction [10] 

                                  √                            .                                       [2.2.4] 

Substituting the discrete allowed values of      from equation [2.2.4] into 

the equation [2.1.30], we obtain   

                                        √      (  
 
)     (  

 
)       (  

 
)     .      

                                                                                                      [2.2.5] 

2.2.3: The energy dispersion of the zigzag nanotube: 

The periodic boundary condition on    to obtain energy eigenvalues for the zigzag 

nanotube are given by the condition [10] 

       
                                                                .                                            [2.2.6] 

 

Substituting the discrete allowed values of      from equation [2.2.6] into equation 

[2.1.30], we obtain 
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                                √      (√   
 
)     (  

 
)       (  

 
)    .               [2.2.7] 

                               (  
√ 
        

√ 
)             . 

2.2.4: The energy dispersion of the chiral nanotube: 

The translational vector is given as  ⃗                                               

Using     ∙  ⃗    , we can write 

                                 
      
  

            
       

  
  ,                                              [2.2.8]   

                                                                        

Also the length of the translational vector can be given by  

     √  
  
                                                       .                  

The number of hexagons per unit cell as a function of   and   can be given by the 

reference [10] as 

                                      
    ⃗  

  ⃗    ⃗   
    ( 

       )
  

     
 

    
  .                                        [2.2.9] 
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Figure 2.12: The Brillouin zone of a carbon nanotube is represented by the line segment 

w’w  which is parallel to K2.                                 

The Brillouin zone of a carbon nanotube is represented by the line segment W’W which 

is parallel to K2 [10].Now using the relations as given below, we can figure out the value 

of  ⃗⃗       ⃗⃗    

where  ⃗⃗       ⃗⃗   are reciprocal lattice vectors corresponding to           ⃗⃗  ⃗                 

                        ∙  ⃗⃗              ⃗⃗  ⃗ ∙  ⃗⃗        ∙  ⃗⃗            ⃗⃗  ⃗ ∙  ⃗⃗      ,                [2.2.10] 

                        
 
 
                  

 
 
          .                                [2.2.11] 

In the case of a chiral nanotube, the energy dispersion relation of two dimensional 

graphite,          at line segments shifted from WW’ by      

                                                            9  . 



25 
 

So the energy dispersion relation [10] for chiral nanotube can be given by 

                                               (  
  ⃗⃗ ⃗⃗ 

    
     )                                              [2.2.12] 

                                                    
 
     

 
  .                                                                                                                               
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3   Chapter  

3.1 Introduction of Green Function 

3.1.1 Green function 

We have seen that many-body systems consisting of strongly interacting real particles can 

often be described as if they were composed of weakly interacting quasi particles and 

collective excitations and the properties of these particles can be evaluated with the help 

of  quantum field theoretical quantities known as “Green functions of many-body 

systems” or, simply, propagators. It is not the aim to describe the detailed behavior of 

each particle in the system, but rather the average behavior of one or two typical particles 

interacting with the rest of the system. The quantities, which describe this average 

behavior of the particles, are the one-particle propagator and two-particle propagator 

respectively, and physical properties may be calculated directly from them [11]. First we 

consider the one-particle propagator: It is defined as the probability amplitude that we 

add a particle into the interacting system at point               and let it move through the 

system colliding with the other particles for a while and later observe. The two particle 

propagator is the probability amplitude to put one particle at         and another at        

into the system and later observe them at                     respectively. 

 

 



27 
 

3.1.2 Calculating propagators by Feynman diagrams:  

A particle has to move from a point 1 and needs to reach at point 2[10]. On the way to 

point 2, it can stop off at one or two or more points A,B,C, ….,etc. The probability P 

(2,1) that the particle reaches point 2 is the sum of the probabilities for all the different 

ways it can propagate from 1 to 2 interacting with the various interacting systems. The 

first way possibility to propagate from point 1 to 2 is that it propagates freely without 

encountering at any interacting system, and let us call this probability       . The second 

option to propagate is that it goes freely from point 1 to point A and (let its probability 

equal         , then it interacts at point A (let this probability equal      . Then it goes 

freely from point A to point 2 with its probability        . The third way is to propagate 

from point 1 to point B and then to point 2 with total probability                   . 

In this way, it can propagate from point 1 to point 2 through different possible ways with 

different probabilities. The total probability to propagate from point 1 to2 is the sum of 

all probabilities for each way and we can write mathematically as follows below [11]. 

                                                       

                                            .                                             [3.1.1]                                                                                                                                                                                                                                                    

Using series [3.1.1], we can draw a diagram which is given below 
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   Figure 3.1: A particle propagates from point 1 to point 2 and interacts with different 

interacting systems. 

Assuming for simplicity that all         are equal to the same value c i.e.,  

                                                                  . 

The series [3.1.1] becomes 

                                                                    

                                             {                          }   

                                      (  
       

)    
        

  .                                            [3.1.2]                                            

This is the solution for the propagator in this case. 
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3.1.3 Single-particle propagator for system of many interacting particles:  

We can discuss in a qualitative way how the single-particle propagator can be calculated 

in a system of many particles. The propagator will be the sum of the probability 

amplitudes that the particle propagates from                  through a variety of possible 

paths.  First we have the possibility of propagation without interacting with the other 

particles of the system. Then we include propagation with just a single interaction. The 

inclusion of second, third and higher-order interactions improves the approximation of 

the true physical propagation. We can show these interactions by Feynman diagrams. 

First we show here first-order interaction by diagrams [11]. 

 

 

 

                                                            

   Figure 3.2: a) A particle enters the system and interacts with any one particle of the 

system b) At time t, the particle is at a point    and interacts with a particle of the system 

which is at a point      and changes its place with it. c) Extra particle leaves the system at 

time    . 

  

   

 System  
   System 

   

a b c 

System 
r 

r’ 
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 a) Extra particle enters system at time   . 

     b) At time  , the particle is at point   ⃗⃗  and interacts with a particle of the system  

        which is at     and changes place with it. 

   c) Extra particle leaves the system at time    

                            Second order interaction [11] is shown below:  

 

     

 

 

                                                             

   Figure 3.3: A particle enters the system in the state k and interacts with the particle of 

the system and finally emerges out in the same state k. 

 

A particle enters the system in state K at time    and being scattered into K-q and 

knocking a particle out of state l into state l+q or creating a particle into state l+q and a 

hole in a state l. At later time, t  , the particle in K-q knocks the particle of the state l+q  

back into the hole state l and itself scattered into state k . This is a second order process 

because it involves two interactions. 

  

      

t1 

t 

K-q 

q 

l+q l 

q t’ 
t2 

K 

K 
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Similarly we have higher-order interactions, some of which are shown below [11]. 

                                                                  

 

                                                                            

 

 

       

                           3rd order interaction                        4th order interaction                               

  Figure 3.4:  3rd order and 4th order interaction of the particle with particles of the system.                                                                                                                  

 

When the extra particle enters the system, more technically we use advanced and retarded 

Green functions. The retarded Green function has essentially been defined above as the 

probability amplitude that at time    we add a particle at point    to the interacting system 

in its ground state, then at time    the system will be in its ground state with an added 

particle at      under condition         and is denoted by     Similarly, the advanced 

Green function (    can be defined as the probability amplitude that at time     we 

remove a particle at   ⃗⃗  ⃗  from the interacting system in its ground state and at time    , we 

add a particle at   ⃗⃗  ⃗ such that the system will be in its ground state again under condition 
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        This is also known as a hole propagator. Let us consider first there is free 

propagation from                           and has amplitude              . The 

amplitude for the second process where particle scattered from 

                                                , which can be calculated from 

ordinary time-dependent perturbation theory as follows. Let    be the probability 

amplitude that at time    a system is in the state   . Later time  , the time rate of change 

of any particular state            , under the perturbing potential    can be given by 

                                      ̇       ∑        (     )       ,                                         [3.1.3] 

where      is the matrix element of   between states          The probability amplitude 

per unit time that the system under a transition from                at time      can 

be given by 

                                      ̇               ∫  
     

            .                     [3.1.4] 

The amplitude for the last process is               . Hence the total amplitude can be 

given by 

                                 ∫                         
           

 
    

                                                                                                                                     [3.1.5] 

There are second and higher-order processes in which the particle collides with large 

number of perturbing potentials like             then the total probability amplitude can 

be given following expression. 
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Dyson’s equation is given as follows: 

                          ∫                      
          

 
   

∫                
       

  
                                                                               [3.1.6]                                                                                                                                                                                                                                                                                                                                      

Taking the Fourier transform of the above equation, we obtain 

                                                    
       

     

                                              [               
       

   ]  

                                              

    
     

   

(  
 )       

                      .           [3.1.7]                              

The single particle Green function can also be defined as [11] 

                                                      {          
     }     ,            [3.1.8] 

where the operators             
     respectively destroy and create a particle 

 in state k, at time t. We can further defined as 

                                             
               

           .                                          [3.1.9] 

                                            
               

            .                                        [3.1.10] 

Also   is the time ordering operator which can be defined as 

                                {          
     }             

                       

                                                                    
                             .              [3.1.11] 
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The time transformed Green’s function is given by 

                                              ∑        
    

         ,                                                      [3.1.12] 

where        and       are the solutions of the energy dependent Eigen problem 

                                             ∑                      .                               [3.1.13] 

Here     K+U consists of kinetic energy and potential energy term and ∑    is the so 

called self-energy term. Poles of      give excitation energies of the form              

The first order reduced density matrix can be obtained as [12] 

                                              
   
 ∫        .                                                       [3.1.14] 

                                            
   

  
 
 ∫              .                                 [3.1.15] 

The one body Green’s function can be separated into         parts. So, we can 

 write the one-particle Green’s function as follows: 

                                                        .                                                  [3.1.16] 

                                              
 

   {   ∑   }   
  .                                                           [3.1.17] 

 

                                                 
 
   

  
 
 ∫               .                           [3.1.18] 

Thus the total energy can be computed as 

                                                           .                                                  [3.1.19]                  
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4   Chapter  

4.1 Application of relativistic quantum mechanics 

In non-relativistic quantum mechanics, particle paths are more likely to be found in low 

potential regions, as there are propagating waves in the regions where the particle energy 

is greater than the potential energy and evanescent waves in regions otherwise. Also 

transmission probability exponentially depends upon potential barrier width. But in the 

case of relativistic quantum mechanics, massless Dirac fermions freely penetrate 

potential barriers of arbitrary strength with a transmission probability one for normal 

incidence, which is known as the Klein Paradox. Klein tunneling enables particles to 

tunnel through even higher potential regions that depends upon the energy of the particle, 

wave vector, potential profile and other parameters as well. 

4.1.1 The Klein-Gordon equation 

The Schrödinger equation in operator form is  

                                          ̂          .                                                                [4.1.1] 

But now in the relativistic case, we have the energy momentum relation for a free particle 

                                                       .                                                        [4.1.2] 

Replacing          by the corresponding operators    
  
       , we obtain the Klein-

Gordon equation for free particle [13] as follows: 
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    .                                                 [4.1.3] 

This is the Klein-Gordon equation for free particles. 

4.1.2 Charge and current density 

Taking the complex conjugate of above equation [4.1.3], we obtain 

                                           
  
    

   
   

   

  
    .                                              [4.1.4] 

Multiplying equations [4.1.3] and [4.1.4] by          respectively, we obtain 

                                           
  
    

  
   

   
   

  
                                          [4.1.5] 

and 

                                          
  
   

   

   
   

   

  
      .                                    [4.1.6] 

Subtracting equation [4.1.6] from equation [4.1.5], we obtain 

                                                
  
(    

  
   

    
   

   
)   ,          

which can be written as                 

                                    ⃗⃗ ∙ [   ⃗⃗     ⃗⃗   ]   
  

 
  
 [    

  
    

  
 ]   .                   [4.1.7] 

Multiplying equation [4.1.7] by   
   

  , we obtain 

                                   ⃗⃗ ∙ [  
   

    ⃗⃗     ⃗⃗    ]   
  
 [  
     

     
  
    

  
  ]   ,  
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or 

                                       ⃗⃗ ∙      
  
  .                                                                       [4.1.8] 

where probability current density is given as follows: 

                                         
   

    ⃗⃗     ⃗⃗    .                                                       [4.1.9] 

The probability density is 

                                       
     

     
  
    

  
  .                                                    [4.1.10] 

4.2.1 Dirac’s relativistic equation 

The Klein-Gordon equation is a second-order equation in time and one could specify both 

        
  

 separately at a given time.   The problem is that the probability density   may 

take on both positive and negative values since the energy of a free particle is given by 

                                           √          .                                                       [4.2.1] 

Hence   cannot be interpreted as a probability density. Therefore, Dirac formulated a 

relativistic wave equation which avoids the difficulty arising from the Klein-Gordon 

equation by working directly with the square root as an operator and  linearized the 

energy expression [14] as follows  

                                      √∑          
      ∑      

        ,                            [4.2.2] 
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where                are some non-commutative operators which are specified through 

their algebraic properties. 

In order that the right-hand side of equation [4.2.2] is equivalent to the left side of it. It is 

necessary that  

 ∑      
         ∑      

                           ,                        [4.2.3]                                                                                                                                               

                            
                               

                                .                                                      [4.2.4]                                                                                                                                                                                                                                                                                                                                                                                              

Equating both sides, we find the algebraic properties 

                                          .                                                                  [4.2.5] 

                                                                                                  [4.2.6] 

                                                                                                         [4.2.7] 

4.2.2 Dirac Matrices 

The squares of any of the four matrices are unity and their eigen-values are +1 and -1. 

                           (                           )  (
 
 
 
 

   
 
 
 
 

  
 
 
  
 

 
 

 
 
 
  

)  .                                                      [4.2.8] 

In terms of the Pauli matrices  

                         (    
 
 )       (

 
   
  
 )         (

 
   

 
  ) .                                     [4.2.9] 

Dirac’s matrices are given by 
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                        (      
  
 )       (

 
  
     )          (

 
  
     )                               [4.2.10] 

Substituting the right hand side of equation [4.2.2] into equation [4.2.1], we obtain the 

linearized energy equation 

                           ∑      
            .                                                        [4.2.11] 

In terms of the energy and momentum operators, we write Dirac’s equation in the 

following form 

                       (   
  
    ∑   

 
   

 
          )         .                            [4.2.12] 

4.2.3 The Dirac equation 

The Dirac equation can be given by 

                          ∙                                                                                 [4.2.13] 

                      or  (                      )     . 

In a more explicit form, we replace             by specific matrices and replacing ѱ by a 

four-component symbol 

(
   
 
   

         

           
 
   

         
    

          
   

         
    
 

              
         
    
 

    

)(
  
  
  
  

)    (
  
  
  
  

) .                                                                                              

                                                                                                                                   [4.2.14] 

This equation is equivalent to the four simultaneous equations 
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     .                                 [4.2.15A] 

                             (
 
  
   

  
)      

   
  
  .                               [4.2.15B] 

                            
   
  
       

  
   

  
     .                                 [4.2.15C]     

                             (
 
  
   

  
)      

   
  
  .                               [4.2.15D]                                                       

4.2.4 Free particle or plane wave solution of Dirac’s equation  

The wave function ѱ has four components and the Dirac equation is exactly a set of four 

first order linear partial differential equations. The plane wave solution [13] can be 

represented as follows, 

                                   ⃗
        .                                                                        [4.2.16]                                                                             

        where          . 

After substituting in the equation [4.2.15A], [4.2.15B], [4.2.15C] and [4.2.15D], we 

obtain 

                                             .                                       [4.2.17A] 

                                             .                                       [4.2.17B] 

                                            .                                        [4.2.17C] 

                                            .                                        [4.2.17D] 
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These equations are homogeneous and have non trivial solution only if the determinant of 

the matrix is zero, 

|
       

 
    

           

             
 

       
           

   

             
    

           
       

 

           
           

   
 

       

|   , 

or                  .                                                                               [4.2.18] 

This is in agreement with energy-momentum relation for a free particle. 

From equation [4.2.18], we obtain  

                                     √          .                                                           [4.2.19] 

Taking first positive energy solution      √          . 

There are two linearly independent solutions which can be written from last of two 

equations [4.2.17] 

                                
   

       
          

         
       

   .                        [4.2.20A] 

                               
         
       

          
    

       
   .                         [4.2.20B] 

Similarly, from the negative energy solution       √          . 

we obtain two new solutions from the first two of equations [4.2.17] 

              
   

       
         

         
       

                   .                           [4.2.21A] 



42 
 

                 
         
       

         
    

       
                   .                        [4.2.21B] 

Each of these solutions can be normalized by multiplying it by a factor   so that 

                                               

                                   or,                                  

                                   or,   [         

          
   

          
          

]    

                                           [      

          
]
    

.                                                [4.2.22] 

4.2.5 Probability density and current density  

The Dirac equation for a free particle [13] is  

                                     
  
       ∙  ⃗⃗           .                                          [4.2.23] 

Taking the Hermitian conjugate of equation [4.2.23], we obtain 

                                  
 

  
        ∙            .                                      [4.2.24] 

Multiplying equation [4.2.23] on the left by    and equation [4.2.24] on the right  

 side by    

                                      
  
          ∙  ⃗⃗             .                            [4.2.25] 

                                  
 

  
         ∙              .                             [4.2.26] 
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Subtracting equation [4.2.26] from equation [4.2.25], we obtain 

                                         
  
                     .                                     [4.2.27] 

We can thus identify the probability charge density and current density from above 

equation [4.2.27] as follows: 

                                           .                                                                             [4.2.28] 

                                                                                                                        [4.2.29] 
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4.3.1 The Klein paradox for spin-0 particle 

 

  

   

  

  Figure 4.1: A particle of energy E< V0 which is incident upon a finite potential barrier. 

 

 Consider a particle of energy E and momentum p. Let c =1 and ħ =1 

 
                                                                     . 

                                                                          .                                                [4.3.1] 

  The Klein-Gordon equation in the presence of this potential is [5] 
    

                                                                                  .               [4.3.2] 

                                                                         .              [4.3.3] 

       The solutions of the Klein –Gordon equation are 
 
                                             [           ],                                                   [4.3.4] 

                                                 
   ,                                                                  [4.3.5] 
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where    and    are the reflection and the transmission amplitude, respectively and    is 

momentum of the particle inside potential step. 

Substituting these solutions into the Klein-Gordon equation, we obtain 

                                                                                 
  
                                   or        √                                 .                          [4.3.6] 

                                        
                          

                           or       √                                    .                         [4.3.7] 

Case I: Weak Potential 

                                                           

Then           . 

Case II: Intermediate Potential 

                                                                

Then, p' is imaginary. 

Case III: Strong potential 

                                                          

Then          . 

Now imposing the boundary condition that           be continuous at     

                                                            .                                                     [4.3.8] 

                                                               .                                              [4.3.9] 
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Solving equations [4.3.8] and [4.3.9] we obtain 

                                                     .                                                                  [4.3.10] 

                                                         .                                                          [4.3.11] 

Again solving these equations, we obtain 

                                              
       

                            
  

      
  .                              [4.3.12] 

 We know that the probability current density is defined as  

                                               
   
 [   ⃗⃗        ⃗⃗  ⃗  ] .                                           [4.3.13] 

The incident probability current density is 

                                                  .                                                                      [4.3.14] 

Similarly, the probability current density for regions Z > 0 and Z < 0 can be obtained by 

using the equation [4.3.13] 

                                      
      

 
      

  
        

 
      

     

 
                              [4.3.15] 

                                                                 

                                      
 
 
 (      ) .                                                             [4.3.16] 

Now we can define the transmission co-efficient as    

                      
  
        

 
      

  
        

 
             

 
 

             
         

 
   .              [4.3.17] 

Similarly the reflection co-efficient R                  
    

  .                                [4.3.18] 
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Case I: Weak Potential 

          and transmission co-efficient  and reflection co-efficient can be given as 

                                              
       

             R     (    
    

)
 
. 

So, we have   + R = 1    non relativistic matching. 

Case II: Intermediate Potential 

                                                       

                                                 R = 1.     

So, again we have   + R = 1    non relativistic matching. 

Case III: Strong Potential 

                                      
         

            R = (    
    

)
 
   . 

Hence R                relativistic matching. Therefore, the reflection coefficient is 

greater than one and transmission coefficient is negative. This surprising result is called 

the Klein Paradox. 
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4.3.2 The Klein Paradox for spin-1/2 particle 

 The Dirac Hamiltonian can be given by the following expression [14] 

                                                ∙       ,                                                           [4.3.19] 

where we use the standard choice of        

The eigenvalues of the Hamiltonian are 

                                               √      .                                                         [4.3.20] 

For positive energy solutions of spin     , the spinors can be introduced as 

                                           (
 
 
 
 

)                 (
 
 
 
 

)                                            [4.3.21] 

For negative energy solutions of spin    , the spinors can be expressed as 

                                           (
 
 
 
 

)                 (
 
 
 
 

)                                            [4.3.22] 

Alternately, we can write the eigenvalue equation in terms of two component spinors  

                     

                                              (    )                      (
  
  
)                                      [4.3.23] 

                                         ∙       (    )   (
  
  
).                                               [4.3.24]  

Substituting the matrices           in the equation [4.3.24], we obtain 

                                             ∙             ,                                                 [4.3.25]                                                        



49 
 

                                            ∙             ,                                                [4.3.26] 

Solving these equations yields 

                                         
  ⃗⃗ ∙     
        

 .                                                                     [4.3.27]                                       

Now we can write the spinors as 

                                          √
      
  

(   
  ⃗⃗ ∙ ⃗⃗    
        

) .                                                  [4.3.28]   

Similarly we can express other spinor as  

                                          √
      
  

(   
  ⃗⃗ ∙ ⃗⃗    
        

) .                                                  [4.3.29] 

we can write the incident, reflected and transmitted waves as follows: 

             (
 
 
 

   
 

)     ∙            (
 
 
  
   
 

)      ∙             (
 
 
  

    
 

)     ⃗⃗⃗⃗ ∙    , 

  where          are reflection and transmission amplitudes, respectively. 

 Waves are continuous. So applying the boundary condition at    , we obtain 

                                (
 
 
 

   
 

)    (
 
 
  
   
 

)    (
 
 
  

    
 

) .                                            [4.3.30]  

Equating the coefficients on both sides, we obtain  
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                                                         ,                                                              [4.3.31] 

and 

                                                   
   

         
    

  

                                                  or       
       
       

 

                                                 or,                                                                  [4.3.32]                 

                                               where    
      
       

 . 

Solving equations [4.3.31] and   [4.3.32], we obtain 

                                            
   

                           .               [4.3.33] 

The probability current density is given by             (    
  
 )   

                          (              
   

      ) (    
  
 )(

 
 
 

   
 

)                              [4.3.34] 

Similarly, we can write the probability current density for transmitted and reflected 

waves as 

                                 
            

      
           

       

     
 .                                             [4.3.35]                                                                 

The transmission coefficient can be given as follows: 
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  .                                              [4.3.36] 

and the reflection coefficient is given by 

                               R         
   

     .                                                                   [4.3.37] 

This result is called the Klein Paradox. It found its experimental refutation in the work of 

K. S. Novoselov and A. K. Geim [6]. The general idea of the experiment is shown in the 

figure 4.2 where the potential barrier has rectangular shape and is infinite along the y-

axis. 

 

 

 

 

 

                                                         

Figure 4.2: A particle of energy E < V0 tunnels through barrier width D. 

 

                                               {                                                                          [4.3.38]   
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Because of experimental requirements, it is arranged that the incident electron wave 

propagates at a small angle   with respect to the   axis, and the components of the Dirac 

spinor           for the Hamiltonian           in the following form [6]: 

    {
                                                                                                          9  
                                                                                                 9  
                                                                                                                      9  

 

       

    {
                                                                                                         
(                     )                                                                       
                                                                                                                    

                              

With    
  
 
  as the Fermi wave number. We can express            and  

            as the wave vector components outside the barrier. Inside the barrier we 

have the momentum which is given below  

                            √
       

    
                  (

  
  
)  is the refraction angle. 

                                                  . 

Using the continuity of the wave function by matching coefficients             we obtain 
the following equation for the reflection coefficient [6] 

                                      
            

   [                             ]            
  .    [4.3.41]               

Transmission probability can be given by the following expression as shown below 

                                                 .                                                                    [4.3.42]   
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Using this expression we can find the expression for the angular dependence of the 

transmission probability in the limit of high barrier        

                                                     
                

  .                                                 [4.3.43]   

Using above expressions reflection and transmission coefficient under resonance 

conditions                   . the barrier becomes transparent at normal 

incidence      

                          i.e.            .                                                                      [4.3.44]   

 

 

 

 

 

 

 

 Figure 4.3: Transmission probability T through a 100nm wide barrier as function of the 

incident angle for graphene with electron concentration n outside the barrier is chosen as 

             and inside barrier , hole concentrations p are              

        . 
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5    Chapter  

5.1 Theory of Transport Phenomena 

5.1.1 Landauer-Buttiker formalism 

The phase coherence length of electrons in mesoscopic systems, like graphene, 

nanotubes, fullerenes etc., can be several microns long. As a consequence, electronic 

transport properties of small mesoscopic devices will completely rely on quantum 

coherence effects. So in a mesoscopic system, quantum transport phenomena are usually 

described by the Landauer-Buttiker approach. To understand this approach, we need to 

know some common physical quantities described below. 

5.2.1 Fermi level and Fermi energy 

The Fermi-Dirac function      gives the probability that a single particle state of energy 

  is occupied by an electron [16] 

                                                   

   
[      

]
 ,                                                            [5.2.1] 

where   is the chemical potential and          are the Boltzmann’s constant and the 

absolute temperature, respectively. At absolute zero, for            it must be  

       and for              as all levels are occupied. Therefore, the 

probability of finding an electron on a level with energy      is zero and the 

probability of finding an electron with energy       is 1.  
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a)                                                         b)  

 

 

 

                                                                            

Figure 5.1: Graph of the Fermi function vs. energy a) at absolute temperature T = 0 and  

b) at absolute temperature T > 0. 

 

The Fermi level is defined as the highest occupied quantum level in the valence band at 

zero Kelvin in the case of a metal. But for semiconductors and insulators, it is located in 

the band gap of valence and conduction bands. At higher temperatures a certain fraction, 

characterized by the Fermi function, occupies levels above the Fermi level. In doped 

semiconductors, the Fermi level shifts from the middle position. Fermions obey the Pauli 

Exclusion Principle, i.e. no two fermions can be in the same quantum state. To determine 

the lowest energy of a system of fermions, we add particles to unoccupied states with the 

lowest energy and thus fill the particles up to the Fermi level. When all the particles have 

been put in, the energy of the highest occupied state is called Fermi energy. 
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a)                                                               b) 

 

 

 

 

 

 

 

                             

Figure 5.2: Graph of energy vs. Fermi-distribution function a) at absolute temperature  

 T = 0 and b) at absolute temperature T > 0.                                  

 

In the case of a one dimensional infinite square well of length  , the energy of the nth 

state can be given by the following expression: 

                                                                     
    

    
    ,                                                                                                 [5.2.2]                                                          

where   is the     quantum state. 
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Suppose we have   particles in the system. The energy of the 1st quantum state is given 

by                                            

                                                       
    

    
                                                                                                [5.2.3]                              

This value of energy is occupied by two particles of spin, up and down. Similarly in the 

next quantum state, particles have the energy     
      

    
                     

In this way energy levels up to       are occupied and all higher levels are empty. 

The Fermi energy is therefore given by the following expression given below 

                                                                                   
    

    
         .                                                        [5.2.4] 

In the case of the three dimensional cubical box of length  , the single particle energies 

are given by 

                                                                                       
    

    
 (           )  ,                                       [5.2.5] 

where              are positive integers. Now introducing                     Then 

each quantum state corresponds to a point in n-space with energy 

                                                                                          
    

    
      .                                                                                   [5.2.6]                                          

The number of states with energy less than    is equal to the number of states that lie 

within a sphere of radius   in the n-space. In the ground state, this number equals the 

number of fermions in the system which is 

                                                      
 
  
 
     .                                                   [5.2.7] 
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The factor 2 for two spin states and the factor 1/8 because only 1/8 of the sphere lies in 

the region where all n are positive. 

So the Fermi energy is given as follows: 

                                                                                  
    

    
     

    

    
(  
 
)
   
 .  

Therefore,  

                                                                                 
  

  
(  

  
 
)
   
  .                                                                       [5.2.8] 

5.3.1 Density of states 

Many physical phenomena depend on the number of the quantum states within a certain 

energy range. When a semiconducting device absorbs light, electrons can jump from 

occupied valence states to unoccupied states. The energy of the photons must match the 

energy difference between occupied and unoccupied states. The probability of transition 

depends on the number of unoccupied states available. So, the transition probability 

depends critically on the density of states available in the valence and conduction bands. 

The density of states is defined as the number of energy states per unit energy range per 

unit volume of the device. 

                                                                           
             

 . 
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                            Figure 5.3: Schematic graph of energy vs. number of states.            

 

Suppose we have a system with discrete energy levels and the device has a volume of say 

1cm3. The figure shows that the number of states is 4 in the energy interval between 3eV 

and 4 eV. So the density of states at energy        must be given as follows: 

                                                                
             

  
          . 

Generally, we use finer energy scales if the material has a large numbers of states, then 

we represent the density of states in K-space. 

 

State
s

 

0 

2 

4 

6 

8 

Number of states 
g(E)2 4 6 8 

Energy/eV 



60 
 

Density of states in 3-dimensions: There is one allowed value of   per volume (  
 
)
 
 in 

 -space. So the number of states in the volume   
 
    can be given as below [18] 

The number of states                 
 
     (  

  
)
 
  
 
    

                                                           
  
    

   
  

                                                                     
  
    

  
  
  
    

   
  
  
   

                                                                
  
   

   
(  
  
)
   
    .                [5.3.1]                                              

                                                          where we have used       

  
 . 

Case 1 : 2-dimensional graphene: 

The number of states                    (  
  
)
 
   . 

In the case of graphene the energy of the particle is       in the relativistic limit [6] 

where     is the velocity of the electron inside graphene. 

So, the number of states                    (  
  
)
 
   

    
 

Therefore, 

The density of states [6] per unit area is evaluated as       
  
     

      
 .            [5.3.2]                      
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Case 2: 1-dimensional nanotubes: 

The number of states                    
  
    

  
 
  

 . 

Therefore, 

Density of states per unit length       
  
   

    
 .                                              [5.3.3] 

5.4.1 Transmission function 

Consider a particle of energy, E, approaching a potential barrier of height U0 >E from the 

left. According to quantum mechanics, the probability that the particle penetrates the 

potential barrier is not zero as in classical mechanics. Thus the transmission coefficient is 

the probability that the particle penetrates the barrier and exits at point a. 

 

 

 

 

 
       Figure 5.4: A particle of energy E < U0 incident upon barrier of width a 
                        
 

U0 

 E 

Z 0 a 
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In our case, we determine the transmission coefficient as follows: Consider a linear 

channel with a repulsive potential             at    .  

 

 

 

 

 

  Figure 5.5: A particle of energy E < V0 tunnels through barrier. 

 

Let wave function of the incident wave be         and the reflected wave function 

          where   is the reflection amplitude. Now the transmitted wave function can 

be represented as         , where   is the transmission amplitude. 

The wave functions are continuous at      

                                              So,       .                                                               [5.4.1] 

Also, the derivative of the wave function is discontinuous at     

                                                [  
  
]
    

 [  
  
]
    

      
  
        ,                       [5.4.2] 
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                                               or                   
  

 

Solving equations [5.4.1] and [5.4.2], we obtain 

                                                         

        
  .                                                          [5.4.3] 

Now using           
 
  , we obtain 

                                                       
      

  .                                                               [5.4.4] 

Transmission coefficient [17]                           
       

           
 .           [5.4.5]                                                                                                                            

                                (More explanation is given in Appendix A) 
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5.4.2 What makes electrons to move from source to drain? 

 

 

 

 

 

                        Figure 5.6: Transmission of electron from source to Drain. 

 

Conduction depends on the availability of states around chemical potential irrespective of 

whether states are empty or filled. To understand the mechanism of the conduction of 

electrons from the source to the drain, we have shown figure 5.6. When the source is 

connected to the negative electrode of the battery and the drain connected to the positive 

electrode of the battery, the chemical potential of the source increases but the drain 

decreases with respect to the chemical potential of the channel, thus maintaining them at 

a distinct chemical potential difference equal to the product of the electronic charge and 

the potential difference of the battery. This difference of the chemical potential between 

the source and drain causes electrons to flow from the source to the drain 

                                                        .                                                             [5.4.6] 
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The contact of the source and the drain with the battery gives rise to different Fermi 

functions which are given below 

                                              
 

                 
         .                          [5.4.7] 

                                             
 

                 
                                     [5.4.8] 

The current in the circuit can be given by the following expression as shown below 

                                                
  

                 .                               [5.4.9] 

 This is the Landauer-Buttiker formula [17].  

 where,      is the transmission function which is given by the formula 

                                                                  .                                [5.4.10]    

At zero temperature the Fermi function becomes the Heaviside step function   (    )  

Therefore, 

                                          
  

                    
    
 
             [5.4.11] 

where M is the number of modes or channels. 
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6      Chapter 

6.1 Theory of gaining mass of an electron in graphene 

6.1.1 Higgs Mechanism 

The mechanism in which particles gain mass by interacting with the Higgs field is called 

the Higgs mechanism, first introduced by Peter Higgs [18]. The Higgs boson is 

associated with a field, called the Higgs field, which pervades the universe everywhere. 

Every force is associated with some type of a particle. The particle of electromagnetism 

is the photon, a massless boson. The weak force is associated with particles called W and 

Z bosons which are very massive, and it is believed that this mass is brought about 

through the Higgs mechanism. Higgs boson has been searched for since 1970 and on  

July 4th, 2012, CERN announced the likely discovery of a Higgs boson. Every elementary 

particle such as electrons and quarks interact with the Higgs field and thereby are 

supposed to gain mass.  Heavier particles interact more with the Higgs field and gain 

more mass, whereas particles of zero mass do not interact with the Higgs field and 

therefore remain massless. The electron in graphene is massless but gains mass when the 

graphene is folded into a nanotube. There are two common explanations of the gaining of 

mass: 

i) Through the Higgs Mechanism 

ii)  Through compactification of space dimensions 
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6.1.2 Theory of the Higgs Mechanism 

 After a review of the shortcomings of the electroweak interaction in the Standard Model, 

the gauge fields are introduced to the local gauge invariance of the particle field. The 

Lagrangian density describing gauge-invariance forbids a mass term for Higgs bosons. 

Consider the Lagrangian density [19] for a real scalar Klein-Gordon field  , 

       
 
                  With         

 
      

 
      .              [6.1.1]                                                                                           

The potential      is a function of the generalized coordinate      and has a parabolic 

shape around the minimum at          This Lagrangian exhibits simple reflection 

symmetry under      about the minimum. If      the minimum of potential 

corresponds to        

If, however,      , we find the minimum of the potential by setting  

                                                
  
                .  

The choice        is not a minimum of the potential. The potential will be minimal at 

                                                 √ 
 

 
     .                                                          [6.1.2] 

To determine the particle spectrum, we added a small perturbation such that 

                                                       

Under this condition, the Lagrangian density is 
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Graph of Potential vs. phi with  𝜇           𝜆    

   
 
           

 
 
      

 
       

 
        (       )  

 
 
         

 
 
          

 

  
 
           

 
 
           

 
      

 
  

  
                                 

  
 
                               

 
 
  

  
                   

 
      .                            [6.1.3] 

Kinetic energy Term     mass term    higher order term        constant  

 

Due to the Higgs field    the symmetry is broken and this leads to the mass term. This is called 

spontaneous symmetry breaking. 

 

 

 

 

 

 

 

 

 

                    Figure 6.1: The graph of potential of the Higgs field vs. field Phi. 
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Figure 6.2: a) Two highly accelerated electron beams interact with other and thereby 

there is a creation of Z- boson as well as Higgs boson b) Higgs boson immediately 

annihilates into two photons.  

 

We obtained a kinetic Klein-Gordon term for field η, a proper mass term and a triple and 

quartic vertex coupling terms of the field η. 

 

 

 

 

a) 

b) 
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Figure 6.3: Photo of CERN Lab where Higgs boson was believed to be found where 

2,600 employees and 8000 scientists and engineers are working. 
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6.1.3 Compactification of space dimension 

In graphene, near Dirac points, the effective mass of electrons and holes approach zero. 

This leads to a propagation speed of 106  m/s. But the electrons and holes acquire some 

mass when graphene is folded into a nanotube. According to A.D. Alhaidari [20], the 

effective mass generation comes naturally from rolling up a graphene sheet into a tube 

simply by changing the space topology from 2D to 1D. So there is an existence of extra 

space like dimensions with an electron in graphene. The effective mass can be given by 

the relation 

                                                                   ,                                                                        [6.1.4]   

 where μ is constant and   is the radius of the tube .                                                                                   

For graphene, the radius of curvature is 

                                                               .                                                                          [6.1.5] 

Therefore, the effective mass of the electron is zero. 
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7    Chapter  

7.1 Results and discussion 

7.1.1 The graph of energy vs. wave vector for graphene 

Why do we apply relativistic quantum mechanics here? First, there are many 

experimental phenomena which cannot be explained using purely non-relativistic 

quantum mechanics. Second, it would be profoundly unsatisfactory if relativity and 

quantum mechanics could not be united. Finally, one would expect new phenomena when 

a particle attains almost relativistic velocity inside nano-materials like graphene and 

nanotubes. When a free particle enters a region where there is an external potential, 

which paths will the particle follow [21]? Classically, the possible paths are strictly 

confined to the regions where the energy of the particle is greater than its potential 

energy. Accordingly, in non-relativistic quantum mechanics, particle paths are more 

likely to be found in low potential regions, as there are propagating waves in the regions 

where the particle energy is greater than the potential energy [21], and the transmission 

probability depends exponentially upon potential strength. But in the case of relativistic 

quantum mechanics, massless Dirac fermions freely penetrate potential barriers of 

arbitrary strength with transmission probability one for normal incidence, which is known 

as the Klein Paradox. 
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 Klein tunneling enables particles to tunnel through higher potential regions. This process 

depends upon the energy of the particle, its wave vector, the potential profile and other 

parameters as well. In transport through graphene, the electrons follow paths associated 

with high potential rather than those with low potential, and this anomalous behavior of 

the flow of the particles leads to extreme conductance fluctuations. 

Carbon atoms in graphene are arranged on a honeycomb lattice, and this unique 

configuration of the structure leads to an unusual energy dispersion relation near the 

Brillouin zone corners. 
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As shown in figures 7.1 and 7.2, the valence (E < 0) and conduction (E > 0) bands nearly 

touch at six pairs of points in the Brillouin zone corners, of which two sets of points are 

inequivalent. These two points in reciprocal lattice (K and K’) are known as Dirac points 

where the Hamiltonian is given by the following expression [21] 

                                                              ̂          ∙  ⃗⃗                                                    [7.1.1] 

where           are Pauli matrices and            is the Fermi velocity in 

graphene. The + (-) sign corresponds to taking the approximation near the K (K’) points, 

and electrons near these Dirac points move with the Fermi velocity            .  

 

 

 

 

 

 

 

 

Figure 7.1: Graph of energy vs. akx and aky in graphene where “a” is lattice constant and 

kx and ky are wave vectors along the x and y directions, respectively. Golden color and 

violet color show conduction bands and valence bands, respectively. 
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Now the above graph of energy vs. wave vectors is rotated to indicate the Dirac points 

where the effective mass of an electron is zero. The two sets of Dirac points are shown 

inside the red circle. 

 

 

 

  

 

 

 

 

 

 

 

Figure 7.2: The graph shows two sets of Dirac points where the effective mass of the 

electron is zero. 
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7.1.2 Transmission through graphene and its density of states and band 

structure 

When an electron moves through a graphene lattice, it gains a virtual spin known as 

pseudospin. Quasiparticles in graphene are chiral, meaning that the orientation of the 

electron’s pseudospin is either parallel or antiparallel to the direction of its momentum, 

and this property remains conserved inside of graphene. 

 

 

 

 

 

 
 
 Figure 7.3 (a): Two counter-propagating particles creating a phase difference of  . 
 
 
 

 

 

 

 

 

       Figure 32 (b): Conservation of chirality of the particles in graphene. 
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As electrons propagate around closed paths, the pseudospin remains parallel to the 

momentum as shown in the figure above. For a clockwise path, the pseudospin rotates by 

an angle of –   in the graphene plane and for an anticlockwise path, the angle of 

pseudospin rotates by    The difference in the pseudospin for the counter-propagating 

paths is then   . Analogous to the rotation of a spin-1/2 fermion, for which a rotation by 

   doesn’t return the wave function to its original state, a net rotation of the pseudospin 

by    induces a phase difference of   between the counter-propagating  paths [23] and 

causes destructive interference and suppresses the backscattering of particles. So, the 

transmission inside graphene is unique. Now we can show the nature of the unique 

transmission of particles inside graphene. 

 

 

 

     

 

 

 

 

 

 

 

Figure 7.4: A two dimensional graphene sheet in between two electrodes through which 
the transmission spectrum has been calculated [32].    
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Figure 7.5: Graph of energy vs. transmission coefficient of graphene as obtained with the 

Atomistix Toolkit Package [32].                                      

Here, we can see that the nature of the transmission is not uniform everywhere in the 

region of -2 eV to +2 eV. In the region around 0 eV the transmission coefficient is small, 

but beyond in the negative region of energy, it is of increasing nature and reaches its 

maximum and then decreases until around -1 eV. In the region of -1 eV, the transmission 

remains low and fluctuates until around -1.4 eV and then increases and reaches its 

maximum, and then it decreases to around 0.26 because the trend of the density of states 
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is increasing and reaches a maximum, then decreases beyond -1.4 eV. The value of the 

transmission coefficient may be greater than one if the number of channels is greater than 

one. In the positive region of the energy, the value of the transmission is fluctuating until 

1eV, and afterward its value increases because the trend of the density of state increases, 

which is shown in figure 7.5. The transmission is not the same in positive and negative 

regions of the energy because the coupling of the channel to the source and drain is not 

the same. The transmission function critically depends on the density of states of the 

channel. The density of the states of graphene is shown below. 

 

 

 

 

 

 

 

 

 

Figure 7.6: Graph of the density of states vs. energy of graphene obtained with the Atomistix 

Toolkit Package [32]. 
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In the negative region from 0 to -1 eV, the density of states is fluctuating, but beyond that 

its value increases sharply and then decreases around -2 eV. In the positive region of the 

energy, the density of states increases up to 2 eV. So, the nature of the density of states is 

different in positive and negative regions and depends on the band structure of the 

channel. The band structure of graphene is shown below. 

       Figure 7.7: Band structure of graphene as obtained with the Atomistix Toolkit [32]. 
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In this case, the energies have the values             , respectively, at the high 

symmetry points Γ, K, and M in the Brillouin zone. Thus the band width gives ǀ6tǀ, which 

is consistent with the three connected   bonds. The   and the two   bands have different 

symmetries, and so do the                        . The nature of the current through 

the channel depends on the corresponding band structure and the transmission function.                     

 

   

 

 

 

 

 

 

 

 

Figure 7.8: Current-voltage characteristics of graphene as obtained with the Atomistix 

Toolkit package [32]. 
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The current is fluctuating in the region from 0.5 eV to around 1.5 eV and then increases.  

In the negative region of the bias voltage from –0.5 eV to -1.5 eV, the current fluctuates 

little and then increases. In both positive bias and negative bias, it shows negative 

differential resistance (NDR) which plays a very important role in electronic devices.  

Again, the high temperature normalized electrical resistance [24] can be theoretically 

approximated as [24] 

     
         

               ,   where    is the absolute temperature.                 [7.1.2]                              

. 

 

 

 

 

 

 

 

             

     

  Figure 7.9: The graph of the normalized resistance vs. temperature for graphene.                         
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   V) 

Also, the transmission probability T (E) depends only weakly on the barrier height, 

approaching perfect transparency for very high barriers. In equation [4.3.43], we have for 

the present case the momentum     √
       

    
      .                                                               

                                    

            Figure 7.10: Graph of transmission vs. barrier height (meV) for graphene. 
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We see that the transmission probability depends also only weakly on the barrier width  

as shown below: 

 

 

 

 

 

 

 

 

                Figure 7.11: Transmission coefficient vs. barrier width (nm) of graphene. 

 

Here it looks as if the transmission coefficient remains constant at the angle of incidence 

phi=10  but by changing the range of the scale, we can see that it depends weakly on the 

barrier width which is shown below: 
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Figure 7.12: Transmission coefficient vs. barrier width (nm) at phi = 10 for   the case of 

graphene. 
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Again we see a weak dependence of the transmission function on the barrier width at phi 

equal to 300. 

 

 

 

 

 

 

 

 

 

Figure 7.13:  Transmission coefficient vs. barrier width (nm) at phi = 300 for graphene. 
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7.2.1 Transmission through nanotubes of different diameters and their band 

structure  

The structure of carbon nanotubes has been explored by transmission electron 

microscopy (TEM) and scanning tunneling microscopy (STM), and it has been found that 

they are cylinders derived from the honeycomb lattice of a monolayer of the graphite 

sheet [10]. The single walled nanotubes are characterized as having strong covalent 

bonds, exceptionally high tensile strength, high resilience as well as electronic properties 

ranging from semiconducting to metallic and high thermal capacity. The most 

fundamental property of nanotubes is their electrical conductivity. The ballistic 

conduction has been verified for a single carbon nanotube over the length of 200 nm [24] 

at room temperature, as well as at low temperatures. [25], [26]. Due to these peculiar 

properties of nanotubes, transistors made of nanotubes and graphene are 10 to 100 times 

faster than our silicon based transistors. We calculated the energy per atom for graphene 

and nanotubes using the DFT program. Since the energy per atom in the cases of 

graphene and nanotubes are different, band structures, density of states and transmission 

coefficients are different also. The speed of an electron in graphene is              

and in a nanotube its value is             Therefore, we have studied the transport 

properties through nanotubes of different diameters. The transmission curves through 

nanotubes of different diameters are different. In the case of a nanotube with a diameter 

of 4.383 nm, the transmission coefficient shows a decreasing trend in the positive bias 

and an increasing trend in the negative bias. But in the case of a nanotube with a diameter 

of 3.1629 nm, the transmission curve shows an increasing trend in the positive bias, and 
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an initially decreasing trend and then increasing trend in the negative bias. Similarly, in 

the case of a nanotube with a diameter of 2.4388 nm, the transmission coefficient shows 

an increasing trend initially and then decreasing trend in the positive bias, whereas its 

value shows an increasing trend in the negative bias. 

7.2.2 Transmission through nanotubes of diameter 4.383 nm and its band 

structure 

Nanotube of diameter 4.3830 nm:  It has been found that nanotubes of different 

diameters have different bond lengths and different energies per atom. The nanotubes of 

larger diameters have smaller bond lengths and possess less energy per atom [33]. As 

band structures of different diameter nanotubes are different, transmission properties tend 

to differ. The nanotube with a diameter of 4.3830 nm has a bond length of     8  . (see 

fig.7.14). 

                                  

 

 

 

 

Figure 7.14: Nanotubes of diameter 4.3830 nm through which the transmission spectrum 

has been calculated with the Atomistix Toolkit Package [32]. 
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 Figure 7.15: Graph of the transmission coefficient vs. energy for a nanotube of diameter 

4.383nm [32]. 

 

The transmission spectra in the positive as well as negative energy regions are not the 

same. The transmission coefficient beyond 0 eV is fluctuating and shows a decreasing 

trend in the positive region because of the decreasing trend of density of states in those 
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increasing trend. The value of the transmission coefficient is larger at -2 eV than +2 eV. 

Beyond -1.0 eV, the average values of the transmission coefficient are higher than the 

average values beyond +1.0 eV. This is caused by the density of states which is different 

in these regions. The density of states as a function of energy is given below 

 

 

 

 

 

 

 

 

 

Figure 7.16: Graph of the density of states vs. energy for a nanotube of diameter 4.383 

nm with Atomistix Toolkit Package [32]. 

 

The density of states is rapidly fluctuating from 0 eV to 2 eV. In negative voltage regions, 

the density of states is also fluctuating but has much higher values beyond -1 eV. 
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 Figure 7.17: Band structure of a nanotube of diameter 4.383 nm with the Atomistix 

Toolkit Package [32]. 
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Due to the curvature effect, we encounter       hybridization and the         states 

mix and repel each other, resulting in a lowering of the energy as compared to the 

original      states. This drastically changes the electronic band structure from that 

obtained by simply folding the graphite sheet band structure [28].  Thus, allowed wave 

vectors are different than graphene, and the transmission of current through a nanotube is 

different than through a graphene sheet. 

  

 

 

 

 

 

 

 

 

 

Figure 7.18: The graph of current vs. voltage in the nanotube of diameter 4.383 nm as 

obtained with Atomistix Toolkit Package [32]. 
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The current in the positive bias voltage and negative bias voltage is not symmetric 

because of asymmetry of the band structure. In the positive bias voltages, current 

fluctuates more, and in the negative bias voltage, it fluctuates less. Its value is maximum 

around -1.8 eV and then decreases.  

7.2.3 Transmission through nanotube of diameter 3.6129 nm and its band 

structure 

Nanotube of diameter 3.6129 nm: This nanotube has a bond length of 1.430 nm and has 

approximately 0.063 eV more energy per atom than the nanotube of diameter 4.383 nm 

[33]. So its transmission property is different from the previous one. The system of the 

nanotube attached with electrodes is shown below. 

                                 

Figure 7.19: The nanotube of diameter 3.6129 nm for which the transmission spectrum 

has been calculated with Atomistix Toolkit Package [32]. 
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 Figure 7.20: Graph of the transmission coefficient vs. energy for a nanotube of diameter 

3.6129 nm as obtained with Atomistix Toolkit Package [32]. 

 

The transmission in the positive region as well as the negative region is not symmetric. 

Beyond 1eV, the transmission coefficient highly fluctuates and then decreases because of 

similar trend of density of states in those regions. In the negative voltage regions, the 

trend of the transmission coefficient is also fluctuating and reaches to around 3.75eV and 
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then decreases because of the similar trend found in density of states in those regions. 

This is caused by an asymmetry of the corresponding density of states.  

 

 

 

 

 

 

 

 

 

Figure 7.21: Density of states vs. energy for a nanotube of diameter 3.6129nm as 

obtained with Atomistix Toolkit Package [32]. 

 

The transmission is not symmetric in positive and negative regions because the density of 

states fluctuates differently in the two regions. It increases up to approximately 20/ev in 

the negative region but reaches a surprisingly high maximum value of 45/eV in the 

positive region. 
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 Figure 7.22: The band structure of a nanotube of diameter 3.6129 nm with Atomistix 

Toolkit Package [32]. 

 

Due to curvature effect, there is a stronger       hybridization and the hybridized 

states strongly repel each other, resulting in a lowering in the energy compared with the 

original      states. This drastically changes the electronic band structure from the 

nanotube of diameter 4.383nm. So, the transmission is different from a nanotube of 

diameter 4.383nm, and this causes a difference in current.   

 



97 
 

-2 -1 0 1 2

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

-2 -1 0 1 2

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

 

 
C

ur
re

nt
(n

A
)

Voltage(V)

Currentvs. Voltage

 

 

 

 

 

 

 

 

 

  

Figure 7.23: The graph of current vs. voltage for a nanotube of diameter 3.6129 nm as 

obtained with Atomistix Toolkit Package [32]. 

 

The current in both positive and negative regions of bias voltage is again not symmetric 

because of asymmetry of the transmission. In the positive region, we find a stronger 

fluctuation of the current beyond 1V and reaches maximum of 68000 nA and then 

decreases. But in the negative region, there is less pronounced fluctuation in the current, 

and its value reaches around a maximum of 75000 nA and then slightly decreases.  
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7.2.4 Transmission through nanotubes of diameter 2.4338 nm and its band 

structure 

Nanotube of diameter 2.4338 nm: This nanotube has a bond length of 1.445 nm and 

thus has approximately 0.25 eV more energy per atom than the previous nanotube [33].  

The band spectrum as well as the transmission is noticeably different from the other 

nanotubes we studied. The system of nanotube attached with electrodes is shown below. 

                                    

 

 

 

 

Figure 7.24: The nanotube of diameter 2.4338 nm for which the transmission spectrum 

has been calculated as obtained with Atomistix Toolkit Package [32]. 
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 Figure 7.25: Transmission coefficient vs. energy for a nanotube of diameter 2.4338 nm 

as obtained with Atomistix Toolkit Package [32]. 

 

The transmission through this nanotube reflects again the asymmetric nature of the 

density of states about the Fermi level. The transmission spectrum is highly fluctuating 

and has a maximum value up to 1.6 and decreases below 0.2 at 2 eV in positive regions.  

The values of transmission coefficients are also fluctuating in negative regions, and its 
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value reaches to a maximum value over 1.6 and decreases to around 0.9 at -2 eV because 

a similar trend of density of states is found in those regions.  

 

 

 

 

 

 

 

 

 

 

 Figure 7.26: Graph of density of states vs. energy for a nanotube of diameter 2.4338 nm 

with Atomistix Toolkit Package [32]. 

 

-2 -1 0 1 2

0

10

20

30

40

50

60

70
-2 -1 0 1 2

0

10

20

30

40

50

60

70

 

 

D
ev

ic
e 

D
en

si
ty

 o
f S

ta
te

s

Energy E/eV

Device Density of States Vs Energy

Energy (eV) 

D
ev

ic
e 

de
ns

ity
 o

f s
ta

te
s/

eV
 



101 
 

The values of the density of states are fluctuating in positive regions of energy with a 

maximum value of 55 eV-1 and then decreases to around 5 eV-1 , whereas in the negative 

regions of energy, its values fluctuate even more with a maximum of 60 eV-1 and then 

decreases to 11 eV-1.  

 

Figure 7.27: The band structure of nanotube having diameter 2.4338 nm as obtained with 

Atomistix Toolkit Package [32]. 
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Since its surface is strongly curved, there is very strong       hybridization and states 

strongly mix with each other which lead to repulsion, resulting in a lowering of the 

energy of original      states. This leads to a drastic change of the band structure 

compared to the nanotube of diameter 3.6129 nm. Consequently, the transmission of the 

two nanotubes differs noticeably. 

  

 

 

 

 

 

 

 

  

 

Figure 7.28: The graph of current vs. voltage for a nanotube of diameter 2.4338 nm as 

obtained with Atomistix Toolkit Package [32]. 
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The current in the positive bias and negative bias is again not symmetric because of 

asymmetry of the transmission. The current fluctuates slowly in the positive region of 

bias voltage and finally reaches to around 42000 nA, but in negative regions, current 

fluctuates highly and reaches to around 680000 nA.  

Also, the electrical conductivity of a nanotube obeys power law [29] is given by the 

expression given below 

                                                                    .                                           [7.2.1] 

 

                

 

 

 

 

 

Figure 7.29:  The graph of conductance of a nanotube vs. temperature. The red line and 

the blue line show conductance vs. temperature when              , respectively. 
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7.2.5 Calculation of total electronic energies per atom by density 

functional theory. 

Electronic energy of different molecules has been calculated by B3LYP functional which 

is the most popular high-level computational method in density functional theory. B3 

symbolizes Becke’s three-parameter hybrid functional, and LYP is a gradient-corrected 

correlation functional developed by Lee, Yang and Parr. 6-31G (d) basis function has 

been used in this calculation. Since band structure of a material much depends upon 

energy per atom, we calculated energy per atom of graphene, nanotube and other organic 

molecules which contain carbon atoms using the DFT program. Organic structural 

isomers are taken in order to check that energy per atom is approximately the same as 

graphene and nanotube or not. 

 

 

 

          

 

 

  

Table1: Energy calculation for different molecules by density functional theory. 
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             Figure 7.30: Structure of graphene whose electronic energy has been calculated. 

 

 

 

 

 

 

 

 

                   Figure7.31: Structure of nanotube whose electronic energy has been  

                   calculated. 
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Figure7.32: Structure of pentacene whose electronic energy has been calculated. 

 

 

 

 

Fig. 7.33: Structure of Dibenz [a,j]anthracene whose electronic energy has been 

calculated.    

                                

 

             

 

 

 Figure7.34: Structure Picene whose electronic energy has been calculated. 
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8     Chapter 

8.1 Discussion: 

We calculated the transmission of electrons through a graphene sheet and then folded the 

graphene sheet into a cylindrical structure which is a carbon nanotube. The energy per 

atom increases when the graphene sheet is bent into a nanotube, which is verified by 

density functional theory (DFT). Since the energy of the graphene sheet is different from 

that of a nanotube, the band structure, as well as the density of states differs in for both 

cases. For the same reason the transmission in both cases is different. We also plotted 

graphs of the transmission coefficient and current vs. voltage for three nanotubes of 

different diameters using the “Atomistix Toolkit Package”. We obtained different graphs 

in all three cases. The value of the transmission co-efficient may be greater than one if 

the number of channels is greater than one. We also computed the total electronic energy 

of several organic compounds like pentacene, Dibenz[a,j]anthracene and Picene using 

density functional theory to evaluate the energy per carbon atom keeping the number of 

carbon atoms and hydrogen atoms the same in all three cases, and thus verifying that the 

energy of different structure isomers have approximately the same energy as that of the 

graphene and carbon nanotubes. It has been found that indeed structural isomers exhibit 

only slight differences in energy per atom. Similarly, we found that the energies of 

graphene sheets and nanotubes also differ. In other words, we suggest that the energy 

surplus of a nanotube adds up to whatever energy we apply to fold a graphene sheet. 

Therefore, graphs of transmission vs. energy, current vs. voltage, band structure and 



108 
 

density of states for all the studied structures differ. When electrons propagate through 

graphene, they interact with the lattice and thereby gain a pseudospin quantum number. 

The pseudospin angular momentum and the direction of linear momentum align in the 

same direction, which is known as chirality. Also, destructive interference takes place 

between clockwise and counterclockwise particle motion inside graphene because the 

phase difference between them is    Due to chirality and destructive interference between 

clockwise and counter clockwise particle motion inside graphene, the reflection 

coefficient becomes zero and the transmission coefficient becomes one, leading to the 

resolution of the Klein Paradox. The effective mass of an electron in the environment of a 

graphene sheet is zero, but, when the graphene sheet is bent into a carbon nanotube, the 

electron interacts with a Higgs-like field and spontaneous breaking of the symmetry of 

the Higgs field takes place. This is one possible accepted explanation for the effective 

mass of the electron becoming non-zero. Alternatively, one has argued that a graphene 

sheet with its 2-dimensional topology, when it is folded into a carbon nanotube, is 

reduced to a 1-dimensional topology. Therefore, an electron is associated with one extra 

space like dimension inside a graphene sheet, but, when it is folded into a carbon 

nanotube, loses one of the space dimensions. Thereby, the effective mass of an electron 

inside the carbon nanotube becomes non-zero due to compactification of space 

dimensions. When we plot the graph of energy vs. wave vectors, we get a conduction 

band which is shown in red color and a valence band which is shown in violet color. The 

conduction band is characterized by E > 0 and valence band is characterized by E < 0. 

When this plot is rotated, we exhibit two pairs of points which are known as Dirac points. 
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The effective mass of the electron is zero at Dirac points and has Fermi velocity     

      . 

For an angle of incidence 10, the transmission probability vs. barrier width seems to be an 

approximately straight line, i.e. transmission probability is independent of barrier width. 

When the y-range is decreased, the transmission probability seems to be very weakly 

dependent upon the barrier width which is shown in the figure 7.12. For an angle of 

incidence of 300, the transmission probability is weakly dependent upon barrier width as 

shown in figure 7.13. The dependence of the transmission vs. barrier height is also 

plotted, and it is found that the transmission probability depends very weakly on the 

barrier height.  We can say that there is an approximately perfect transmission of 

electrons through a barrier. The transmission depends also on the density of states in the 

case of carbon nanotubes as well as graphene and it is found that wherever the density of 

states is higher, the transmission is found to be higher too. In the case of graphene, the 

trend of the density of states beyond 1 eV is increasing and so the transmission 

coefficient also increases beyond 1 eV and, similarly, the density of states initially 

increases and decreases beyond -1.5 eV and the transmission probability also initially 

increases and then decreases beyond -1.5 eV. Also, we found similar dependencies of the 

transmission probability on the density of states in the case of carbon nanotubes. 

Graphene and nanotubes show negative differential resistance (NDR) behavior, i.e. the 

current decreases as the voltage increases. We observed that graphene and nanotubes 

show NDR behavior in the negative as well positive bias. Also, the current vs. voltage 

graphs for the cases of graphene and nanotubes are different because of curvature effect, 
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i.e. which is explained by hybridization between    and    bands. These states mix and 

repel each other, resulting in a lowering of the energy as compared to the original non-

hybridized states. This causes relevant changes in the band structure and explains the 

differences in the transmission in the case of graphene and carbon nanotubes. The 

differences of the transmission in positive and negative bias are not symmetric because of 

an asymmetry of the coupling of the channels with the electrodes. To calculate the energy 

of graphene and nanotube by density functional theory, the number of carbon atoms in 

both systems has been taken equal, but the number of hydrogen atoms is necessarily 

different. The total energy obtained is then divided by the number of atoms present in the 

molecule including the hydrogen atoms. In pentacene, dibenz [a,j]anthracene and Picene, 

the number of hydrogen atoms  taken are same. We umber of atoms present in the 

molecule including hydrogen atoms. We found that every structural isomer has very little 

difference of energy. 
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 8.2 Applications of graphene and nanotubes 

Graphene and carbon nanotubes show negative differential resistance (NDR) 

behavior which is characterized by a decreasing current with an increasing bias 

voltage. The property of NDR behavior has become the basic principle of several 

electronic devices such as resonant tunneling diode [34]. The resonant tunneling 

diode has a region in its voltage/current characteristics where the current decreases 

with increased forward voltage. This property of resonant tunneling diode can be used 

as a basis of memory, switching mechanism, and logic functionality [35, 36, 37, 38]. 

Graphene can be used as a field effect transistor where the voltage signal applied to 

the gate modulates the channel current which is converted into a voltage signal upon 

passing through a load resistor [39, 40, 41]. The voltage gain of the amplifier depends 

upon the transconductance of a field effect transistor [FET] and load resistance [39]. 

A schematic drawing of a FET is shown in figure 8.1. So, FET is an electronic device 

with at least three terminals [39] and the conductivity between source and drain is 

modulated by the gate voltage. This gate voltage control such that it acts as switch 

which conducts high current when it is on and very low current when it is off. 

Graphene can be used as a detector of special nuclear material [42, 43, 44, 45]. The 

modeled device architecture is a graphene-based field effect transistor which consists 

of graphene on a radiation-absorbing, electrically-gated, undoped semiconductor 

absorber, separated by a thin dielectric buffer layer [42]. The conductivity of FET 
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abruptly changes by charge carriers produced by radiation which falls upon absorber 

material. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Schematic drawing of a field effect transistor in which graphene is placed 

between drain and source. 
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8.3   Summary and Conclusions 

� The energy per atom of graphene is -1043.496704 eV and the energy per atom of a 

corresponding nanotube is -1041.976612 eV. This is shown in Table 1. So, the 

energy per atom in the two cases differs by 0.1456%. 

In the case of graphene, in the negative region, the density of states is fluctuating, 

but beyond that, its value increases sharply from 0 to -1 eV and then decreases 

around -2 eV. In the positive region of the energy, the density of the states rises up to 

2 eV. But in the case of the carbon nanotube with diameter 4.3830 nm, the density of 

states is rapidly fluctuating, also up to 2 eV. In negative voltage regions, the density 

of states is also fluctuating but much higher beyond -1 eV. In the case of a nanotube 

with diameter 3.6129 nm, the density of states increases up to approximately 20/eV 

in the negative region while it reaches surprisingly a maximum value of 45/eV in the 

positive region. In the case of the nanotube with diameter 2.4338 nm, the density of 

states fluctuates in the positive regions of energy with a maximum value of 55 eV-1 

and then decreases to around 5 eV-1, whereas in the negative regions of energy, its 

value is even more fluctuating with a maximum of 60 eV-1 and then decreases to 11 

eV-1. So the density of states is also different in the case of graphene and nanotubes. 

� In the case of graphene, in the region around 0 eV, the transmission coefficient is 

small, but in the negative region of energy it increases, passes through a maximum 

and then decreases down to 1eV. In the region of -1eV, the transmission remains 

low and fluctuating until around -1.4 eV, and then increases and becomes 
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maximum, and then decreases to around 0.26. But in the case of a nanotube with a 

diameter 4.3830 nm, the transmission coefficient beyond 0 eV is fluctuating and 

shows a decreasing trend in the positive region. In the negative region, its curve is 

still fluctuating, but with an increasing trend. The value of the transmission 

coefficient is larger at -2 eV than 2 eV. Beyond -1.0 eV, the average values of the 

transmission coefficient are higher than the average beyond 1.0 eV. In the case of 

nanotube 3.6129 nm, beyond 1eV, the transmission coefficient is highly 

fluctuating and then decreases. In the negative voltage region the nature of the 

transmission coefficient is also fluctuating and reaches to around 3.75 eV and then 

decreases. In the case of nanotube with diameter with 2.4338 nm, the transmission 

spectrum is highly fluctuating and has maximum value up to 1.6 and decreases 

below 0.2 at 2 eV in positive region, whereas the values of transmission 

coefficients are also fluctuating in negative region and its value reaches to 

maximum value over 1.6 and decreases to around 0.9 at -2 eV. So the transmission 

spectrum of graphene and nanotubes is different.  

� In the case of graphene, the current is fluctuating in the region from 0.5eV to 

around 1.5 eV and then increases.  In the negative region of the bias voltage from –

0.5 eV to -1.5 eV, the current fluctuates little and then increases. But in the case of 

nanotube with diameter 4.3830 nm, currents are more fluctuating in the positive 

bias voltages whereas in the negative bias voltage is slightly fluctuating. Around -

1.8 eV, its value is at maximum and then decreases. In the case of nanotube with 

diameter 3.6129 nm, in the positive region, we find a stronger fluctuation of the 

current beyond 1V and reaches maximum of 68000 nA, and then decreases. But in 
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the negative region, there is less pronounced fluctuation in the current and its value 

reaches around a maximum of 75000 nA, and then slightly decreases. In the case 

of nanotube with diameter 2.4338 nm, the current fluctuates slowly in the positive 

region of bias voltage and finally reaches to around 42000 nA, but in negative 

regions current fluctuates highly and reaches to around 680000 nA. So the trend of 

current in graphene and nanotubes is different. 

�  The effective mass of an electron inside graphene is zero at Dirac’s points but an 

electron gains mass when the graphene sheet is folded to form a carbon nanotube. 

� The Fermi velocity of an electron in the case of graphene is           , but in 

the case of a nanotube, this value drops by 10% approximately. 

� The Klein Paradox is no longer really a paradox when chirality is taken into 

account. 

� The total energy per atom for Pentacene, Dibenz [a,j]anthracene and Picene is -

1047.414548 eV, -1047.447088 eV and -1047.446973 eV, respectively as shown 

in the table 1. Therefore, the total electronic energy per atom of different structural 

isomers is different. 

� Graphene and carbon nanotubes show negative differential resistance which is 

characterized as a decrease of current with an increase of voltage which is shown 

while drawing current vs. voltage graphs. 
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�     Future plan 

¾ A study of the transmission through bilayer and trilayer graphene needs to be 

done. 

¾ A study of energy storing capacity of graphene also needs to be done. 

 
¾ Given the opportunity, I plan to study the following properties of graphene and 

carbon nanotube: 

� Graphene has Young’s modulus 1000 GPa but for steel is 200 GPa. Therefore, 

graphene is more than 5 times stronger than steel. 

� Graphene is almost optically transparent and absorbs only 2.3% of light intensity 

which incidents upon it. 

� The graphene sheet has electrical conductivity   9              and 

electrical conductivity of copper is                 . Thus, graphene has 

higher conductivity than copper. Conductivity can be modified over a large rage 

by doping impurities. 

� Thermal conductivity of graphene is around 4840-5300 W/mK and that of silver 

is 429W/mK. So thermal conductivity of graphene is much higher than silver. 

� The mobility of graphene at room temperature is 200,000 cm2V-1s-1 at carrier 

density of n= 1012 cm-2. The mobility is very high which can be used for 

electronic high frequency applications. 
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� Transistor made of graphene is 10-100 times faster than silicon based transistor. 

Flexible electronics and gas sensors are also other potential applications of it. 

� The quantum Hall effect in graphene could possibly contribute to make more 

accurate resistance in metrology. 

� Graphene is capable of absorbing a large amount of hydrogen because of its 

large surface area, so it can store a large amount of energy. 

� Thermal conductivity of a nanotube is very high and ranges from1750 W/mK to 

5800 W/mK. 

� Electrical conductivity of a nanotube is also very high. 

� The Young’s modulus of a carbon nanotube can be 1000 GPa which is 

approximately 5 times higher than steel. Also tensile strength of it can be up to  

 63 GPa which 50 times higher than steel. 

� Under certain condition, we can insert carbon nanotube inside cells and causes 

death of a cell. 

� A carbon nanotube shows semiconducting with very low band gap as well as 

metallic behavior. 

� A carbon nanotube is very useful in the field of nanotechnology. We can make 

microprocessors as well as micro-transistors. So, a carbon nanotube is supposed 

to have superior electronic properties than current silicon-based devices. 
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9      Appendices 

  9.1 Appendix A: 

  9.1.1     Evaluation of the self-energy    

 

 

 

 

 

 

 

                        Figure 9.1: 1-D wire to calculate Hamiltonian. 

 

Consider a semi-infinite 1D wire illustrated by a one-band effective mass Hamiltonian of 

the form shown in the figure. Let us treat the first point of the wire labeled “0” as our 

channel and the remaining points are labeled       as the contact. 

If the channel were decoupled from the contact, it is described by the equation [17] 

                 .                                        [9.1.1] 

Once it is coupled to the contact, this equation is modified to the following equation,  

                   .                                     [9.1.2] 

where the contact wave functions    satisfies an infinite series of equations    , 

                              .             [9.1.3] 
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Assuming the solution consists of an incident wave from the contact and a reflected wave 
back from the channel, we write: 

                  .                             [9.1.4] 

Where: 

                                                           [9.1.5] 

Now using equation [9.1.4] 

         .                                                      [9.1.6] 

and, 

                 .                                            [9.1.7] 

So that 

           [          ].                              [9.1.8] 

Substituting this expression into equation [9.1.2], we obtain 

 

                                                              [            ].          [9.1. 9] 

                    

                                                                         ∑                                 (Source term) 

 

So, the self-energy can be given by ∑         .             
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9.1.2 Evaluation of the transmission co-efficient 

 

 

 

 

 

 

             

 

 

 

 

  Figure 9.2:  Chain of atoms to evaluate the transmission co-efficient.                     

 

Scattering theory on a discrete lattice:   

Let us consider a discrete lattice with points spaced by spacing “a” with the central cell 

having an extra potential      for the delta function. Now we can start with expression 

[17] given below 

                                                 [9.1.10] 

We know wave functions are continuous at     

                                                               .                                                        [9.1.11] 
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         ,                                                             [9.1.12] 

              ,                                                [9.1.13]                                     

So that 

           . 

                                              .        [9.1.14] 

Substituting back into equation [9.1.10], we get 

                      [                ]           , 

Or  [         
  
 
        ]                                                     [9.1.15] 

 

Energy dispersion relation                  ,                                           [9.1.16] 

   
 
  
  
   

 
            . 

Therefore, 

              .                                                                [9.1.17] 

Now substituting equation [9.1.16] and equation [9.1.17] into equation [9.1.15], we get 

[         
  
 
                   ]                

 

or  [                             
  
 
]              

                        0 

So  [              
  
 
]                  

   
 
   

     
 

    
 

  

or       
   

      
 . 
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Therefore, 

     
      

  ,  

Then, the transmission co-efficient               

       
 .                                   [9.1.18] 

Green’s function method: Hamiltonian of the channel can be given as follows: 

               .                                                       [9.1.19] 

Self-energy of the left contact   ∑          . 

Self-energy of the right contact    ∑          . 

Coupling parameter      [∑    ∑   
 ]                . 

We know Green’s function  

         ∑  ∑      [                     ]
  

  

                                      

                                                      

                                                    
 

      
  

                 
    

       
 .                                                     [9.1.20] 
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9.2 Appendix B: 

9.2.1 Relation between current, voltage, and transmission co-efficient 

     C            ,                                                                                                                         [9.2.1] 

   where    is the electron density and   is the speed of the electron. 

Again, 

                                                        ,                                                     [9.2.2] 

  Where       the density of state of jth quantum is state and         is the Fermi 
function. 

Therefore,  

                                  .                                    [9.2.3] 

          Where       is the transmission function. 

Again,   

                      
 
   √

   

      
  .                                                                    [9.2.4] 

and  

   √
         

    .                                                                     [9.2.5] 

Plugging these expressions in the equation,  

          
  

                                                           [9.2.6] 

At zero temperature, the Fermi function becomes the Heaviside  

step function  (    )  

Therefore, 

           
  

                    
   

 
   .                   [9.2.75] 



124 
 

9.2.2 Code for graphs 

Codes for Transmission probability Vs. Barrier height for graphene 

Input1: 

         gnuplot> 

         set angles degrees 

          set xrange[0:300] 

          set yrange[0.982:1.002] 

          set xlabel “Barrier height” 

          set ylabel “Transmission probability” 

gnuplot> plot 0.82139/(1-0.1786*cos(sqrt(80-x)*0.005765-7.05)* cos(sqrt(80-

x)*0.005765-7.05)) w l title “Transmission probability vs. barrier height with phi= 25 

degree” 

Input 2: codes for Transmission probability vs. Barrier width for graphene 

              gnuplot> 

         set angles degrees 

          set xrange[0:150] 

          set yrange[0:1.002] 
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          set xlabel “Barrier width” 

          set ylabel “Transmission coefficient” 

   gnuplot> plot 0.75/(1-0.25*cos(0.56187*x)* cos(0.56187*x)) w l title “ Transmission 

Vs barrier width with phi=30 degree and barrier height=450meV” , “0.999695/(1-

0.000304*cos(0.56187*x)* cos(0.56187*x)) w l title “ Transmission Vs barrier width 

with phi=1 degree and barrier height=450meV” 

  Input 3:  codes for Transmission probability Vs Barrier width for graphene 

        gnuplot> 

         set angles degrees 

          set xrange[0:40] 

          set yrange[0.9992:1.00001] 

         set xlabel “Barrier width” 

          set ylabel “Transmission coefficient” 

gnuplot> plot  0.999695/(1-0.000304*cos(0.56187*x)*cos(0.56187*x)) w l title “ 

Transmission Vs barrier width with phi=1 degree and barrier height=450meV” 

Input 4:  codes for Transmission probability Vs Barrier width for graphene    

        gnuplot> 

         set angles degrees 
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          set xrange[0:40] 

          set yrange[0.95:1.01] 

         set xlabel “Barrier width” 

          set ylabel “Transmission coefficient” 

         gnuplot> plot 0.75/(1-0.25*cos(0.56187*x)*cos(0.56187*x)) w l title “ 

Transmission Vs barrier width with phi=30 degree and barrier height=450meV”  

  Input 5: codes for energy vs. akx and aky. 

gnuplot> 

set xrange[-4:4] 

set yrange[-4:4] 

set zrange[-3:3] 

set pm3d 

 gnuplot>splot sqrt(1+4*cos(0.866025*x)*cos(1.5*y)+4*cos(1.5*y)*cos(1.5*y)), “-

sqrt(1+4*cos(0.866025*x)*cos(1.5*y)+4*cos(1.5*y)*cos(1.5*y))” w l title “Evergy Vs. 

Wave vector” 

Note: Here x= akx and y= aky                
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10     Chapter 
 10.1      Presentations  

�  “Theoretical study of Quadrupole Ion trap and its Application.” Seminar in Fall 

2009 in the University of Nevada, Reno. 

�  “Study of General theory of Relativity and Cosmology.” Seminar in Spring 2011 

in the University of Nevada, Reno. 

�  “Detailed Study of Parity violation” in Spring 2011 in the University of Nevada, 

Reno. 

�  “Detailed Study of Atomic Clock” in Fall 2011 in the University of Nevada, 

Reno. 

�  “Study of Two photon emission” in Spring 2012 in the University of Nevada, 

Reno. 

�  “Study of AIDS Virus and its Remedy” in Spring 2012  in the University of 

Nevada, Reno. 

�  “Study of Transmission of electric current through structural isomers of C40.” 

Presentation at the California-Nevada Section of American Physical Society 

Meeting, Stanford University, CA, November 2011. 

�   “Study of Entropy of Black Hole by using Hawking’s and String Theory.” 

Seminar in Fall 2012 in the University of Nevada, Reno. 
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