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Preface

Analysis is the most important branch of mathematics. Among several

branches of analysis, functional analysis is the most important part of anal-

ysis. Functional analysis is divided into two parts: linear and non-linear.

Fixed point theory is an important part of non-linear functional analysis s-

ince 1960. Fixed point theory is one of the most dynamic areas of research

from last 60 years, with lots of applications in various �elds of pure and ap-

plied mathematics, as well as, in physical, economic and life sciences. It is a

fully developed branch but still continues to be an active and very wide open

area of research. It has emerged as one of the major links between abstracts

mathematics and its applications.

It provides a powerful tool in demonstrating the existence of solutions to a

large variety of problems in applied mathematics. It is used mainly in the

existence theorem of di�erential equations and integral equations. It is al-

so used in arti�cial intelligence, computer science, decision making, medical

diagnosis, neural network, social science and many other related areas. It

has very fruitful application in Eigen value problems and boundary value

problems. The �xed point theory deals with the classical approach to �nd

the exact solution and to check the stability of the system.

Historically, in 1883-1884, French mathematician H. Poincare announced the

�rst �xed point theorem without proof which is now known to be the Brouw-

er's �xed point theorem. The Brouwer's �xed point theorem was one of the

early achievements. Perhaps the most widely applied �xed-point theorem

is due to Polish mathematician Stefen Banach in 1922 and it is known as

Banach's contraction principle.

In 1965, the concept of fuzzy set was introduced by L.A Zadeh [200]. Then,

fuzzy metric spaces have been introduced by O. Kramosil and J. Michalek
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[102] in 1975. George and Veeramani [49] modi�ed the notion of fuzzy metric

spaces with the help of continuous t-norms and also many others have been

introduced and generalized in di�erent ways. Recently, many authors have

studied the �xed point theory in the fuzzy metric space and number of �xed

point theorems have been obtained in fuzzy metric space by using the notion

of compatibility, weak compatibility, semi compatibility of self maps or by

using its generalized, contractive de�nitions.

In this thesis, we have established some common �xed point theorems in

metric space and fuzzy metric space which generalizes and improves existing

similar results in the literature.

Chapter wise cameo description of the present study is as follows.

CHAPTER ONE deals with the general introduction of �xed point the-

ory. It de�nes some fundamental concepts and notations relevant to the

development of �xed point theory. A brief survey of the development of the

�xed point theory in metric space and fuzzy metric space has been presented

and some of the well-known theorems have been stated. Also, it has included

some types of compatible mappings, generalized form of fuzzy metric space

and some applications.

CHAPTER TWO is intended to study the �xed point theorems in dif-

ferent compatible mappings in metric space . It includes basic de�nitions

and some �xed point theorems. We have obtained two common �xed point

theorems in metric space using reciprocal continuous, compatible mappings

of type (E). Also, we have introduced a new compatible mappings of type

(K) and obtained a common �xed point theorem.

CHAPTER THREE is intended to obtain some common �xed point the-

orems in Fuzzy metric spaces using compatible mappings of type (E) and

compatible mappings of type (K) which generalizes and improves other sim-
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ilar results in the literature. It includes basic de�nitions and those theorems

specially having the relevance for the establishment of our theorems.

CHAPTER FOUR is intended to obtain some common �xed point theo-

rems in Intutionistic Fuzzy metric spaces using compatible mappings of type

(K) which generalizes and improves other similar results in the literature .

It includes conclusion and some future scope.

The list of literature consulted has been placed at the end of the thesis

as Bibliography.

Our original contributions has been contained in chapters 2, 3 and 4. A

part of the research work contained in this thesis has been already published

in international peer reviewed journal [79], [82],[111], [112], [113],
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Chapter 1

Introduction

In this chapter, we give a brief development of �xed point

theory in metric and fuzzy metric space, generalized form of

fuzzy metric spaces, di�erent types of compatible mappings

with some relevant fundamental concepts and applications.

1.1 Introduction

Fixed point theory is an important part of non-linear func-

tional analysis since 1960. It is one of the most dynamic

areas of research activities since last six decades, with lots

of applications in various �elds of pure and applied math-

ematics, as well as, in physical, economic and life sciences.

Also, it deals with the classical approach to �nd the exact

solution and to check the stability of the system.
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Historically, in 1883-1884, French mathematician H. Poincar-

e announced the �rst �xed point theorem without proof

which is now known to be the Brouwer's �xed point theo-

rem. Perhaps, the most widely applied �xed-point theorem

is due to Polish mathematician Stefen Banach in 1922 and

it is known as Banach's contraction principle. Fixed point

theory has played vital role in the problems of non-linear

functional analysis which is the blend of analysis, topology

and algebra.A �xed point theorem is one which ensures the

existence of a �xed point of a mapping T : X ! X un-

der suitable assumptions both on a set X and T . In fact,

�xed point theorems have wide applications in non linear

integral, di�erential equations, game theory, optimization

theory and boundary value problems.

Fixed Point Theory has been classi�ed into three major

areas:

(a) Topological Fixed Point Theory

(b) Metric Fixed Point Theory

(c) Discrete Fixed Point Theory

Historically, the boundary lines between the three areas was

de�ned by the discovery of following three major theorems:

(a) Brouwer's Fixed Point Theorem

(b) Banach's Fixed Point Theorem
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(c) Tarski's Fixed Point Theorem

Apart from establishing the existence of a �xed point for

self mappings, it often becomes necessary to prove the u-

niqueness of the �xed point. Besides, from computational

point of view, an algorithm for calculating the value of the

�xed point to a given degree of accuracy is desirable which

involves the iterates of the given function. In essence, the

question about the existence, uniqueness and approxima-

tion of �xed point provide three signi�cant aspect of the

general �xed point principle.

Banach's contraction principle which is well known to the

student of mathematical analysis is perhaps one of the few

most signi�cant theorems. Not only is its proof elementary

but it also answers all the three questions of existence, u-

niqueness and constructive algorithm convincingly. A deep-

er, though especial result is Brouwer's �xed point theorem.

It states that any continuous function mapping a closed ball

B(a; r) of Rn in to itself has a �xed point. In general Brouw-

er's �xed point theorem ensures neither the uniqueness of

the �xed point nor the convergence of the iterates. While,

the early proofs of Brouwer's theorem rely on algebraic-

topological ideas based upon analytical arguments. A brief

survey of the development of Brouwer's �xed point theorem

has been presented in the paper of Jha and Panthi [80].
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The well known Existence Theorem states that, If a set

valued continuous function f de�ned on a closed interval

[a; b] assumes values of di�erent signs at end points of the

interval then the equation

f(x) = 0: (1.1)

has at least one solution inside [a; b].Writing the equation

(1.1) in the form �f(x) + x = x, where � is positive pa-

rameter and denoting (x)+x by T (x), we get the function

equation

T (x) = x: (1.2)

Now, we choose the value of � in such a way that all the

values of T lie inside the interval [a; b]. Then, the function

T is a function in [a; b] ; that is it maps the point x from

interval [a; b] into the point T (x) = y of the same interval

and in general, it does not coincide with x. If the point

x = x0 is a solution of the equation (1.2) then we have

T (x0) = x0 which implies that x0 is �xed by T and so it

is called the �xed point of T . Clearly, the solution of the

function equation (1.1) is also a solution of equation (1.2).
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Example 1.1.1. If f is de�ned on the real number by

f(x) = x3 + x2 + x � 2.Then, x = 1 is �xed point of f

because f(1) = 1.

The following is the graph of f(x) = x3 + x2 + x � 2 and

f(x) = x.

Geometrically, a �xed point implies that the point is

(x, f(x)) on the line y = x.

5



1.2 Basic De�nitions

De�nition 1.2.1. Let X be a non empty set and d be a real

function from X �X into R+ such that for all x; y; z 2 X,

we have

(a) d(x; y) � 0;

(b) d(x; y) = 0 () x = y;

(c) d(x; y) = d(y; x) and

(d) d(x; z) � d(x; y) + d(y; z);

then d is called a metric or distance function and the pair

(X; d) is called a metric space.

De�nition 1.2.2. A sequence fxng in a metric space (X; d)

is called a Cauchy sequence if for given � > 0, there

corresponds n0 2 N such that for all m;n � n0; we have

d(xm; xn) < �.

De�nition 1.2.3. A sequence fxng in metric space is said

to be convergent to a point z 2 X if for given � > 0, there

exists a positive number n0 2 N such that d(xn; z) < �.

In this case, z is called limit point of fxng and we write

xn ! z.

De�nition 1.2.4. A metric space (X; d) is called com-

plete if every Cauchy sequence in it is convergent to a point

in X:
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De�nition 1.2.5. A mapping T of a metric space X into

a metric space Y is said to be continuous if

fxng ! z ) Txn ! Tz for each n0 � 0:

De�nition 1.2.6. A metric space X is said to be compact

if every sequence in it has a convergent subsequence.

De�nition 1.2.7. A subset F of metric space X is called

a closed set if it contains each of its limit points.

De�nition 1.2.8. Two self mappings T and S of a metric

space X are said to be commuting if,

T (S(x)) = S(T (x))8x 2 X:

Two self mappings T and S of a metric space are said to

be commuting at a point z in X if T (S(z)) = S(T (z)):

We shall denote this by TSz = STz. Also, T and S are

said to be non commuting if there is no such point z in X

where T and S commute.

De�nition 1.2.9. [174] Two self mappings S and T of a

metric space X are said to be weakly commuting if,

d(STx, TSx) � d(Sx; Tx) for all x 2 X

7



The map S and T are said to be weakly commuting at a

point z in X if, d(STz; TSz) � d(Sz; Tz):

De�nition 1.2.10. [66] A mapping S of a metric space

X into itself is de�ned to be Lipschitz mapping if, there

exists a real number k � 0 such that

d(Sx; Sy) � kd(x; y) for each x; y 2 X:

De�nition 1.2.11. [200] Let X be any set. A fuzzy set

A of X is a function from domain X and values in [0, 1].

Example 1.2.12. Consider U = fa; b; c; dg and A :

U ! [0; 1] de�ne as A(a) = 0; A(b) = 0:5; A(c) = 0:2 and

A(d) = 1: Then A is a fuzzy set on U: This fuzzy set also

can be written as follows

A = f(a; 0)(b; 0:5)(c; 0:2)(d; 1)g

Example 1.2.13. A crisp interval [a, b] is represented

by a fuzzy set f(x)=

(
0 for x2(a;b)

1 for x 2 fa; bg

De�nition 1.2.14. [49] A binary operation � : [0; 1] �

[0; 1] ! [0; 1] is called a continuous t-norm if it sat-

is�es the following conditions:

� �is associative and commutative,

� � is continuous,

� a � 1 = a for all a 2 (0; 1), and

8



� a � b � c � d wherever a � c and b � d for all a; b; c; d 2

[0; l].

Example 1.2.15. a � b = ab for a; b 2 [0; 1] is a contin-

uous t-norm.

De�nition 1.2.16. [172] A binary operation � : [0; 1]� [0,

1] ! [0; 1] is a continuous t-conorm,if it satis�es the

following conditions:

(a) � is commutative and associative;

(b) � is continuous;

(c) a� 0 = a for all a 2 [0; 1];

(d) a � b � c � d whenever a � c and b � d, for each

a; b; c; d 2 [0; 1].

Example 1.2.17. A binary operation � : [0; 1]� [0; 1]!

[0; 1] such that a � b = min(a+ b; 1) is a t -conorms.

De�nition 1.2.18. [49] A 3-tuple (X;M; �) is said to be a

fuzzy metric space if X is an arbitrary set, � is a contin-

uous t-norm and M is a fuzzy set on X2� (0;1) satisfying

the following conditions: for all x; y; z 2 X and s; t > 0,

(FM1) M(x; y; t) > 0;

(FM 2) M(x; y; t) = 1 if and only if x = y;

(FM 3) M(x; y; t) =M(y; x; t);

(FM 4) M(x; y; t) �M(y; z; s) �M(x; z; t+ s);

(FM 5) M(x; y; :) : (0;1)! (0; 1] is continuous.

9



Then M is called a fuzzy metric on X. The functionM(x; y; t)

denote the degree of nearness between x and y with respect

to t. Also, we consider the following condition in the fuzzy

metric spaces (X;M; �).

(FM6) t
lim
! 1M(x; y; t) = 1, for all x; y 2 X.

Example 1.2.19. [49] Let (X; d) be a metric space. We

de�ne a � b = ab for all a; b 2 [0; 1] and let M be fuzzy set

on X2 � (0;1) de�ned as follows: M(x; y; t) = t
t+d(x;y).

Then (X;M; �) is a fuzzy metric space. We call this fuzzy

metric induced by a metric d is the standard fuzzy metric.

De�nition 1.2.20. [162] Let (X;M; �) be a fuzzy metric

space, and f is a self-mapping of X. Then, � is said to be a

periodic point or an eventually �xed point, if there exists

a positive integer k such that fk(�) = �.

De�nition 1.2.21. [162] Let (X;M; �) be a fuzzy metric

space, the mapping f : X ! X is said to be a fuzzy � -

contractive if there exists 0 < � < 1, such that if 1� � <

M(x; y; t) < 1, then M(f(x); f(y); t) > M(x; y; t) for all

t > 0, and x; y 2 X.

De�nition 1.2.22. [49] A sequence fxng in a fuzzy metric

space (X, M, *) is a Cauchy sequence if and only if for

each � 2 (0; 1) and each t > 0, there exists n0 2 N such

that M(xn; xm; t) > 1� � for all n;m � n0.

10



A fuzzy metric space in which every Cauchy sequence is

convergent is called a complete fuzzy metric space.

De�nition 1.2.23. [193] Two mappings A and S of a fuzzy

metric space (X;M; �) into itself are weakly commuting

if

M(ASx; SAx; t) �M(Ax; Sx; t) for each x 2 X and t > 0.

De�nition 1.2.24. [193] Two mappings A and S of a fuzzy

metric space (X;M; �) into itself are R-weakly commut-

ing provided there exists some real number R such that

M(ASx; SAx; t) � M(Ax; Sx; t
R
) for each x 2 X and t >

0.

De�nition 1.2.25. [2] Let f and g be two self mapping of a

fuzzy metric space (X;M; �) then, f and g are said to satisfy

the property (E.A.) if there exists a sequence fxng such

that limn!1fxn = limn!1gxn = t for some t 2 X.

De�nition 1.2.26. [29] Let (X;M; �) be a fuzzy metric

space and � > 0. A �nite sequence x = x0; x1; :::; xn = y is

called �-chainable from x to y if M(xi; xi�1; t) > 1� � for

all t > 0 and i = 1, 2, 3, . . ., n.

De�nition 1.2.27. [29] A fuzzy metric space (X, M, *) is

called � - chainable if for x; y 2 X there exists an � -chain

from x to y.

De�nition 1.2.28. [114] Two self mappings A and S of

a fuzzy metric space (X, M, *) are called pointwise R -

11



weakly commuting if there exists R > 0 such that for all

x in X and t > 0,

M(ASx; SAx; t) �M(Ax; Sx;
t

R
)

De�nition 1.2.29. [125] Two self mappings f and g on a

fuzzy metric space (X, M, *) are called reciprocally con-

tinuous on X if

limn!1fgxn = x and limn!1gfxn = gx

whenever fxng is a sequence in X such that

limn!1fxn = limn!1gxn = x

for some x in X.

If f and g are both continuous then they are obviously recip-

rocally continuous but the converse need not be true.[125]

De�nition 1.2.30. A function  : [0;1) ! [0;1) is

an altering distance function if  (t) is monotone non-

decreasing, continuous and  (t) = 0 if and only if t = 0.

De�nition 1.2.31. [102] A sequence fxng in a fuzzy metric

space (X;M; �) is called G-Cauchy sequence if,

limn!1(xn+p; xn; t) = 1

for every t > 0 and for each p > 0. A fuzzy metric s-

pace (X;M; �) is complete (respectively G-complete) if, ev-

ery Cauchy sequence (respectively G-sequence) in X con-

verges in X.
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1.2.1 Types of compatible mappings

In 1986, G. Jungck [86] introduced the notion of compati-

ble mappings, which are more general than commuting and

weakly commuting mappings. In 1993, G. Jungck, P.P.

Murthy and Y. J. Cho [88] gave a generalization of com-

patible mappings called compatible mappings of type (A)

which is equivalent to the concept of compatible mappings

under some conditions. In 1995, H. K. Pathak and M. S.

Khan [152] introduced the concept of compatible mappings

of type (B) with some examples to show that compatible

mappings of type (B) need not be compatible of type (A).

In 1996, H. K. Pathak, Y. J. Cho, S.S Chang and S. M.

Kang [150] introduced the concept of compatible mappings

of type (P) and compared with compatible mappings of

type (A) and compatible mappings. In 1998, H. K. Pathak,

Y. J. Cho, S. M. Kang, B. Madharia [151] introduced anoth-

er extension of compatible mappings of type (A) in normed

spaces called compatible mappings of type (C). In 2007,

Singh and Singh [188] introduced the concept compatible

mappings of type (E) in metric space and we have extended

to fuzzy metric space[111].

We have introduced a new notion of compatible mappings

of type (K) in metric space[82] which was extended to fuzzy

metric space and established some common �xed point the-
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orems for the pairs of compatible mappings of type (K) with

examples [111].

De�nition 1.2.32. [86] Two self mappings S and T of a

metric space (X; d) are called compatible if,

lim
n!1

d(STxn; TSxn) = 0;

whenever fxng is a sequence in X such that

lim
n!1

Sxn = lim
n!1

Txn = t for some t 2 X:

De�nition 1.2.33. [86] Two self maps S and T of a met-

ric space X are called non compatible if they are not

compatible.

De�nition 1.2.34. [174] Let S and T be mappings from a

metric space (X; d) into itself. Then, S and T are said to

be weakly compatible if they commute at their coincident

point;

that is, Sx = Tx for some x 2 X implies STx = TSx:

De�nition 1.2.35. [192] Two self mappings f and g of a

set X are occasionally weakly compatible (owc) if and

only if there is a point x in X which is a coincident point

of f and g at which f and g commute..

De�nition 1.2.36. [88] The Self mappings A and S of a

metric space (X; d) are said to be compatible of type (A)

if

limn!1d(ASxn; SSxn) = 0 and limn!1d(SAxn; AAxn) = 0

14



whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn = t for some t 2 X.

De�nition 1.2.37. [150] The Self mappings A and S of

a metric space (X; d) are said to be compatible of type

(P ) if

limn!1d(SSxn; AAxn) = 0 whenever fxng is a sequence in

X such that limn!1Axn = limn!1Sxn =t for some t2 X:

De�nition 1.2.38. [152] The Self mappings A and S of

a metric space (X; d) are said to be compatible of type

(B) if

limn!1d(ASxn; SSxn) �
1

2
(limn!1d(ASxn; At) +

limn!1d(At;AAxn)); and

limn!1d(SAxn; AAxn) �
1

2
(limn!1d(SAxn; St) +

limn!1d(St; SSxn));

whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn=t for some t2 X:

De�nition 1.2.39. [151] The Self mappings A and S of

a metric space (X; d) are said to be compatible of type
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(C), if

limn!1d(ASxn; SSxn) �
1

3
[limn!1d(ASxn; At) + limn!1d(At;AAxn)

+limn!1d(At; SSxn)]and;

limn!1d(SAxn; AAxn) �
1

3
[limn!1d(SAxn; St) + limn!1d(St; SSxn)

+limn!1d(St; AAxn)];

whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn = t for some t 2 X.

Clearly, compatible of type (A) implies compatible of type

(B) and compatible of type (C) but converse may not be

true. However compatible, compatible of type (A), compat-

ible of type (B) and compatible of type (C) are equivalent

under the continuity of A and S.

De�nition 1.2.40. [188] The Self mappings A and S of

a metric space (X; d) are said to be compatible of type

(E), if

limn!1AAxn = limn!1ASxn = S(t)and;

limn!1SSxn = limn!1SAxn = A(t);

whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn = t for some t 2 X.

It is noted that, if A, S is compatible of type (E), then it is

compatible of type (B) but may not be compatible of type
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(C) however, the converse is not true.

We have introduced the following new compatible mappings

of type (K):

De�nition 1.2.41. [82] The self mappings A and S of a

metric space (X; d) are said to be compatible of type

(K) if

limn!1AAxn = St and limn!1SSxn = At;

whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn = t for some t in X.

The following example shows that the compatible of type

(K) is independent with compatible, compatible of type

(A) compatible of type (C) and compatible of type (P ).

Example 1.2.42. Let X = [0; 2] with the usual metric

d(x; y) = jx � yj. We de�ne self-mappings A and S as

Ax = 2, Sx = 0 for x 2 [0; 1] � 1=2; Ax = 0, Sx = 2 for

x = 1
2 and Ax = 2�x

2 , Sx = x
2 for x 2 (1; 2]. Then, A and

S are not continuous at x = 1, 1/2.

Clearly, fA; Sg is compatible of type (K) but the pair

fA; Sg is neither compatible nor compatible of type (A)(compatible

of type (C), compatible of type (P )).

Example 1.2.43. LetX = [0; 2] with the usual metric

d(x; y) = jx� yj. De�ne self-mappings A and S as
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Ax = Sx = 1 for x 2 [0; 1), Ax = Sx = 4
3 for x = 1 and

Ax = 2� x, Sx = x for x 2 (1; 2].

Clearly, fA; Sg are not compatible of type (K) but it is

compatible, compatible of type (A), compatible of type (B),

compatible of type (C), and compatible of type (P ).

De�nition 1.2.44. Let (X;M; �) be a fuzzy metric space.

Then a sequence fxng in X is said to be convergent to x in

X if for each � > 0 and each t > 0, there exist n0 2 N such

that M(xn; x; t) > 1� � for all n � n0.

De�nition 1.2.45. A sequence fxng in X is said to be

Cauchy if for each � > 0 and each t > 0, there exists

n0 2 N such that M(xn; xm; t) > 1� � for all n;m � n0.

A fuzzy metric space in which every Cauchy sequence is

convergent is said to be complete.

De�nition 1.2.46. [30] Let f and g be self mappings on a

fuzzy metric space (X;M; �). Then, f and g are said to be

compatible or asymptotically commuting if, for all t > 0,

limn! 1M(fgxn; gfxn; t) = 1 whenever fxng is a se-

quence in X such that,

limn!1fxn = limn!1gxn = z, for some z 2 X.

De�nition 1.2.47. [89] The mappings f and g from a fuzzy

metric space (X;M; �) into itself are said to be weakly

compatible if they commute at their coincidence point,
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that is,

fx = gx implies that fgx = gfx.

De�nition 1.2.48. [185] Let A and S be mappings from a

fuzzy metric space (X;M; �) into itself. Then, the mappings

A and S are said to be semi-compatible if

limn!1M(ASxn; Sx; t) = 1, for all t > 0,

whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn = x 2 X.

De�nition 1.2.49. [159] A fuzzy metric space (X;M; �) is

said to be sequentially compact if every sequence in X

has a convergent sub-sequence in it.

De�nition 1.2.50. [88] The self mappings A and S of a

fuzzy metric space (X;M; �) are said to be compatible of

type (A) if

limn!1 d(ASxn; SSxn; t) = 1 and

limn!1 d(SAxn; AAxn; t) = 1

whenever fxng is a sequence in Xsuch that

limn!1Axn = limn!1 Sxn = x for some x in X and t > 0.

De�nition 1.2.51. [150] The self mappings A and S of a

fuzzy metric space (X;M; �) are said to be compatible of

type (P) if

limn!1 d(SSxn; AAxn; t) = 1 whenever fxng is a sequence

in X such that

limn!1Axn = limn!1 Sxn = x for some x in X and t > 0.
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De�nition 1.2.52. [10] The self mappings A and S of a

fuzzy metric space (X;M; �) are called reciprocally con-

tinuous on X if limn!1ASxn = Ax and limn!1 SAxn =

Sx

whenever fxng is a sequence in X such that

limn!1Axn = limn!1 Sxn = x for some x in X.

De�nition 1.2.53. [111] The self mappings A and S of a

fuzzy metric space (X, M, *) are said to be compatible of

type (E) i�

limn!1M(AAxn; ASxn; t) =limn!1M(AAxn; Sx; t)

=limn!1M(ASxn; Sx; t) = 1; and

limn!1M(SSxn; SAxn; t) = limn!1M(SSxn; Ax; t) =

limn!1M(SAxn; Ax; t) = 1,

whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn = x for some x in X and t > 0.

De�nition 1.2.54. [113] The self mappings A and S of a

fuzzy metric space (X;M; �) are said to be compatible of

type (K) i�

limn!1M(AAxn; Sx; t) = 1, and

limn!1M(SSxn; Ax; t) = 1,

whenever fxng is a sequence in X such that

limn!1Axn = limn!1 Sxn = x for some x in X and t > 0.

The following examples show that the compatible of type

(K) in fuzzy metric space is independent with compatible,
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compatible of type (A), compatible of type (P) and recip-

rocal continuous.

Example 1.2.55. Let X = [0; 2] with the usual met-

ric d(x; y) = jx � yj, de�ne M(x; y; t) = t
t+d(x;y) for all

x; y 2 X; t > 0 and a � b = ab for all a; b 2 [0; 1] then

(X;M; �) is a fuzzy metric space.

We de�ne self-mappings A and S as

Ax = 2; Sx = 0 for x 2 [0; 1]�
�
1
2

	
,

Ax = 0; Sx = 2 for x = 1
2 and Ax = 2�x

2 ; Sx = x
2 for

x 2 (1; 2].

Then, A and S are not continuous at x = 1; 12.

Consider a sequence fxng in X such that xn = 1 + 1
n
for

all n 2 N . Then, we have Axn = (2�xn)
2 ! 1

2 = x and

Sxn = xn
2 ! 1

2 = x. Also, we have AAxn = A( (2�xn)2 ) =

2 ! 2; ASxn = A(xn2 ) = 2 ! 2; S(x) = 2 and SSxn =

S(xn2 ) = 0! 0; SAxn = S(2�xn2 ) = 0! 0; A(x) = 0.

Therefore, (A; S) is compatible of type (K) but the pair

(A; S) is neither compatible nor compatible of type (A) (com-

patible of type (P), reciprocal continuous).

Example 1.2.56. Let X = [0; 2] with the usual metric

d(x; y) = jx � yj, de�ne M(x; y; t) = t
t+d(x;y) for all x; y 2

X; t > 0 and a � b = ab for all a; b 2 [0; 1] then (X;M; �) is

a fuzzy metric space.

We de�ne self-mappings A and S as
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Ax = Sx = 1 for x 2 [0; 1); Ax = Sx = 4
3 for x = 1 and

Ax = 2� x; Sx = x for x 2 (1; 2].

Consider a sequence fxng in X such that xn = 1+ 1
n
for all

n 2 N . Then,we have

Axn = (2� xn)! 1 = x, and Sxn = xn ! 1 = x.

Since, 2� xn < 1 for all n 2 N ,

we have AAxn = A(2 � xn) = 1 ! 1, ASxn = A(xn) =

2� xn ! 1 and

SSxn = S(xn) = xn ! 1; SAxn = S(2 � xn) = 1 ! 1 .

Also,we have

A(x) = 4
3 = S(t) but

AS(x) = AS(1) = A(43) =
2
3 ; SA(x) = SA(1) = S(43) =

4
3 .

However, we have 2
3 = AS(x) 6= SA(x) = 4

3, at x = 1.

Therefore, (A; S) is not compatible of type (K) but it is

compatible, compatible of type (A) and compatible of type

(P).
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1.3 Generalized forms of fuzzy metric s-

pace

In 1975, Fuzzy metric spaces have been introduced by Kramosil

and Michalek[102] as a generalization of metric space. George

and Veeramani [49] modi�ed the notion of fuzzy metric s-

paces with the help of continuous t-norms and then many

others introduced the di�erent generalized forms like fuzzy

2- metric, fuzzy 3- metric and intuitionistic fuzzy metric

spaces.

De�nition 1.3.1. [177] The 3-tuple (X;M; �) is called a

fuzzy-2 metric space if X is an arbitrary set, is a con-

tinuous t-norm and M is a fuzzy set in X3 � [0;1) sat-

isfying the following conditions: for all x; y; z 2 X and

t1; t2; t3 > 0,

(a) M(x; y; z; 0) = 0,

(b) M(x; y; z; t) = 1 for all t > 0 and when at least two of

the three points are equal,

(c) M(x; y; z; t) =M(x; z; y; t) =M(y; z; x; t) and

(d) M(x; y; u; t1)�M(x; u; z; t2)�M(u; y; z; t3) �M(x; y; z; t1+

t2 + t3),

(e) M(x; y; z; :) : [0;1)! [0; 1] is left continuous.

De�nition 1.3.2. [177] The 3-tuple (X;M; �) is called a

fuzzy-3 metric space if X is an arbitrary set, is a con-
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tinuous t-norm and M is a fuzzy set in X4 � [0;1) sat-

isfying the following conditions: for all x; y; z 2 X and

t1; t2; t3 > 0,

(a) M(x; y; z; w; 0) = 0,

(b) M(x; y; z; w; t) = 1 for all t > 0 (only when simplex

< x; y; z; w > degenerate)

(c) M(x; y; z; w; t) =M(x; y; w; z; t) = M(x;w; z; y; t) =

M(w; y; z; x; t) = :::

(d) M(x; y; z; u; t1) �M(x; y; u; w; t2) �M(x; u; z; w; t3)�

M (u; y; z; w; t4)M(x; y; z; w; t1 + t2 + t3 + t4), and

(e) M(x; y; z; w; :) : [0;1)! [0; 1]is left continuous.

De�nition 1.3.3. [147] A 5-tuple (X;M;N; �; �) is said

to be an intuitionistic fuzzy metric space if X is an

arbitrary set, � is a continuous t-norm, � is a continuous t-

conorm and M;N are fuzzy sets on X2 � [0;1) satisfying

the following conditions;

(a) M(x; y; t) +N(x; y; t) � 1,

(b) M(x; y; 0) = 0,

(c) M(x; y; t) = 1 for all t > 0 if and only if x = y,

(d) M(x; y; t) =M(y; x; t),

(e) M(x; y; t) �M(y; z; s) �M(x; z; t+ s), for all x; y; z 2

X, and s; t > 0,

(f) M(x; y; ) : [0;1)! [0; 1] is left continuous,
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(g) limt!1M(x; y; t) = 1 for all x; y 2 X,

(h) N(x; y; 0) = 1,

(i) N(x; y; t) = 0 for all t > 0 if and only if x = y,

(j) N(x; y; t) = N(y; x; t),

(k) N(x; y; t)�N(y; z; s) � N(x; z; t+s) for all x; y; z 2 X,

and s; t > 0,

(l) N(x; y; ) : [0;1)! [0; 1] is left continuous, and

(m) limt!1N(x; y; t) = 0 for all x; y 2 X.

De�nition 1.3.4. [173] The triple (X;M; �) is a M-fuzzy

metic space if X is an arbitrary set, � is a continuous t-

norms and M is a fuzzy set in X3 � (0;1) satisfying the

following conditions:

for each x; y; z; a 2 X and t; s > 0.

(a) M(x; y; z; t) > 0 , for all x; y; z 2 X

(b) M(x; y; z; t) = 1 if and only if x = y = z, for all t > 0,

(c) M(x; y; z; t) = M(px; y; z; t), where p is a permutation

function,

(d) M(x; y; a; t) �M(a; z; z; s) �M(x; y; z; t+ s),

(e) M(x; y; z; :) : [0;1)! [0; 1] is continuous

De�nition 1.3.5. [166] The 3-tuple (X;M; T ) is said to be

an L-fuzzy metric space if X is an arbitrary (non-empty)

set, T is a continuous t-norm on L and M is an L-fuzzy
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set on X2 � (0;1) satisfying the following conditions:

for every x; y; z in X and t; s in (0; 1)

(a) M(x; y; t) >L 0L;

(b) M(x; y; t) = 1L for all t > 0 if and only if x = y;

(c) M(x; y; t) =M(y; x; t);

(d) T (M(x; y; t);M(y; z; s)) �L M(x; z; t+ s) and

(e) M(x; y; ) :]0;1[! L is continuous and limt!1M(x; y; t) =

1L.

De�nition 1.3.6. [6] The 3-tuple (X;M; �) is called a non-

Archimedean fuzzy metric space (shortly, N.A. FM-

space) if X is an arbitrary set, � is a continuous t-norm

and M is a fuzzy set in X2� [0;1) satisfying the following

conditions:

For all x; y; z 2 X and s; t > 0,

(a) M(x; y; 0) = 0,

(b) M(x; y; t) = 1, for all t > 0 if and only if x = y,

(c) M(x; y; t) =M(y; x; t),

(d) M(x; y; t) � M(y; z; s) � M(x; z;maxt; s) Or equiva-

lently M(x; y; t) �M(y; z; t) �M(x; z; t)

(e) M(x; y; :) : [0;1)! [0; 1] is left continuous.

De�nition 1.3.7. [54] The 4-tuple (X;M;W; �) is called a

Random fuzzy metric space, if X and Ware arbitrary
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set,� is a continuous t-norm, M is a fuzzy set in X2 �

[0;1) and is function fromW to X, satisfying the following

conditions:

for all x; y; z 2 X and s; t > 0,

(a) M(x; y; 0) = 0,

(b) M(x; y; t) = 1 for all t > 0 if and only if x = y,

(c) M(x; y; t) =M(y; x; t),

(d) M(x; y; t) �M(y; z; s)M(x; z; t+ s) and

(e) M(x; y; a) : [0; 1)! [0; 1] is left continuous.

De�nition 1.3.8. [170] The 3-tuple (X;M; �) is called a

semi fuzzy metric space (shortly FM- space) if X is an

arbitrary set, � is a continuous t-norm and M is a fuzzy

set in X2 � [0;1) satisfying the following conditions:

for all x; y; z 2 X and s; t > 0,

(a) M(x; y; 0) = 0,

(b) M(x; y; t) = 1 for all t > 0 if and only if x = y,

(c) M(x; y; t) =M(y; x; t),

By de�nition, it is clear that fuzzy metric space is a three

dimensional extended form of metric space. Fuzzy 2-metric

space, Fuzzy 3-metric space and M- fuzzy metric space are

extended forms of fuzzy metric space into higher dimen-

sions. Also, the intuitionistic fuzzy metric space is four

dimensional notion in which two fuzzy sets and continuous
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t-conorm are consider. In case of Intuitionistic fuzzy metric

space, if two fuzzy sets are equal and continuous t-conorm is

assumed to be an identity mapping then intuitionistic fuzzy

metric space reduces to unseal fuzzy metric space. Again, if

function in random fuzzy metric space is an identity func-

tion, then the random fuzzy metric space changes into un-

seal fuzzy metric space. Moreover, non-Archimedean fuzzy

metric space is di�erent from fuzzy metric space only in

triangle inequality property where as in semi fuzzy metric

space, the triangle inequality is removed. Finally, L-fuzzy

metric space is a fuzzy metric space de�ned on L- fuzzy set

and �- chain property is added in �- chainable fuzzy metric

space.
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1.3.1 Historical Development of Fixed Point The-

orems in metric space

Historically, the most important result in the �xed point

theorem is due to L. E. J. Brouwer which asserts that ev-

ery self continuous mapping of a closed unit ball in Rn,

the n - dimensional Euclidean Space, possess a �xed point.

A particular case of Brouwer's theorem can be stated as

follows.

Theorem 1.3.9. [146] The closed unit interval [0; 1] on the

real line posses a �xed point property, i.e each continuous

mapping of [0; 1] into itself has a �xed point.

Most application of topological theorems to analysis, in-

volves in�nite dimensional space of functions or sequences.

The usual procedure is to extend a theorem from �nite

dimensional space to an in�nite dimensional space. The

in�nite dimensional analogue of Brouwer's result was given

by Schauder in 1930.

Theorem 1.3.10. [146] Any compact convex nonempty sub-

set of a normed linear space has the �xed point property for

continuous mapping.

Brouwer's and Shauder's �xed point theorems are funda-

mental theorems in the area of �xed point theory and it-

s applications. Shauder's theorem is of great importance
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in the numerical treatment of equations in analysis. In

1935, Tycho� extended Brouwer's result to a compact con-

vex subset of a locally convex linear topological space.

Theorem 1.3.11. [146] Any compact convex nonempty sub-

set of a locally convex Housdor� real topological vector space

has the �xed point property for continuous mapping.

Perhaps the most frequently cited and most widely applied

�xed point theorem is due to S. Banach which appeared in

his Ph.D. thesis(1920, published in 1922)

Theorem 1.3.12. [146] Let (X; d) be complete metric s-

pace and S : X ! X be a map such that d(S(x); S(y)) �

kd(x; y) for some 0 � k < 1 and all x; y 2 X. Then S

has a unique �xed point in X. More over, for any x0 2 X

the sequence of iterates x0; S(x0); S(S(x0)); : : : converges

to the �xed point of S.

if d(S(x); S(y)) � k d(x; y) for some 0 � k < 1 and all

x; y 2 X,then S is called a contraction. A contraction

shrinks distances by a uniform factor k less then 1 for all

pairs of points. The above theorem is called the contraction

mapping theorem or Banach's �xed point theorem.

Banach contraction principle is simple in nature and it-

s proof does not involve much of topological machinery.

The proof is constructive, that is the existence of the �xed
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point is established by constructing the point as the limit

of the sequence of the iterates tending to the �xed point.

The construction of the sequence fxng and the study of its

convergence are known as the method of successive approx-

imation.

Banach contraction mapping theorem has long been used

as one of the most important tools in the study of nonlinear

problems. It provides an impressive illustration of the u-

nifying power of functional analysis in an analytic method

and of the usefulness of �xed point theorems in analysis.

Therefore numerous generalizations of this theorem have

been obtained during the last �ve decades by weakening its

hypothesis while retaining the convergence property of suc-

cessive iterates to the unique �xed point of the mapping.

The importance of these generalizations are notions of non

expansive and contractive mappings.One of the most inter-

esting generalizations of the Banach Contraction Principle

consists of replacing the Lipschitz constant k by some real

valued function whose values are less than 1.

One of the �rst extension of Banach's contraction principle

to become widely known is the following theorem due to

Rakoth [156].

Theorem 1.3.13. [156] Let (X, d) be a non empty com-
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plete metric space and suppose T : X ! X satis�es

d(Tx; Ty) � �d(x; y)8x; y 2 X

where � : [0;1] ! [0;1] is monotonically decreasing.

Then T has a unique �xed point z, and for all x0 2 X

we have,

T n(x0)! z as n!1:

Rakoth's theorem is related to the following theorem by

Bailey [9].

Theorem 1.3.14. [9] Let (X, d) be a compact metric space

and T : X ! X be continuous.If there exists n = n(x,y)

with

d(T n(x); T n(y)) < d(x; y)

for x 6= y, then T has a unique �xed point.

In 1969, Meir and Keeler[115] introduced following theo-

rem in complete metric space as a generalization of Banach

contraction Principle.

Theorem 1.3.15. [115] Let (X, d) be a non empty, com-

plete metric space and suppose T: X ! X satis�es the con-

dition,

given � > 0 there exists �(�) > 0 such that for all x; y 2 X

with x 6= y,

� � d(x; y) < �+ � ) d(Tx; Ty) < � (1.3)
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Then T has a unique �xed point z, and for all x0 2 X we

have T n(x0)! z as n!1:

A mapping T: X! X on a metric space (X, d) which satis-

�es the condition (1.3) is called a Meir - keeler contraction.

1.3.2 Common Fixed Point Theorems in Metric

Space

De�nition 1.3.16. [146] Let S and T be self mappings of

a set X, then a point z in X is called a common �xed

point of S and T if Sz = z = Tz. Also the point z is called

a coincidence point of S and T provided Sz = Tz.

G. Jungck [85] obtained a well known generalization of Ba-

nach contraction principle to obtain common �xed points

of commuting mappings. Jungck introduced the following

condition (called Jungck Contraction)

d(Sx; Sy) � k

d(Tx; Ty); 0 � k < 1:for a pair of self maps S and T

of a complete metric space and established the following

theorem.

Theorem 1.3.17. [85] Let S; T : X ! X be a pair of

commuting continuous self maps satisfying the condition,

d(Sx; Sy) � k d(Tx; Ty); 0 � k < 1:
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then S and T have a unique common �xed point whenever

S(X) � T (X):

In 1983, B. Fisher [47] established a common �xed point

theorem for four mappings, A, B, S and T satisfying,

A(X) � T (X); B(X) � S(X)

and the condition,

d(Ax;By) � kmaxfd(Sx; Ty); d(Ax; Sx); d(By; Ty)g; 0 � k < 1:

In 1986, G. Jungck [86] obtained the following common

�xed point theorem for four continuous mappings on a com-

pact metric space.

Theorem 1.3.18. [86] Let A, B, S and T be continuous

self mappings of a compact metric space (X, d) with

A(X) � T (X) and B(X) � S(X). If A, B, S and T be

compatible pairs and

d(Ax;By) < max(m(x; y)) > 0 where;

m(x; y) = fd(Sx; Ty); d(Ax; Sx); d(By; Ty);
1

2
[d(By; Sx) + d(Ax; Ty)]g

Then A, B, S and T have a unique common �xed point.

In 1986, R.P. Pant [120] simultaneously and independently

established following common �xed point theorem satisfy-

ing Meir - Keeler type contractive condition. As Meir -

Keeeler type contractive condition does ensure a common
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�xed point theorem unless � satis�es some additional con-

dition or some additional inequalities used, taking � to be

non decreasing.

Theorem 1.3.19. [120] Let A, S and B, T be commuting

self mapping of a complete metric space (X, d) satisfying

A(X) � T (X) and B(X) � S(X) and the condition

given � > 0, there exists a �(�) > 0, �(�) being non decreas-

ing such that

� � max(d(Sx; Ty); d(Ax; Sx); d(By; Ty)) < �+ �

) d(Ax;By) < �:If one of the mappings A, B, S and T

is continuous, then A, B, S and T have a unique common

�xed point.

Also, the common �xed points for four mappings satisfying

contractive condition were extended for sequences of map-

pings by Jungck et.al [87], J. Jachymski [62], R. P. Pant

[123].

In 2007, K. Jha [71] established the following �xed point

theorem for sequence of mappings involving two pairs of

weakly compatible mappings under a Lipschitz type con-

tractive condition.

Let fAig; i = 1; 2; 3; :::; S and T be self mappings of
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a metric space (X, d). In the theorem let us denote,

M1i(x; y) = max[d(Sx; Ty); d(A1x; Sx); d(Aiy; Ty);
1

2
fd(Sx;Aiy) + d(A1x; Ty)g]

Theorem 1.3.20. [71] Let fAig; i = 1; 2; 3; :::; S and

T be self mappings of a metric space (X, d) such that,

(a) A1X � TX;AiX � SX for i > 0

(b) Given � > 0, there exists a � > 0 such that for all x, y

in X, � < M12(x; y) < �+ � ) d(A1x;A2y) � �; and

(c) d(A1x;Aiy) < �[d(SxTy) + d(A1x; Sx) + d(Aiy; Ty) +

d(Sx;Aiy) + d(Aix; Ty)] for 0 � � � 1
3.

If one of AiX; SX, or TX is complete subspace of X and

if the pairs (A1; S) (Ak; T ) for some k > 1, are weakly

compatible, then all the Ai, S and T have a unique common

�xed point.

Fixed point theorems are statements containing su�cien-

t conditions that ensure existence of a �xed point, so one

of the central concerns in �xed point theory is to �nd a

minimal set of su�cient conditions which ensures the ex-

istence of a common �xed point. The vigorous activity of

last three decades has manifested in the form of signi�cant

contributions relating to �xed point and coincidence points

of contractive mappings.
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1.3.3 Historical Development of Fixed Point The-

orems in fuzzy metric space

In 1965, the concept of fuzzy set was introduced by L.A

Zade[200]. Then, fuzzy metric spaces have been introduced

by O. Kramosil and J. Michalek [102]. A. George and P.

Veeramani [49] modi�ed the notion of fuzzy metric spaces

with the help of continuous t-norms and also many others

have been introduce and generalized in di�erent way. Re-

cently, many authors have studied the �xed point theory

in the fuzzy metric space and number of �xed point theo-

rems have been obtained in fuzzy metric space by using the

contractive condition of self mappings.

In 1983, M. Grabiec [52] extended well known �xed point

theorems of Banach and Edelstein contraction principle in

in fuzzy metric space in the sense of Kramosil and Michelek.

Theorem 1.3.21. [52] (Fuzzy Banach contraction Theo-

rem)

Let (X;M; �) be a complete fuzzy metric space such that

(a) limt!1M(x; y; t) = 1 for all x; y 2 X,

(b) M (Tx; Ty; kt) �M (x; y; t)

for all x; y 2 X where 0 < k < 1. Then T has unique �xed

point.

Lemma 1.3.22. [52] If limt!1xn = x and limt!1yn =
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y, then M(x; y; t��) � limt!1M(xn; yn; t) �M(x; y; t+�)

for all t > 0 and 0 < � < t
2.

Theorem 1.3.23. [52] (fuzzy Edelstein contraction theo-

rem) Let (X;M; �) be a compact fuzzy metric space with

(x; y; :) continuous for all x; y 2 X. Let T : X ! X be a

mapping satisfying

M(Tx; Ty; t) > M(x; y; t)forallx 6= y and t > 0.

Then T has unique �xed point.

In 1983, proved the contraction principle in the setting

of fuzzy metric spaces introduced by J. Kramosil and J.

Michalek. In 1993, P.V. Subramanyam generalized Gra-

biec's results for a pair mappings.

Theorem 1.3.24. [190] Let (X;M; �) be a complete fuzzy

metric space and let f; g : X ! X be mappings that satisfy

the following conditions:

(a) g(X) � f(X),

(b) f is continuous, and

(c) M(g(x); g(y); �t) � M(f(x); f(y); t) for all x; y in X

and 0 < � < 1.

Then, f and g have unique common �xed point provided f

and g commute.
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In 2009, V. Pant obtained the following �xed point theo-

rems for pointwise R-weakly commuting self mappings in

fuzzy metric space.

Theorem 1.3.25. [137] Let f and g be pointwise R -weakly

commuting self mappings of type (Ag) of a fuzzy metric

space (X;M; �) such that

(a) fX � gX, and

(b) M(fx; fy; t) > min fM(gx; gy; th);M(fx; gx; th),

M(fy; gy; th);M(fy; gx; th);M(fx; gy; th); 0 � h < 1,

for t > 0.

If f and g satisfy the property (E.A.) and the range of either

of f or g is a complete subspace of X, then f and g have a

unique common �xed point.

Theorem 1.3.26. [137] Let f and g be non-compatible

pointwise R-weakly commuting self mappings of type (Ag)

of a fuzzy metric space (X;M; �) such that

(a) fX � gX, and

(b) M(fx; fy; t) > min fM(gx; gy; th);M(fx; gx; th),

M(fy; gy; th);M(fy; gx; th);M(fx; gy; th), 0 � h < 1,

for t > 0

If the range of f or g is a complete subspace of X, then f

and g have a unique common �xed point and the �xed point

is the point of discontinuity.
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1.3.4 Common �xed point theorems for Three Map-

pings in fuzzy metric space

In 2002, S. Sharma obtained the following common �xed

point results for three self maps in fuzzy metric space.

Theorem 1.3.27. [177] Let (X, M, *) be a complete fuzzy

metric space with the condition (FM � 6) and let S and T

be continuous mappings of X, then S and T have a com-

mon point in X if there exists continuous mapping A of X

into S(X) \ T (X) which commute with S and T and

M(Ax;Ay; qt) � min fM(Ty;Ay; t);M(Sx;Ax; t);M(Sx; Ty; t)g,

for all x; y 2 X; t > 0 and 0 < q < 1.

Then, S, T and A have a unique common �xed point.

Theorem 1.3.28. [177] Let (X, M, *) be a complete fuzzy-

2 metric space and let S and T be continuous mappings in

X, then S and T have a common point in X

if there exists continuous mapping A of X into S(X)\T (X)

which commute with S and T and

M(Ax;Ay; a; qt) � min[M(Ty;Ay; a; t);M(Sx;Ax; a; t);

M(Sx; Ty; a; t)];

for all x; y; a; b 2 X; t > 0 and 0 < q < 1,

limt!1M(x; y; z) = 1 for all x; y; z in X.

Then S, T and A have a unique common �xed point.

Theorem 1.3.29. [177] Let (X;M; �) be a complete fuzzy-

3 metric space and let S and T be continuous mappings in
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X, then S and T have a common point in X

if there exists continuous mappings A of X into S(X) \

T (X) which commute with S and T and

M(Ax, Ay, a, b, qt)� min[M(Ty;Ay; a; b; t);M(Sx;Ax; a; b; t);

M(Sx; Ty; a; b; t);for all x; y; a; b 2 X; t > 0 and 0 < q < 1,

limt!1M(x; y; z; w; t) = 1 for all x; y; z; w 2 X.

Then S, T and A have a unique common �xed point.

In 2006, J. H. Jung obtained the following common �xed

point theorems for weakly pair of compatible self maps in

fuzzy metric space.

Theorem 1.3.30. [28] Let (X;M; �) be a complete � -

chainable fuzzy metric space and let S be continuous self

mapping of X and T be self mapping of X. Then, S and T

have a common �xed point in X if and only if there exists

a continuous self mapping A of X such that the following

conditions are satis�ed:

(a) AX � TX \ SX,

(b) the pairs (A, S) and (A, T) are weakly compatible,

(c) there exists q 2 (0; 1) such that for every x; y 2 X and

t > 0, M(Ax;Ay; qt) � M(Sx; Ty; t) �M(Ax; Sx; t) �

M(Ay; Ty; t) �M(Ax; Ty; t).
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In fact, A, S and T have a unique common �xed point in

X.

1.3.5 Common �xed point theorem for four map-

pings in fuzzy metric space

In 2005, B. Singh and S. Jain obtained the following �xed

point theorems in fuzzy metric space using implicit relation

under semi-compatibility.

Theorem 1.3.31. [183] Let A, B, S, and T be self-mappings

of a complete fuzzy metric space (X, M, *) satisfying that

(a) A(X) � T (X); B(X) � S(X);

(b) The pair (A; S) is semi-compatible and (B; T ) is weak

compatible; one of A or S is continuous; and

(c) For some � 2 �, there exists k 2 (0; 1) such that for all

x; y 2 X and t > 0,

�(M(Ax;By; kt);M(Sx; Ty; t);M(Ax; Sx; t);M(By; Ty; kt)) �

0,

�(M(Ax;By; kt);M(Sx; Ty; t);M(Ax; Sx; kt);M(By; Ty; t)) �

0.

Then, A, B, S and T have unique common �xed point in

X.

In 2005, S. H. Cho and J. H. Jung obtained the following

results of common �xed point theorems in �-chainable fuzzy
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metric space.

Theorem 1.3.32. [28] Let (X;M; �) be a complete � -

chainable fuzzy metric space and let A, B, S and T be self

mappings of X satisfying the following conditions:

(a) AX � TX and BX � SX,

(b) A and S are continuous,

(c) the pairs (A; S) and (B; T ) are weakly compatible, and

(d) there exists q 2 (0; 1) such thatM(Ax;By; qt) �M(Sx; Ty; t)�

M(Ax; Sx; t) � M(By; Ty; t) � M(Ax; Ty; t) for every

x; y 2 X and t > 0.

Then, A, B, S and T have a unique common �xed point in

X.

In 2007, S. Kutukcu, S. Sharma and H. Tokgoz obtained

the following results of �xed point theorem in fuzzy metric

spaces for R-weakly commuting pairs of self maps.

Theorem 1.3.33. [106] Let (A; S) and (B; T ) be point-

wise R-weakly commuting pairs of self mappings of complete

fuzzy metric space (X;M; �) such that

(a) AX � TX;BX � SX, and

(b) M(Ax;By; t) � M(x; y; ht), 0 < h < 1, x; y 2 X and

t > 0.
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Suppose that (A; S) and (B; T ) are compatible pairs of re-

ciprocally continuous mappings. Then, A, B, S and T have

a unique common �xed point.

Theorem 1.3.34. [106] Let (A; S) and (B; T ) be point-

wise R-weakly commuting pairs of self mappings of complete

fuzzy metric space (X;M; �) such that

(a) AX � TX, BX � SX, and

(b) M(Ax;By; t) � M(x; y; ht), 0 < h < 1, x; y 2 X and

t > 0.

Let (A; S) and (B; T ) be compatible mappings. If any of

the mappings in compatible pairs (A; S) and (B; T ) is con-

tinuous then A, B, S and T have a unique common �xed

point.

Theorem 1.3.35. [106] Let (X;M; �) be a complete fuzzy

metric space with a � a � a for all a 2 [0; 1] and the condi-

tion (FM:6). Let (A; S) and (B; T ) be pointwise R-weakly

commuting pairs of self mappings of X such that

(a) AX � TX;BX � SX; and

(b) there exists k 2 (0; 1) such thatM(Ax;By; kt) �M(x; y; t)

for all x; y 2 X, � 2 (0; 2) and t > 0.

If one of the mappings in compatible pair (A; S) or (B; T )

is continuous, then A, B, S and T have a unique common

�xed point.
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Theorem 1.3.36. [106] Let A, B, S and T be self map-

pings on a complete metric space (X; d) satisfying

(a) AX � TX;BX � SX;

(b) if there exists k 2 (0; 1) such that d(Ax;By) � kmax fd(Sx;Ax),

d(Ty;By); d(Sx; Ty); [d(Ty;Ax)+ d(Sx;By)]=2 for all

x; y 2 X:

Then A, B, S and T have a unique common �xed point in

X.

In 2008, K. P. R. Rao, G. R. Babu and B. Fisher obtained

the following results of common �xed point theorems in

fuzzy metric spaces under implicit relations.

Theorem 1.3.37. [160] Let (X;M; �) be a complete fuzzy

metric space with t � t � t, for all t 2 [0; 1], and let f , g, S

and T be self maps on X such that

(a) f(X) � T (X); g(X) � S(X),

(b) S and T ( are continuous,

(c) The pairs (f; S) and (g; T ) are compatible,

(d) There exists k 2 (0; 1) such that for every x; y 2 X and

t > 0, M(fx; gy; kt) � M(Sx; Ty; t) �M(fx; Sx; t) �

M(gy; Ty; t) �M(fx; Ty; t), and

(e) limn 1M(x; y; t) = 1, for all x; y 2 X.

Then, f , g, S and T have a unique common �xed point in

X.
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Theorem 1.3.38. [160] Let A, B, S and T be self-mappings

of a complete L-fuzzy metric space (X, M, T), which has

property (C), satisfying:

(a) A(X) � T (X); B(X) � S(X) and T (X); S(X) are two

closed subsets of X;

(b) the pairs (A; S) and (B; T ) are weakly compatible; and

(c) M(Ax;By; t) �L M(Sx; Ty; kt), for every x; y in X

and some k > 1.

Then, A, B, S and T have a unique common �xed point in

X.

In 2009, M. Abbas, I. Altun and D. Gopal obtained the

following results of common �xed point theorems for non

compatible mappings in fuzzy metric spaces.

Theorem 1.3.39. [2] Let (X;M; �) be a fuzzy metric s-

pace. Let A;B; S and T be mappings from X into itself

with

A(X) � T (X) and B(X) � S(X) and there exists a con-

stant k 2 (0; 1=2) such that

M(Ax;By; kt) � �(M(Sx; Ty; t);M(Ax; Sx; t);M(By; Ty; t);

M(Ax; Ty; );M(By; Sx; (2� �)t));

for all x; y 2 X;� 2 (0; 2); t > 0 and  2 � .

Then A;B; S and T have a unique common �xed point in X
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provided the pair (A; S) or (B; T ) satis�es (E. A.) property,

one of A(X); T (X); B(X); S(X) is a closed subset of X and

the pairs (B; T ) and (A; S) are weakly compatible.

Theorem 1.3.40. [2] Let (X;M; �) be a fuzzy metric space.

Let A;B; S and T be mappings from X into itself such that

M(Ax;By; kt) � �(M(Sx; Ty; t);M(Ax; Sx; t);M(By; Ty; t);

M(Ax; Ty; );M(By; Sx; (2� �)t));

for all x; y 2 X; k 2 (0; 1=2); � 2 (0; 2); t > 0 and  2 �.

Then A;B; S and T have a unique common �xed point in X

provided the pair (A; S) and (B; T ) satisfy common (E.A.)

property, T (X) and S(X) are closed subsets of X and the

pairs (B; T ) and (A; S) are weakly compatible.

In 2009, R.K. Saini and M. Kumar proved the following

�xed point theorem in fuzzy metric space using implicit

relation.

Theorem 1.3.41. [169] Let (A; S) and (B; T ) be point-

wise R-weakly commuting pairs of self mappings of complete

fuzzy metric space (X;M; �) such that

(a) AX � TX;BX � SX,

(b) M(Ax;By; t) � M(x; y; ht); 0 < h < 1; x; y 2 X and

t > 0.
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Suppose that (A; S) and (B; T ) is compatible pairs of recip-

rocally continuous mappings. Then, A;B; S and T have a

unique common �xed point.

Theorem 1.3.42. [169] Let (A; S) and (B; T ) be point-

wise R-weakly commuting pairs of self mappings of complete

fuzzy metric space (X;M; �) such that

(a) AX � TX;BX � SX,

(b) M(Ax;By; t) � M(x; y; ht); 0 < h < 1; x; y 2 X and

t > 0.

Let (A; S) and (B; T ) be compatible mappings. If any of

the mappings in compatible pairs (A; S) and (B; T ) is con-

tinuous, then A;B; S and T have a unique common �xed

point.

Theorem 1.3.43. [169] Let (X;M; �) be a complete fuzzy

metric space with t � t � t, for all t 2 [0; 1] and the condi-

tion (FM 6). Let (A; S) and (B; T ) be point wise R-weakly

commuting pairs of self maps on X satisfying

(a) AX � TX and BX � SX;

(b) (A; S) and (B; T ) are compatible pairs and one of the

mapping in each pair is continuous;

(c) there exists k 2 (0; 1) such that

F (M(A2x;B2y; kt);M(S2x;A2x; t);M(T 2y; S2x; t),

M(T 2y;B2y; kt);M(A2x; T 2y; t)) � 0,

for all x; y 2 X and t > 0, where F 2 F�,
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Then A;B; S and T have a unique common �xed point in

X.

In 2010, A. S. Ranadive and A. P. Chouhan obtained the

following results on absorbing mappings and �xed point

theorem in fuzzy metric spaces.

Theorem 1.3.44. [157] Let (X;M; �) be a complete � -

chainable fuzzy metric space and let A;B; S and T be self

mappings of X satisfying the following conditions:

(a) AX � TX and BX � SX;

(b) A and S are continuous ;

(c) the pairs (A; S) and (B; T ) are weakly compatible; and

there exists q 2 (0; 1) such thatM(Ax;By; kt) �M(Sx; Ty; t)�

M(Ax; Sx; t) �M(By; Ty; t) �M(Ax; Ty; t), for every

x; y 2 X and t > 0.

Then A;B; S and T have a unique common �xed point in

X.

In 2010, C. T. Aage and J. N. Salunke obtained the follow-

ing results of �xed point theorems in fuzzy metric spaces.

Theorem 1.3.45. [1] Let (X;M; �) be a complete fuzzy

metric space and let A, B, S and T be self-mappings of

X. Let the pairs fA; Sg and fB; Tg be occasionally weakly
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compatible. If there exists q 2 (0; 1) such that

M(Ax;By; qt) � min(M(Sx; Ty; t);M(Sx;Ax; t);M(By; Ty; t);

M(Ax; Ty; t);M(By; Sx; t))

for all x; y 2 X and for all t > 0, then there exists a unique

�xed point w in X such that Aw = Sw = w and a unique

point z 2 X such that Bz = Tz = z. Moreover, z = w, so

that there is a unique common �xed point of A, B, S and

T.

Theorem 1.3.46. [1] Let (X, M, *) be a complete fuzzy

metric space and let A, B, S and T be self-mappings of

X. Let the pairs fA; Sg and fB; Tg be occasionally weakly

compatible. If there exists q 2 (0; 1) such that

M(Ax;By; qt) � �(min(M(Sx; Ty; t);M(Sx;Ax; t);M(By; Ty; t);

M(Ax; Ty; t);M(By; Sx; t)));

for all x; y 2 X and � : [0; 1] ! [0; 1] such that �(t) > t

for all 0 < t < 1, then there exists a unique common �xed

point of A, B, S and T.

Theorem 1.3.47. [1] Let (X;M; �) be a complete fuzzy

metric space and let A, B, S and T be self-mappings of

X. Let the pairs fA; Sg and fB; Tg be occasionally weakly
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compatible. If If there exists q 2 (0; 1) such that

M(Ax;By; qt) � �(M(Sx; Ty; t);M(Sx;Ax; t);M(By; Ty; t);

M(Ax; Ty; t);M(By; Sx; t))

for all x; y 2 X and � : [0; 1]! [0; 1] such that �(t; 1; 1; t; t) >

t for all 0 < t < 1, then there exists a unique common �xed

point of A, B, S and T.

Theorem 1.3.48. [1] Let (X;M; �) be a complete fuzzy

metric space and let A, B, S and T be self-mappings of

X. Let the pairs fA; Sg and fB; Tg be occasionally weakly

compatible. If there exists a point q 2 (0; 1) such that for

all x; y 2 X and t > 0,

M(Ax;By; qt) � M(Sx; Ty; t) �M(Ax; Sx; t) �M(By; Ty; t)

�M(Ax; Ty; t)

then there exists a unique common �xed point of A, B, S

and T.

Theorem 1.3.49. [1] Let (X;M; �) be a complete fuzzy

metric space. Then continuous self mappings S and T of X

have a common �xed point in X if and only if there exists a

self mapping A of X such that the following conditions are

satis�ed

(a) AX � TX [ SX

(b) the pairs fA; Sg and fA; Tg are weakly compatible, and
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(c) there exists a point q 2 (0; 1) such that for every x; y 2

X and t > 0; M(Ax;Ay; qt) �M(Sx; Ty; t)M(Ax; Sx; t)�

M(Ay; Ty; t) �M(Ax; Ty; t).

In fact A, S and T have a unique common �xed point.

Theorem 1.3.50. [1] Let (X;M; �) be a complete fuzzy

metric space and let A and S be self-mappings of X. Let the

A and B are occasionally weakly compatible. If there exists

a point q 2 (0; 1) such that for all x; y 2 X and t > 0,

M(Sx; Sy; qt) � �M(Ax;Ay; t) + �min(M(Ax;Ay; t);

M(Sx;Ax; t);M(Sy;Ay; t))

for all x; y 2 X, where �; � > 0; �+ � > 1. Then, A and S

have a unique common �xed point.

In 2011, S. Kumar and B. Fisher obtained the following

results of a common �xed point theorem in fuzzy metric

space using property (E.A.).

Theorem 1.3.51. [104] Let (X;M; �) be a complete fuzzy

metric space and let A;B; S and T be self -mappings of X.

Let the pairs A; S and B; T be occasionally weakly compat-

ible. If there exists q 2 (0; 1) such that

(a) M(Ax;By; qt) � �(min fM(Sx; Ty; t);M(Sx;Ax; t);M(By; Ty; t),

M(Ax; Ty; t);M(By; Sx; t)) , for all x; y 2 X and

(b) � : [0; 1]! [0; 1] such that �(t) > t for all 0 < t < 1.
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Then there exists a unique common �xed point of A;B; S

and T .

Theorem 1.3.52. [104] Let (X;M; �) be a complete fuzzy

metric space and let A;B; S and T be self -mappings of X.

Let the pairs A; S and B; T be occasionally weakly compat-

ible. If there exists q 2 (0; 1) such that

M(Ax;By; qt) � �(M(Sx; Ty; t);M(Sx;Ax; t);M(By; Ty; t);

M(Ax; Ty; t);M(By; Sx; t))

for all x; y 2 X and � : [0; 1]5 ! [0; 1] such that �(t; 1; 1; t; t) >

t for all 0 < t < 1, then there exists a unique common �xed

point of A;B; S and T .

Theorem 1.3.53. [104] Let (X;M; �) be a complete fuzzy

metric space and let A;B; S and T be self-mappings of X.

Let the pairs A; S and B; T be occasionally weakly compat-

ible. If there exists q 2 (0; 1) for all x; y 2 X and t > 0

M(Ax;By; qt) � M(Sx; Ty; t) �M(Ax; Sx; t) �M(By; Ty; t)

�M(Ax; Ty; t)

then there exists a unique common �xed point of A;B; S

and T .

Theorem 1.3.54. [104] Let (X;M; �) be a complete fuzzy

metric space. Then, continuous self mapping S and T of X

have a common �xed point in X if and only if there exists a
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self mapping A of X such that the following conditions are

satis�ed:

(a) AX � TX \ SX

(b) the pairs fA; Sg and fA; Tg are weakly compatible, and

(c) there exists a point q 2 (0; 1) such that for every x; y 2

X and t > 0

M(Ax;By; qt) �M(Sx; Ty; t)�M(Ax; Sx; t)�M(Ay; Ty; t)

�M(Ax; Ty; t)

In fact there exists a unique common �xed point for A; S

and T .

Theorem 1.3.55. [104] Let (X;M; �) be a complete fuzzy

metric space and Let A and B be self- mapping of X. Let A

and B are occasionally weakly compatible. If there exists a

point q 2 (0; 1) for all x; y 2 X and t > 0,

M(Sx; Sy; qt) � (Ax;Ay; t) + �min(M(Ax;Ay; t);

M(Sx;Ax; t);M(Sy;Ay; t))

for all x; y 2 X , for �; � > 0 , � + � > 1. Then, A and S

have a unique common �xed point.

In 2013,K. Jha obtained the following results of common

�xed point theorem for four mapping in fuzzy metric space.

Theorem 1.3.56. [75] Let (X, M, *) be a complete fuzzy

metric space with additional condition (vi) and with a�a �
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a for all a 2 [0; 1]. Let A, B, S and T be mappings from X

into itself such that

(a) AX � TX;BX � SX, and

(b) M(Ax;By; t) � r(N(x; y; t)),

where r : [0; 1] ! [0; 1] is a continuous function such that

r(t) > t for some 0 < t < 1 and for all x; y 2 X and t > 0.

If (A, S) or (B, T) is semi-compatible pair of reciprocal-

ly continuous maps with respectively (B, T) or (A, S) as

weakly compatible maps, then A, B, S and T have a unique

common �xed point in X.

1.3.6 Common �xed point theorems for sequence

of mappings in fuzzy metric space.

In 2005, A. Razani proved the following results of a con-

traction theorem in fuzzy metric spaces.

Theorem 1.3.57. [162] Let (X, M,*) be a fuzzy metric s-

pace, and A is a fuzzy contractive mapping of X into itself

such that there exists a point x 2 X whose sequence of it-

erates (An(x)) contains a convergent subsequence (Ani(x)),

then � = limi!1A
ni(x) 2 X is a unique �xed point.

Theorem 1.3.58. [162] Let (X;M; �) be a fuzzy metric s-

pace, where the continuous t-norm * is de�ned as a � b =

55



min fa; bg for a; b 2 [0; 1]. Suppose f is a fuzzy � - con-

tractive self-mapping of X such that, there exists a point

x 2 X whose sequence of iterates (fn(x)) contains a con-

vergent subsequence (fni(x)), then � = limi!1f
ni(x) 2 X

is a periodic point.

In 2010, K. Jha obtained the following results of a common

�xed point theorem for sequence of mapping in fuzzy metric

space.

Theorem 1.3.59. [73] Let (X;M; �) be a fuzzy metric s-

pace with additional condition (FM6.) and with a � a � a

for all a 2 [0; 1]. Let fAig, I = 1, 2, 3, 4, , S and T be self

mappings of a fuzzy metric space from (X, M, *) such that

(a) A1X � TX;AiX � SX for i = 1; 2; 3:::1,

(b) there exists r 2 (0; 1) such that M(A1x;Aix; rt) �

M1i(x; y; t) for all x; y 2 X, � 2 (0; 2) and t > 0.

If one of AiX, SX or TX is complete subspace of X and

if the pairs (A1; S) and (Ak; T ), for some k > 1 are weak-

ly compatible then all the mapping fAig, S and T have a

unique common point.

In 2012, K. Jha obtained the following results of generalized

common �xed point theorem for sequence of mapping in

fuzzy metric space.
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Theorem 1.3.60. [74] Let (X;M; �) be a fuzzy metric s-

pace. Let fAig, i = 1, 2, 3, ..., S and T be mappings of a

fuzzy metric space from X into itself such that

(a) A1X � TX;AiX � SX, for i > 1, and

(b) for a function  : [0;1) ! [0;1) with  (r) > 0 for

r > 0;  (0) = 0

and an altering distance function � such that for i > 1,

the relation �( 1
M(A1x;Aiy;t)

� 1) � � ( 1
M1i(x;y;t)

� 1) �

 ( 1
M1i(x;y;t)

�1) holds for every x; y 2 X and each t > 0.

If one of AiX, SX and TX is a G-complete subspace of

X; if the pair (A1; S) and (Ai; T ), for i > 1, are weakly

compatible,then all the mappings Ai, S and T have a unique

common �xed point in X.

1.4 Some applications

Fixed point theory is a highly applicable branch of math-

ematics. It has numerous applications within and outside

mathematics. These have been constantly used for the ex-

istence of the solution and to check the stability of the sys-

tem. Recently, �xed point theorems have been used in new

areas of mathematical economies, game theory, dynamical

system, 
uid 
ow and even equation derived from model-

s in the life science. Since �xed point theory is recently
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developed �eld with wide applications, so it is a very ac-

tive �eld of research. Fixed Point Theorems are one of the

major tools economics use for proving existence. In 1996,

J. Casti has used the Brouwer's �xed point theory in the

theory in human a�airs, including the identi�cation of an

optimal Earth-to-Moon Trajectory for space travel to ana-

lyze the intergenerational occupational modeling. Tarski's

�xed point theorem has applications in Graph Theory. Lef-

schetz's �xed point theory has applications to Non convex

di�erential inclusions on manifolds. H.K. Pathak and B.

Fisher have shown some applications of �xed points in dy-

namical programming. Banach contraction principle is very

useful in the existence and uniqueness theories. Out of all

classical �xed point theorems, the contraction principle has

many applications which are scattered throughout almost

all branches of mathematics. The paper of Jha [32] deal-

s with the survey work on some applications of Banach's

�xed point theorem to di�erent �elds. We �nd other ap-

plications of �xed point theory in Ferreira to the problems

such as signal and image reconstruction, tomography, t-

elecommunications, interpolation, extrapolation, quantize

design, signal enhancement, signal synthesis, �lter synthe-

sis (Arti�cial Neural Network).

The theory is a mixture of analysis (pure and applied),

topology, and geometry. Over the last 50 years or so the

58



theory of �xed points has been revealed as a very powerful

and important tool in the study of nonlinear phenomena.

In particular �xed point techniques have been applied in

such diverse �elds as biology, chemistry, economics, engi-

neering, game theory, and physics.

Fuzzy sets and fuzzy logic are powerful mathematical tools

for modeling and controlling uncertain systems in industry,

humanity, and nature; they are facilitators for approximate

reasoning in decision making in the absence of complete and

precise information. Their role is signi�cant when applied

to complex phenomena not easily described by traditional

mathematics.
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Chapter 2

Common �xed point

theorems in metric space

In this chapter, we present the common �xed point the-

orems in metric space of mappings satisfying contractive

type conditions. We have introduced a new notion of com-

patible mappings of type (K ) which is independent of

known conditions and established a common �xed point

result for pair of compatible mappings of type (K). The

established theorems have been published in peer reviewed

international journals.

2.0.1 Introduction

The study of common �xed point theorem in metric space

of mappings satisfying certain contractive type conditions

has been a very active �eld of research. In 1986, G. Jungck
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[86] introduced the notion of compatible mappings, which

is more general than commuting and weakly commuting

mappings.In 1999, Pant [126] introduced the concept of re-

ciprocally continuous mappings and obtained common �xed

point theorem. Recently, Singh and Singh [188] introduced

the concept Compatible mappings of type (E) in metric s-

pace and established some common �xed point. Also, we

have established a common �xed point theorem using com-

patible mapping of type (K).

We have introduced the new notion of compatible map-

pings of type (K) and established a common �xed point

theorem for the pairs of compatible mappings of type (K)

with example[82].

2.0.2 Basic de�nitions

De�nition 2.0.1. Two self mappings S and T of a metric

space (X; d) are called compatible if, limn!1 d(STxn; TSxn) =

0, whenever fxng is a sequence in X such that

lim
n!1

Sxn = lim
n!1

Txn = t for some t 2 X:

De�nition 2.0.2. The self mappings A and S of a metric

space (X; d) are called reciprocally continuous on X if

lim
n!1

ASxn = Ax and lim
n!1

SAxn = Sx

whenever fxng is a sequence in X such that limn!1Axn =

limn!1 Sxn = x for some x in X.
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De�nition 2.0.3. The Self mappings A and S of a metric

space (X; d) are said to be compatible of type (E), if

limn!1AAxn = limn!1ASxn = S(t) and

limn!1SSxn = limn!1SAxn = A(t);

whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn = t for some t 2 X.

De�nition 2.0.4. The self mappings A and S of a metric

space (X; d) are said to be compatible of type (K)if

limn!1AAxn = St and limn!1SSxn = At;

whenever fxng is a sequence in X such that limn!1Axn =

limn!1Sxn = t for some t in X.

2.0.3 Common Fixed Point Theorems in metric s-

pace

In 2004, R.P.Pant, V. Pant and V.P. Pandey [145] estab-

lished following theorems,

Theorem 2.0.5. Let (A, S) and (B, T) be compatible pairs

of self-mappings of a complete metric space (X,d) such that

(a) AX � TX and BX � SX,

(b) Given � > 0 there exists � > 0 such that for all x; y 2

X,
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� < M(x; y) < �+ � ) d(Ax;By) < �

where M(x, y) = max
n
d(Sx; Ty); d(Ax; Sx); d(By; Ty); d(Ax;Ty)+d(Sx;By)2

o
,

(c) d(Ax;By) < max
n
d(Sx; Ty); k d(Ax;Sx)+d(By;Ty)2 ; d(Ax;Ty)+d(Sx;By)2

o
for 0 < k � 2

Suppose that the mappings in one of the pair (A,S) or (B,T)

are reciprocal continuous. Then A, B, S and T have unique

common �xed point.

In 2005, K. Jha and R.P. Pant [78] established following

theorems for compatible pairs of mappings in complete met-

ric space.

Theorem 2.0.6. [78]Let (A, S) and (B, T) be compatible

pairs of self-mappings of a complete metric space (X,d) such

that

(a) AX � TX and BX � SX,

(b) Given � > 0 there exists � > 0 such that for all x; y 2

X,

� < M(x; y) < �+ � ) d(Ax;By) < �

(c) d(Ax;By) < max[k1[d(Sx; Ty)+d(Ax; Sx)+d(By; Ty)];

k2
d(Sx;By)+d(Ax;Ty)

2 ] for 0 � k1 < 1; 1 � k2 < 2

If one of the mappings A,B,S and T is continuous then

A,B,S and T have unique common �xed point.

We prove a common �xed point theorem for compatible and

reciprocally continuous pairs of self-mappings in a complete
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metric space (X,d) with example. This theorem has been

published in

Annals of Pure and Applied Mathematics Vol. 5,

No. 2, 2014, 120-124 ISSN: 2279-087X (P), 2279-

0888.

We start with the following proposition.

Proposition 2.0.7. If A and S are compatible and recip-

rocal continuous mappings on a metric space (X, d).Then,

we have A(t) = S(t) where fxng is a sequence in X such

that

limn!1Axn = limn!1Sxn = t

for some t 2 X If there exist u 2 X such that Au = Su =

t, then ASu = SAu.

Proof (i) By de�nition of compatible mappings, we have

limn!1SAxn = limn!1ASxn:

Also, by de�nition of reciprocal continuous, we have

limn!1ASxn = A(t) and limn!1SAxn = S(t):

So, we get A(t) = S(t).

(ii)Suppose Au = Su = t for some u 2 X. Then, we have

ASu = At and SAu = St. But, from (i), we get At = St.

So, we have ASu = SAu.
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Lemma 2.0.8. [62] Let A, B, S and T be self-mapping

of metric space (X, d) such that

AX � TX;BX � SX:

Also, assume further that given � > 0, there exists � > 0

such that for all x, y in X, we have

� < M(x; y) < �+ � ) d(Ax;By) � �; and

d(Ax;By) < M(x; y) wheneverM(x; y) > 0

where M(x, y) = max
n
d(Sx; Ty); d(Ax; Sx); d(By; Ty); d(Sx;By)+d(Ax;Ty)2

o
.

Then, for each x0 2 X, the sequence fyng in X de�ned by

the rule y2n = Ax2n = Tx2n+1; y2n+1 = Bx2n+1 = Sx2n+2 is

a Cauchy sequence.

Theorem 2.0.9. [79] Let (A, S) and (B, T) be compati-

ble and reciprocally continuous pairs of self-mappings in a

complete metric space (X,d) such that

(a) AX � TX and BX � SX,

(b) Given � > 0, there exists � > 0 such that for all x; y 2

X, we have � �M(x; y) < �+ � ) d(Ax;By) < �,

and d(Ax;By) < M(x; y) where

M(x, y) = max
n
d(Sx; Ty); d(Ax; Sx); d(By; Ty); d(Sx;By)+d(Ax;Ty)2

o
,

and

(c) d(Ax;By) < max [k1[d(Sx; Ty)+d(Ax; Sx)+d(By; Ty)];

k2
d(Sx;By)+d(Ax;Ty)

2 ] for 0 � k1; k2 � 1.

65



Then, the mappings A, B, S and T have unique common

�xed point.

Proof: Let x0 be any point in X. De�ne sequences fxng

and fyng in X given by the rule

y2n = Ax2n = Tx2n+1; y2n+1 = Bx2n+1 = Sx2n+2 (2.1)

This can be down from (1).Then, by lemma (2.0.8), fyng

is a Cauchy Sequence. Also, since X is complete, so there

exists a point z in X such that yn ! z. Now, from (2.1),

we get

y2n = Ax2n = Tx2n+1 ! z; yn+1 = Bx2n+1 = Sx2n+2:

(2.2)

Since (A, S) is compatible and reciprocal continuous, using

the proposition(2.0.7), we have

Az = Sz: (2.3)

We claim that Az = z. If Az 6= z, then, from (3), we get

d(Az;Bx2n+1) < max[k1 fd(Sz; Tx2n+1) + d(Az; Sz) + d(Bx2n+1; Tx2n+1)g ;

k2
d(Sz;Bx2n+1) + d(Az; Tx2n+1)

2
]:

Letting n ! 1,we get d(Az; z) < d(Az; z) , a contradic-

tion. Hence, we get Az = z.

Therefore, we have Az = Sz = z.

Hence z be the common �xed point of A and S. Also, since
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AX � TX there exists a point w in X such that Az = Tw.

We claim that Bw = Tw. If Bw 6= Tw from (3), we get

d(Tw;Bw) = d(Az;Bw) < max[k1 fd(Sz; Tw) + d(Az; Sz) + d(Bw; Tw)g ;

k2
d(Sz;Bw) + d(Az; Tw)

2
]

which implies d(Az;Bw) < d(Az;Bw), a contradiction. So,

we get Tw = Bw.

Hence,

Az = Sz = Tw = Bw = z: (2.4)

Now, using the proposition(2.0.7), we get

BTw = TBw: (2.5)

Moreover, we get BBw = BTw and TTw = TBw. Hence,

BBw = BTw = TTw = TBw: (2.6)

Again, we claim BBw = Bw. If BBw 6= Bw. Then, from

(2), we get

d(Bw;BBw) = (Az;BBw)

< max[d(Sz; TBw); d(Az; Sz); d(BBw; TBw);

d(Sz;BBw) + (Az; TBw)

2
]

= max[d(Az;BBw); 0; 0; d(Az;BBw)]

which implies d(Az;BBw) < d(Az;BBw). This is a con-

tradiction. Hence, we have Bw = BBw.

Now, from relation (2.6), we get BBw = TBw = Bw. So,
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we have Bw = Az = z. Moreover, BBw = TBw implies

that Bz = Tz = z which is the common �xed point of B

and T. Hence z is the common �xed point of A, B, S and T.

For uniqueness of the common �xed point,

let u 6= z is another �xed point. Then, we get Au = Su =

Bu = Tu. Finally, using relation (3), we get

d(Az;Bu) < max[k1 fd(Sz; Tu) + d(Az; Sz) + d(Bu; Tu)g ;

k2
d(Sz;Bu) + d(Az; Tu)

2
]:

This implies d(Az;Bu) < d(Az;Bu) which is a contradic-

tion. Hence, the common �xed point of A, B, S and T is

unique. This establishes the theorem.

Example 2.0.10. Let X = [2,10] and d the Euclidean

metric on X. De�ne A, B, S and T : X ! X as follows

Ax = 2 for all x,

Bx = 2 if x < 4 and � 5, Bx = 3+x if 4 � x < 5,

Sx = x if x � 8, Sx = 8 if x > 8, and

Tx = 2 if x < 4 or � 5, Tx = 5 +x if 4 � x < 5. Then A,

B, S and T satisfy all the conditions of the above theorem

and have a unique common �xed point x = 2.

If we take A = B and S = T. Then, the above theorem

reduces to following corollary.

Corollary 2.0.11. Let (A, S) be a reciprocal continuous
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and compatible self-mappings of a complete metric space(X,

d) such that

(a) AX � SX,

(b) Given � > 0, there exists � > 0 such that for all

x; y 2 X, we have � �M(x; y) < �+� ) d(Ax;Ay) < �

with d(Ax;Ay) < M(x; y) where

M(x, y) = max
n
d(Sx; Sy); d(Ax; Sx); d(ay; Sy); d(Sx;Ay)+d(Ax;Sy)2

o
(c) d(Ax;Ay) < max [k1 fd(Sx; Sy) + d(Ax; Sx) + d(Ay; Sy)g ;

k2
d(Sx;Ay)+d(Ax;y)

2 ] for 0 � k1; k2 � 1.

Then, A and S have a unique common �xed point.

Remarks. The main theorem remains true for compatible

of type (A), compatible of type (B) and compatible of type

(C) in place of compatible if A, S, B and T are assumed

to be continuous. Our result improves the result of Jha et

al. [77, 78], Pant and Jha [140, 141], Pant [126] and other

similar results in literature.

We introduce a new compatible mappings of type (K) and

prove a Lemma and a �xed point theorem for pair of com-

patible mappings of type (K) on a metric space X with

example. This theorem has been published in Internation-

al J. of Math. Sci. and Engg. Appls. (IJMSEA) as follows:
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International J. of Math. Sci. Engg. Appls. (I-

JMSEA)ISSN 0973-9424, Vol. 8 No. I (January,

2014), pp. 383-391

We start with the following Lemma.

Lemma 2.0.12. [82] Let A, B, S and T be a self map-

pings of a metric space (X, d) satisfying the following con-

ditions:

(a) A(X) � T (X), B(X) � S(X),

(b) Given � > 0 there exists � > 0 such that for all x, y in

X.

� < M(x; y) < �+ � ) d(Ax;By) � �

and d(Ax;By) < M(x; y),

where M(x, y) = Max [d(Sx, Ty), d(Ax, Sx), d(By, Ty),

d(Ax, Ty)],

Then for each x0 in X, the sequence fyng in X de�ned by

the rule y2n�1 = Ax2n�2 = Tx2n�1and

y2n = Bx2n�1 = Sx2n , for all n = 1 ,2 ,... , is a Cauchy

sequence.

Proof: Since A(X) � T (X) and B(X) � S(X), so for any

x0 2 X, there exists x1 2 X such that Ax0 = Tx1 and for

this x1 2 X, there exists x2 2 X such that Bx1 = Sx2.

Inductively, we de�ne a sequence fyng in X such that

y2n�1 = Ax2n�2 = Tx2n�1 and y2n = Bx2n�1 = Sx2n ,
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for all n = 1 ,2 ,...

From condition (2), we get

d(y2n+1; y2n+2) = d(Ax2n; Bx2n+1)

< Max[d(Sx2n; Tx2n+1); d(Ax2n; Sx2n); d(Bx2n; Tx2n+1);

d(Ax2n; Tx2n+1)]

= Max[d(y2n; y2n+1); d(y2n+1; y2n); d(y2n+2; y2n+1);

d(y2n+1; y2n+1)]

< Max[d(y2n; y2n+1); d(y2n+1; y2n+2)];

which implies

d(y2n+1; y2n+2) < d(y2n; y2n+1): (2.7)

Similarly, we have

d(y2n+2; y2n+3) < d(y2n+1; y2n+2): (2.8)

From (2.7) and (2.8) we have

d(yn+1; yn+2) < (yn; yn+1) and so on.

Thus, fd(yn; yn+1)g is a strictly decreasing sequence of pos-

itive numbers and, therefore, tends to a limit r � 0. If

possible suppose, r > 0. Then, for � > 0, there exists a

positive number N such that for each n 2 N we have

r < d(y2n; y2n+1) =M(x; y) < r + �: (2.9)

Selecting � in (2.9) in accordance with (2), we have

d(y2n�1; y2n) < d(Ax2n�2; Bx2n�1) < r, contradicting (2.9).
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Hence, we get

limn!1d(yn; yn+1) = 0: (2.10)

We now show that fyng is a Cauchy sequence. Since

d(yn+1; yn+2) � d(yn; yn+1), it is su�cient to show that the

sub-sequence fy2ng is a Cauchy sequence. Suppose that

fy2ng is not a Cauchy sequence. Then, there exists � > 0

for which we can �nd subsequences
�
y2m(k)

	
and

�
y2n(k)

	
of

fy2ng such that n(k) is the least index for which n(k) >

m(k) > k and d(y2m(k); y2n(k)) � � . This means that

d(y2m(k); y2n(k)�2) < �: (2.11)

Using triangle inequality, we get

� � d(y2m(k); y2n(k))

� d(y2m(k); y2n(k)�2) + d(y2n(k)�2; y2n(k)�1) + d(y2n(k)1; y2n(k))

� �+ d(y2n(k)�2; y2n(k)�1) + d(y2n(k)1; y2n(k)):

Letting k !1 and using (2.10) we conclude that

limk!1d(y2m(k); y2n(k)) = �: (2.12)

Moreover, we have��d(y2m(k); y2n(k)+1) � d(y2m(k); y2n(k))
�� � d(y2n(k); y2n(k)+1):

Letting k !1 and using (2.10) and (2.12),we get

limk!1d(y2m(k); y2n(k)+1) = �: (2.13)
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Similarly, we get

limk!1d(y2m(k)+1; y2n(k)+1) = � and limk!1d(y2m(k)+1; y2n(k)+2) = �:

(2.14)

Now, from (2), we have

d(y2m(k)+1; y2n(k)+2) = d(Ax2m(k); Bx2n(k)+1)

< Max(d(Sx2m(k); Tx2n(k)+1); d(Ax2m(k); Sx2m(k));

d(Bx2n(k)+1; Tx2n(k)+1); d(Ax2m(k); Tx2n(k)+1))

= Max((d(y2m(k); y2n(k)+1); d(y2m(k)+1; y2m(k));

d(y2n(k)+2; y2n(k)+1); d(y2m(k)+1; y2n(k)+1))

If k ! 1 then, we get � < Max f�; 0; 0; g, which is a

contradiction. Hence, fyng is a Cauchy sequence.

Theorem 2.0.13. [82] Let (X, d) be a complete metric

space and A, B, S and T be a self mappings of X satisfying

the following conditions:

(a) A(X) � T (X); B(X) � S(X),

(b) Given � > 0 there exists � > 0 such that for all x, y in

X, � < M(x; y) < �+ � ) d(Ax;By) � � and

d(Ax;By) < M(x; y)

whereM(x; y) =Max [d(Sx; Ty); d(Ax; Sx); d(By; Ty); d(Ax; Ty)]

(c) S and T are continuous.

If (A, S) and (B, T) compatible mappings of type (K), then

A, B, S and T have a unique common �xed point.
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Proof: Since A(X) � T (X) and B(X) � S(X), for any

x0 2 X, there exists x1 2 X such that Ax0 = Tx1 and for

this x1 2 X, there exists x2 2 X such that Bx1 = Sx2.

Inductively, we de�ne a sequence fyng in X such that

y2n�1 = Ax2n�2 = Tx2n�1 and y2n = Bx2n�1 = Sx2n , for

all n = 1; 2; :::

Then, from (2) and by Lemma(2.0.12) , we have fyng is a

Cauchy sequence in X. Since (X, d) is complete, fyng con-

verges to some point z 2 X, and so that fAx2n�2g ; fSx2ng ; fBx2n�1g

and fTx2n�1g also converges to z. Suppose (A, S) and (B

T) are compatible of type (K), then we have

AAx2n�2 ! Sz; SSx2n ! Az;BBx2n�1 ! Tz and TTx2n�1 ! Bz:

(2.15)

Also, from (2), we get

d(AAx2n�2; BBx2n�1) <Max [d(SAx2n�2; TBx2n�1); d(AAx2n�2;

SAx2n�2); d(BBx2n�1; TBx2n�1); d(AAx2n�2; TBx2n�1)].

Taking limit as n!1 and using (2.15), we have

d(Sz; Tz) <Max fd(Sz; Tz); d(Sz; Sz); d(Tz; Tz); d(Sz; Tz)g,

which implies d(Sz; Tz) < d(Sz; Tz). It follows that

Sz = Tz: (2.16)

Now, from (2), we get

d(Az;BBx2n�1) < Max[d(Sz; TBx2n�1); d(Az; Sz); d(Bz; TBx2n�1)

d(Az; TBx2n�1)]:
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Again, taking limit as n!1 and using (2.15) and (2.16),

we have

d(Az; Tz) < Max fd(Sz; Sz); d(Az; Tz); d(Tz; Tz); d(Az; Tz)g

= d(Az; Tz):

and hence

Az = Tz: (2.17)

From (2), (2.16) and (2.17) we get,

d(Az;Bz) < Max[d(Sz; Tz); d(Az; Sz); d(Bz; Tz); d(Az; Tz)]

= Max[d(Az;Az); d(Az;Az); d(Bz;Az); d(Az;Az)]

= d(Az;Bz)

and hence

Az = Bz: (2.18)

From (2.16), (2.17) and (2.18) we have

Az = Bz = Tz = Sz: (2.19)

Now, we show that Az = z. From (2), we get

d(Az;Bx2n�1) < Max[d(Sz; Tx2n�1); d(Az; Sz); d(Bx2n�1; Tx2n�1);

d(Az; Tx2n�1)]:

And, taking limit as n ! 1 and using (2.16) and (2.17),
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we have

d(Az; z) < Max fd(Sz; z); d(Az; Sz); d(z; z); d(Az; z)g

= Max fd(Az; z); d(Az;Az); d(z; z); d(Az; z)g

= d(Az; z):

Hence, we get Az = z. Thus, from (2.19), we have

z = Az = Bz = Tz = Sz and so z is a common �xed point

of A, B, S and T.

In order to prove the uniqueness of �xed point, let w be

another common �xed point of A, B, S and T. Then, we

get Aw = Bw = Sw = Tw. Therefore, we have

d(z; w) = d(Az;Bw)

< Max fd(Sz; Tw); d(Az; Sz); d(Bw; Tw); d(Az; Tw)g

= d(z; w):

Hence, we get z = w. This completes the proof of the the-

orem.

Now, we have the following example.

Example 2.0.14. Let X = [2, 10] with the metric d

de�ned by d(x; y) = jx� yj for all x; y 2 X. Then, (X, d)

is a complete metric space. De�ne A, B, S and T : X ! X

as follows:

Ax = 2 if x� 3; Ax = 3 if x > 3;

Bx = 2 if x� 5, Bx = 3 if x > 5
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Sx = Tx = x for all x 2 X, Then A, B, S and T satisfy

all the conditions of the above Theorem and have a unique

common �xed point x = 2.

If A = B and T = S in above theorem, then we get following

corollary.

Corollary 2.0.15. Let (X, d) be a complete metric space

and A and S be a self mappings of X satisfying the following

conditions:

(a) A(X) � S(X); Given� > 0 there exists � > 0 such that

for all x, y in X,

� < M(x; y) < �+ � ) d(Ax;Ay) � � and

d(Ax;Ay) < M(x; y)

where M(x, y) = Max fd(Sx; Sy); d(Ax; Sx); d(Ax; Sy); d(Ax; Sy)g,

for all x; y 2 X, and

(b)(c) S is continuous.

If (A, S) is compatible mappings of type (K), then A and S

have a unique common �xed point.

Remarks: The main theorem remains true for compatible,

compatible of type (A), compatible of type (B) and com-

patible of type (C) and compatible of type (P) in place of

compatible of type (K) if A, S, B and T are assumed to be

continuous. Also, our result improves other similar results
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in literature.

We prove a �xed point theorem for pair of compatible map-

pings of type (E) on a metric space X with example.This

theorem has been accepted for the publication in

Applications and Applied Mathematics : An Inter-

national Journal.

We start with the following proposition.

Proposition 2.0.16. [79] If A and S be compatible map-

pings of type (E) on a metric space X and if one of function

is continuous .Then,

(a) A(t) = S(t) and limn!1AAxn = limn!1SSxn = limn!1ASxn =

limn!1SAxn whenever limn!1Axn = limn!1Sxn =

t, for some point t 2 X

(b) If these exist u 2 X such that Au = Su = t then ASu

= SAu.

Proof:(a) Let fxng be a sequence of X such that

limn!1Axn = limn!1Sxn = t;

for some point t 2 X, by de�nition of compatible of type

(E), we have

limn!1AAxn = ASxn = S(t):

78



If A is a continuous mapping. Then, we get

limn!1AAxn = A(limn!1Axn) = A(t):

So, we have A(t) = S(t).

Similarly, if S is continuous we get the same result. By

de�nition of compatible of type (K), clearly

limn!1AAxn = limn!1SSxn = limn!1ASxn = limn!1SAxn:

(b)Suppose Au = Su =t for some u 2 X. Then,

ASu = A(Su) = At and SAu = S(Au) = St:ButAt = St:

So, ASu = SAu, Hence proved.

We use the following lemma to prove our main result.

Lemma 2.0.17. [78]Let A, B, S and T be self-mapping

of metric space (X, d) such that

AX � TX;BX � SX:

Assume further that given � > 0 there exists � > 0 such

that for all x, y in X.

� < M(x; y) < �+� ) d(Ax;By) � � and d(Ax;By) < M(x; y)

whenever M(x; y) > 0,where

M(x, y) = max
n
d(Sx; Ty); d(Ax; Sx); d(By; Ty); [d(Sx;By)+d(Ax;Ty)]2

o
Then, for each x0 2 X, the sequence fyngin X de�ne by the

rule y2n = Ax2n = Tx2n+1; y2n+1 = Bx2n+1 = Sx2n+2 is a

Cauchy sequence.
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Theorem 2.0.18. [79] Let (A, S) and (B, T) be pairs of

self-mappings compatible of type (E) of a complete metric

space (X,d) such that

(a) AX � TX and BX � SX,

(b) Given � > 0 there exists � > 0 such that for allx; y 2 X,

� < M(x; y); < � + � ) d(Ax;By) < � with d(Ax;By) <

M(x; y)

where M(x, y) = max fd(Sx; Ty); d(Ax; Sx); d(By; Ty); If

one of the mappings A, B, S and T is continuous then A,

B, S and T have unique common �xed point.

Proof: Let x0 be any point in X. De�ne sequence fxng and

fyngin X given by the rule

y2n = Ax2n = Tx2n+1; y2n+1 = Bx2n+1 = Sx2n+2 (2.20)

This can be down from condition (1).

By lemma (2.0.17), fyng is a Cauchy sequence. Also, since

X is complete, so there exists a point z in X such that

yn ! z and from relation (2.20), we get

y2n = Ax2n = Tx2n+1 ! z and yn+1 = Bx2n+1 = Sx2n+2:

(2.21)

Suppose S is continuous. Since, (A, S) is compatible of type

(E), then, by proposition (2.0.16), we get

Az = Sz: (2.22)

80



We claim that Az = z. If Az 6= z then using condition (3),

we get

d(Az;Bx2n+1) < max[k1 fd(Sz; Tx2n+1) + d(Az; Sz) + d(Bx2n+1; Tx2n+1)g ;

k2
d(Sz; x2n+1) + d(Az; Tx2n+1)

2
]:

Letting n ! 1 we get d(Az; z) < d(Az; z) , which is a

contradiction. Hence Az = z.So, we have Az = Sz = z.

Hence z is the common �xed point of A and S.

Also, since AX � TX there exist a point w in X such that

Az = Tw. We claim that Bw = Tw. If Bw 6= Tw. Then,

using condition (3), we get

d(Tw;Bw) = d(Az;Bw) < max[k1[d(Sz; Tw) + d(Az; Sz) + d(Bw; Tw)];

k2
d(Sz;Bw) + d(Az; Tw)

2
];

which implies d(Az;Bw) < d(Az;Bw), a contradiction.

Hence, we get Tw = Bw. Therefore, we get

Az = Sz = Tw = Bw = z: (2.23)

Now, using the above proposition(2.0.16), we get

BTw = TBw: (2.24)

Moreover, we get

BBw = TTw = BTw = TBw: (2.25)
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Again, we claim BBw = Bw. If BBw 6= Bw, from using

condition (2), we get

d(Bw;BBw) = d(Az;BBw)

< max[d(Sz; TBw); d(Az; Sz); d(BBw; TBw);

d(Sz;BBw) + (Az; TBw)

2
]

= max[d(Az;BBw); 0; 0; d(Az;BBw)];

which implies (Az;BBw) < d(Az;BBw) which is a contra-

diction. Hence, we get Bw = BBw.

Now, from relation (2.25), we get BBw = TBw = Bw.

Hence, we get Bw = Az = z. So, z is the common �xed

point of B and T. Hence z is the common �xed point of A,

B, S and T.

For uniqueness

Let u 6= z is another �xed point. Then, we get

Au = Su = Bu = Tu. Now from relation (3), we get

d(Az;Bu) < max[k1 fd(Sz; Tu) + d(Az; Sz) + d(Bu; Tu)g ;

k2
d(Sz;Bu) + d(Az; Tu)

2
]:

This implies d(Az;Bu) < d(Az;Bu) which is a contradic-

tion. Hence �xed point is unique. Also, in the proof of

theorem we can choose function A is continuous in place of

S. Moreover, the proof is similar when T or B is assumed

to be continuous in place of S.This establishes the theorem.

Example 2.0.19. Let X = [2, 10] be a set and d the
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Euclidean metric on X. De�ne A, B, S and T : X ! X as

follows;

Ax = 2 for all x ,

Bx = 2 if x < 4 and � 5 Bx = 3 + x if 4 � x < 5

Sx = x if x � 8, Sx = 8 if x > 8;

Tx = 2 if x < 4 or � 5; Tx =5 + xif4 � x < 5 Then A,

B, S and T satisfy all the conditions of the above theorem

and have a unique common �xed point x = 2.

If A = B and S = T.Then, we have the following corollary:

Corollary 2.0.20. Let (A, S) be a pairs of the self-

mappings of compatible of type (E) of a complete metric

space(X, d) such that

(a) AX � SX,

(b) Given � > 0, there exists � > 0 such that for al-

l x; y 2 X,

� < M(x; y) < �+ � ) d(Ax;Ay) < �;

with d(Ax;Ay) < M(x; y);where

M(x, y) = max
n
d(Sx; Sy); d(Ax; Sx); d(Ay; Sy); d(Sx;Ay)+d(Ax;Sy)2

o
,

(c) d(Ax;Ay) < max[k1[fd(Sx; Sy) + d(Ax; Sx) + d(Ay; Sy)g,

k2
d(Sx;Ay)+d(Ax;Sy)

2 ] for 0 � k1; k2 � 1

If one of the mapping A and S is continuous then, A and

S have a unique common �xed point.
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Remarks The main theorem remain true for compatible

maps and also true for compatible of type (A), compatible

of type (B) and compatible of type (C) if A, S, B and T

continuous. Our result improves the result of [77, 78], Pant

and Jha [141] and other similar results in literature.
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Chapter 3

Common �xed point

theorems in fuzzy metric

space

In this chapter, we study the some common �xed point the-

orems in fuzzy metric space, extended the notion of com-

patible of type (K) and the compatible of type (E) in fuzzy

metric space and obtain a common �xed point theorems on

complete fuzzy metric space with example. Result gener-

alizes and improves other similar results in literature. The

theorems which has been established and published peer

reviewed international journals.

3.0.4 Introduction

In 1965, the concept of fuzzy set was introduced by Zadeh[200].

Then, fuzzy metric spaces have been introduced by Kramosil
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and Michalek [102]. George and Veeramani [49] modi�ed

the notion of fuzzy metric spaces with the help of continu-

ous t-norms. In 1986, G. Jungck [86] introduced notion of

compatible mappings in metric space. In 1998, Y.J. Cho,

H.K. Pathak, S.M. Kang and J.S. Jung [30] introduced the

concept of compatible mappings in fuzzy metric space.We

have extended compatible mappings of type (E) in fuzzy

metric space and established a common �xed point theo-

rem with example.Recently, We have [82] introduced the

concept of compatible mappings of type (K) in metric s-

pace and extended it to fuzzy metric space and obtained a

common �xed point theorem.

3.0.5 Basic de�nition

De�nition 3.0.21. [49] A binary operation � : [0; 1] �

[0; 1] ! [0; 1] is a continuous t-norm if � is satisfying

the following conditions:

(a) � is commutative and associative;

(b) � is continuous;

(c) a �1 = a for all a 2 [0; 1];

(d) a � b � c � d whenever a � c and b � d, and a; b; c; d 2

[0; 1].

De�nition 3.0.22. [49] A 3-tuple (X;M; �) is said to be a

fuzzy metric space if X is an arbitrary set, � is a contin-

uous t-norm and M is a fuzzy set on X2� (0;1) satisfying
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the following conditions: for all x; y; z 2 X and s; t > 0,

(FM1) M(x; y; t) > 0;

(FM 2) M(x; y; t) = 1 if and only if x = y;

(FM 3) M(x; y; t) =M(y; x; t);

(FM 4) M(x; y; t) �M(y; z; s) �M(x; z; t+ s);

(FM 5) M(x; y; :) : (0;1)! (0; 1] is continuous.

Then M is called a fuzzy metric on X. The functionM(x; y; t)

denote the degree of nearness between x and y with respect

to t. Also, we consider the following condition in the fuzzy

metric spaces (X;M; �).

(FM6) t
lim
! 1M(x; y; t) = 1, for all x; y 2 X.

Example 3.0.23. [49] Let (X; d) be a metric space. De-

note a � b = ab for all a; b 2 [0; 1] and let M be fuzzy set on

X2 � (0;1) de�ned as follows:

M(x; y; t) = t
t+d(x;y) . Then (X;M; �) is a fuzzy metric s-

pace. We call this fuzzy metric induced by a metric d is the

standard fuzzy metric.

De�nition 3.0.24. [49] Let (X;M; �) be a fuzzy metric s-

pace. Then a sequence fxng in X is said to be convergent

to x in X if for each � > 0 and each t > 0, there exist

n0 2 N such that M(xn; x; t) > 1� � for all n � n0.

a sequence fxng in X is said to be Cauchy if for each

� > 0 and each t > 0, there exists n0 2 N such that

M(xn; xm; t) > 1 � � for all n;m � n0. A fuzzy metric

space in which every Cauchy sequence is convergent is said
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to be complete.

De�nition 3.0.25. [30] The self mappings A and S of a

fuzzy metric space (X;M; �) are said to be compatible i�

limn!1M(ASxn; SAxn; t) = 1 whenever fxng is a sequence

in X such that

lim
n!1

Axn = lim
n!1

Sxn = x:

for some xinX and t > 0.

De�nition 3.0.26. The self mappings A and S of a fuzzy

metric space (X, M, *) are said to be compatible of type

(E) i�

limn!1M(AAxn; ASxn; t) =limn!1M(AAxn; Sx; t) =

limn!1M(ASxn; Sx; t) = 1 and limn!1M(SSxn; SAxn; t) =

limn!1M(SSxn; Ax; t) = limn!1M(SAxn; Ax; t) = 1,

whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn = x

for some x in X and t > 0.

De�nition 3.0.27. [82] The self mappings A and S of a

fuzzy metric space (X, M, *) are said to be compatible of

type (K) i�

limn!1M(AAxn; Sx; t) = 1 and limn!1M(SSxn; Ax; t) = 1;

whenever fxng is a sequence in X such that

limn!1Axn = limn!1Sxn = x for some x in X and t > 0.
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Lemma 3.0.28. [106] In a fuzzy metric space (X, M,

*), if a � a � a for all a 2 [0; 1] then a * b = min fa; bg for

all a; b 2 [0; 1].

Lemma 3.0.29. [177] Let (X, M, *) be a fuzzy met-

ric space with the condition: (FM6) limn!1M(x; y; t) =

1 for all x; y 2 X. If there exists k 2 (0; 1) such that

M(x; y; kt) �M(x; y; t) then x = y.

Lemma 3.0.30. [30] Let fyng be a sequence in a fuzzy

metric space (X, M, *) with the condition (FM6). If there

exists k 2 (0; 1) such that M(yn; yn+1; kt) � M(yn�1; yn; t)

for all t > 0 and n 2 N , then fyng is a Cauchy sequence in

X.

Lemma 3.0.31. [52] Let (X;M; �) be a fuzzy metric s-

pace. Then for all x; y in X, M(x; y; :) is non-decreasing.

Lemma 3.0.32. [28] Let (X;M; �) be a fuzzy metric

space. If there exists q 2 (0; 1) such that M(x; y; qt) �

M(x; y; t) for all x; y and t > 0 then x = y.

Lemma 3.0.33. [100] The only t-norm � satisfying r �

r � r for all r 2 [0; 1] is the minimum t-norm, that is,

a � b = min fa; bg for all a; b 2 [0; 1].

Proposition 3.0.34. If A and S be compatible mappings

of type (E) on a fuzzy metric space (X, M, *) and if one of

function is continuous .Then,
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(a) A (x) = S(x) and limn!1AAxn = limn!1SSxn =

limn!1ASxn = limn!1SAxn where limn!1Axn =

x;limn!1Sxn = x, for some point x 2 X and sequence

fxng.

(b) If there exist u 2 X such that Au = Su = x then ASu

= SAu.

Proof : Let fxng be a sequence of X such that

limn!1Axn = limn!1Sxn = x for some x in X.

Then by de�nition of compatible of type (E), we have

limn!1AAxn = ASxn = S(x):

If A is a continuous mapping, then we get

limn!1AAxn = Alimn!1Axn = A(x):

This implies A(x) = S(x) and

limn!1AAxn = limn!1SSxn= limn!1ASxn = limn!1SAxn

.

Similarly, if S is continuous, then we get the same re-

sult. This is the proof of part (a)

Again, suppose Au = Su = x for some u 2 X.

Then, ASu =A(Su) = At and SAu = S(Au) = St.

From (a), we have At = St. Hence, ASu = SAu.

This is the proof of part (b).
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3.0.6 Common Fixed Point Theorems for pair

of self mappings in complete fuzzy metric space

In 2002, P. Balasubramaniam et al.[10] established fol-

lowing common �xed point theorem in complete fuzzy

metric space.

Theorem 3.0.35. [10] Let (A, S) and (B, T) be point-

wise R- weakly commuting pairs of self-mappings of

complete fuzzy metric space (X, M,*) such that

i. AX � TX and BX � SX,

ii. M(Ax;By; t) � M(x; y; ht); 0 < h < 1; x; y 2 X

and t > 0

Suppose that (A,S) or (B,T) is compatible pair of re-

ciprocal continuous mappings. Then A,B,S and T have

unique common �xed point.

In 2004, R.P.Pant and K. Jha [142] established follow-

ing theorem in complete fuzzy metric space using point-

wise R- weakly commuting pairs of self-mappings.

Theorem 3.0.36. [142] Let (A, S) and (B, T) be point-

wise R- weakly commuting pairs of self-mappings of

complete fuzzy metric space (X, M,*) such that

i. AX � TX and BX � SX,

ii. M(Ax;By; t) � M(x; y; ht); 0 < h < 1; x; y 2 X

and t > 0
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Let (A,S) and (B,T) be compatible mappings.If any of

the mappings in compatible pair (A,S) and (B,T) is

continuous. Then A,B,S and T have unique common

�xed point.

In 2007, S. Kutukcu et al. [107] established following

theorem in complete fuzzy metric space.

Theorem 3.0.37. [107] Let (X, M, *) be a complete

fuzzy metric space with a � a � a for all a 2 [0; 1] and

with the condition (FM 6). Let (A, S) and (B, T) be

pointwise R- weakly commuting pair self mapping of X

such that

i. A(X) � T (X), B(X) � S(X),

ii. there exists k 2 (0; 1) such that M(Ax;By; kt) �

N(x; y; t) for all x; y 2 X,� 2 (0; 2) and t > 0,where

N(x, y, t)=M(Sx, Ax, t) *M(Ty,By, t) *M(Sx, Ty,

t)*M(Ty;Ax; �t) *M(Sx;By; (2� �)t),

If one of the mappings in compatible pair (A, S) or

(B, T) continuous then A, B, S and T have a unique

common �xed point.

In 2012, M. Koireng and Y. Rohen [101] established

following theorem in complete fuzzy metric space us-

ing compatible mappings of type (P).
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Theorem 3.0.38. [101] Let (X;M; �) be a complete

fuzzy metric space and A, B, S and T be a self map-

pings of X satisfying the following conditions:

i. A(X) � T (X); B(X) � S(X),

ii. S and T are continuous

iii. the pair (A, S) and (B, T) compatible mappings of

type (P)

iv. M(Ax;By; kt) �M(Sx; Ty; t)�M(Ax; Sx; t)�M(Bx; Ty; t)�

M(Ax; Ty; t),

for all x; y 2 X, k 2 (0; 1) and t > 0,

Then A, B, S and T have a unique common �xed point.

We have established a common �xed point theorem for

two pairs of self mappings using compatible mappings

of type (E) in fuzzy metric space with example. This

theorem has been published in

Applied Mathematical Sciences, Vol. 8 (2014),

pp.2007 - 2014.

If A, B, S and T are self mappings in fuzzy metric

space (X, M, *), we denote

M�(x; y; t) = M(Sx;Ax; t) �M(Ty;By; t) �M(Sx; Ty; t)

�M(Ty;Ax; �t) �M(Sx;By; (2� �)t);
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for all x; y 2 X,� 2 (0; 2) and t > 0:

Theorem 3.0.39. Let (X, M, *) be a complete fuzzy

metric space with a � a � a for all a 2 [0; 1] and with

the condition (FM 6). Let one of the mapping of self

mappings (A, S) and (B, T) of X be continuous such

that

i. A(X) � T (X), B(X) � S(X),

ii. there exists k 2 (0; 1) such that M(Ax;By; kt) �

M�(x; y; t) for all x; y 2 X,� 2 (0; 2) and t > 0.

If (A, S) and (B, T) compatible of type of (E) then A,

B, S and T have a unique common �xed point.

Proof Let x0 be any point in X. From condition (1),

there exists x1; x2 2 X such that

Ax0 = Tx1 = y0 and Bx1 = Sx2 = y1. Inductively, we

can construct sequences fxng and fyng in X such that

Ax2n = Tx2n+1 = y2n and Bx2n+1 = Sx2n+2 = y2n+1 for

n = 0, 1, 2, ... For t > 0 and � = 1� q with q 2 (0; 1)
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in (2), Then, we have

M(Ax2n; Bx2n+1; kt) � M(Sx2n; Ax2n; t) �M(Tx2n+1; Bx2n+1; t)

�M(Sx2n; Tx2n+1; t) �M(Tx2n+1; Ax2n;

(1� q)t) �M(Sx2n; Bx2n+1; (1 + q)t);

M(y2n; y2n+1; kt) � M(y2n�1; y2n; t) �M(y2n; y2n+1; t)

�M(y2n�1; y2n; t) �M(y2n�1; y2n+1; (1 + q)t)

� M(y2n�1; y2n; t) �M(y2n; y2n+1; t)

�M(y2n�1; y2n; t) �M(y2n; y2n+1; qt)

� M(y2n�1; y2n; t) �M(y2n; y2n+1; t)

�M(y2n; y2n+1; qt):

Since t-norm * is continuous, letting q ! 1, we have

M(y2n; y2n+1; kt) � M(y2n�1; y2n; t) �M(y2n; y2n+1; t)

M(y2n; y2n+1; t)

� M(y2n�1; y2n; t) �M(y2n; y2n+1; t):

It follows that M(y2n; y2n+1; kt) � M(y2n�1; y2n; t) �

M(y2n; y2n+1; t).

Similarly,M(y2n+1; y2n+2; kt)�M(y2n; y2n+1; t)�M(y2n+1; y2n+2; t).

Therefore, for all n even or odd, we have

M(yn; yn+1; kt) �M(yn�1; yn; t) �M(yn; yn+1; t).

Consequently,M(yn; yn+1; t)�M(yn�1; yn; k
�1t)�M(yn; yn+1; k

�1t)

and henceM(yn; yn+1; t)�M(yn�1; yn; t)�M(yn; yn+1; k
�1t).

Since M(yn; yn+1; k
�mt) ! 1 as k ! 0, it follows that
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M(yn; yn+1; kt) � M(yn�1; yn; t) for all n 2 N and

t > 0. Therefore, by Lemma (3.0.30), fyng is a Cauchy

sequence. Since X is complete, then there exists a point

z in X such that yn ! z as n ! 1. Moreover, we

have y2n = Ax2n = Tx2n+1 ! z and y2n+1 = Bx2n+1 =

Sx2n+2 ! z. If A and S are compatible of type (E) and

one of mapping of the pair (A, S) is continuous then by

Lemma (3.0.31) we have Az = Sz. Since AX � TX,

there exists a point w in X such that Az = Tw. Using

condition (2), with � = 1, we have

M(Az;Bw; kt) � M(Sz;Az; t) �M(Tw;Bw; t) �M(Sz;

Tw; t) �M(Tw;Az; t) �M(Sz;Bw; t)

= M(Az;Az; t) �M(Az;Bw; t) �M(Az;Az; t)

�M(Az;Az; t) �M(Az;Bw; t)

� M(Az;Bw; t):

This implies Az = Bw. Thus, we have Az = Sz = Bw

= Tw. Also, we get

M(Az;Bx2n+1; kt) � M(Sz;Az; t) �M(T2n+1; Bx2n+1; t) �

M(Sz; Tx2n+1; t) �M(Tx2n+1; Az; t)

�M(Sz;Bx2n+1; t):
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Letting n!1, we get

M(Az; z; kt) � M(Az;Az; t) �M(Az; z; t) �M(Az;Az; t) �

M(Az;Az; t) �M(Az; z; t)

� M(Az; z; t):

Hence, we get Sz = Az =z. Therefore, z is common

�xed point of A and S.

Again, if B and T are compatible of type (E) and one

of mappings of (B, T) is continuous, so we get

Bw =Tw = Az = z. By using proposition (3.0.34), we

get

BBw = BTw = TBw = TTw. Thus, we get Bz = Tz.

Also, we get

M(Ax2n; Bz; kt) � M(Sx2n; Ax2n; t) �M(Tz;Bz; t) �M(Sx2n; T z; t)

�M(Tz;Ax2n; t) �M(Sx2n; Bz; t):

Letting n!1, we get

M(z;Bz; kt) � M(z; z; t) �M(Tz;Bz; t) �M(z; Tz; t)

�M(Tz; z; t) �M(z;Bz; t)

� M(z;Bz; t):

Hence, we have Bz = Tz =z. Therefore z is common

�xed point of B and T. Hence z is common �xed point

of A, B, S and T.

For uniqueness,
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suppose that Aw(Az 6= z) is another common �xed

point of A, B, S and T. Then, using condition (2) with

� = 1, we have

M(AAz;BAw; kt) = M(Az;Aw; kt)

� M(SAz;AAz; t) �M(TAw;BAw; t) �M(SAz;

TAw; t) �M(TAw;AAz; t) �M(SAz;BAw; t)

= M(Az;Az; t) �M(Aw;Aw; t) �M(Az;Aw; t)

M(Aw;Az; t) �M(Az;Aw; t)

� M(Az;Aw; t):

That is, Aw = Az = z. Thus, z is a unique common

�xed point of A, B, S and T.

We have the following example.

Example 3.0.40. Let X = [2, 10] with the metric

d de�ned by d(x; y) = jx� yj and de�ne M(x; y; t) =
t

t+d(x;y) for all x; y 2 X, t > 0. Clearly (X, M, *) is a

complete fuzzy metric space. De�ne A, B, S and T :

X! Xasfollows;

Ax = 2forallx;

Bx = 2ifx < 4and� 5 Bx = 3+x if 4� x < 5

Sx = x if x � 8, Sx = 8 if x > 8;

Tx = 2 if x < 4 or � 5, Tx = 5 +x if 4 � x < 5 Then

A, B, S and T satisfy all the conditions of the above

theorem and have a unique common �xed point x = 2.
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If we take S = T = IX, an identity mapping of X in

Theorem , we get the following result.

Corollary 3.0.41. Let (X, M, *) be a complete fuzzy

metric space with a � a � a for all a 2 [0; 1] and with

the condition (FM6).

If one of the mapping of self mappings (A, B) of X is

continuous such that for k 2 (0; 1) we have

M(Ax;By; kt) � N(x; y; t) for allx; y 2 X;� 2 (0; 2)

and t > 0, and if (A, B) is compatible of type of (E)

then A and B have a unique common �xed point.

Remarks: The main theorem remains true if (A, S)

and (B, T) are pointwise R- weakly commuting pairs

and one of the mappings (A, B) or (S, T) is continuous

and true for compatible, compatible of type (A) and

compatible of type (P) in place of compatible of type

(E) if A, S, B and T are assumed to be continuous. Al-

so, our result extend and generalize the results of Pant

and Jha[16], Singh and Singh [10,11] and S. Kutukcu et

al.[18] and improves other similar results in literature.

Now, we prove a common �xed point theorem for t-

wo pairs compatible mappings of type (K) in complete

fuzzy metric space with example. This theorem has

been published in
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Electronic J. Math. Analysis and Appl,(2)(2014),

248-253.

Theorem 3.0.42. [112] Let (X;M; �) be a complete

fuzzy metric space and A, B, S and T be a self map-

pings of X satisfying the following conditions:

i. A(X) � T (X); B(X) � S(X),

ii. M(Ax;By; kt) �M(Sx; Ty; t)�M(Ax; Sx; t)�M(Bx; Ty; t)�

M(Ax; Ty; t),

for all x; y 2 X, k 2 (0; 1) and t > 0, and

iii. S and T are continuous.

If (A; S) and (B; T ) compatible of type of (K), then A,

B, S and T have a unique common �xed point.

Proof: Since A(X) � T (X) and B(X) � S(X), so for

any x0 2 X, there exists x1 2 X such that Ax0 = Tx1

and for this x1, there exists x2 2 X such that Bx1 =

Sx2. Inductively, we de�ne a sequence fyng in X such

that y2n�1 = Ax2n�2 = Tx2n�1 and y2n = Bx2n�1 =

Sx2n , for all n = 1; 2; :::
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From (b), we get

M(y2n+1; y2n+2; kt) = M(Ax2n; Bx2n+1; kt)

� M(Sx2n; Tx2n+1; t) �M(Ax2n; Sx2n; t)

�M(Bx2n; Tx2n+1; t) �M(Ax2n; Tx2n+1; t)

= M(y2n; y2n+1; t) �M(y2n+1; y2n; t)

�M(y2n+2; y2n+1; t) �M(y2n+1; y2n+1; t)

� M(y2n; y2n+1; t) �M(y2n+1; y2n+2; t)

From lemma (3.0.31) and (3.0.33) we have

M(y2n+1; y2n+2; kt) �M(y2n; y2n+1; t) (3.1)

Similarly, we have

M(y2n+2; y2n+3; kt) �M(y2n+1; y2n+2; t) (3.2)

From (3.1) and (3.2), we have

M(yn+1; yn+2; kt) �M(yn; yn+1; t) (3.3)

From (3.3), we haveM(yn+1; yn+2; t) �M(yn; yn+1;
t
k
) �

M(yn�1; yn;
t
k2
) � ::: �M(y1; y2;

t
kn
)! 1asn!1 .

So, M(yn; yn+1; t) ! 1asn ! 1 for any t > 0. For

each � > 0 and each t > 0, we can choose n0 2 N such

thatM(yn; yn+1; t) > 1��foralln > n0. For m;n 2 N ,

we suppose m � n. Then, we have that

M(yn; ym; t) � M(yn; yn+1;
t

m� n
) �M(yn+1; yn+2;

t

m� n
) � :::

�M(ym�1; ym;
t

m� n
)

� (1� �) � (1� �) � :::(m� n)
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times. This implies

M(yn; ym; t) � (1 � �) and hence fyng is a Cauchy se-

quence in X.

Since (X;M; �) is complete, fyng converges to some

point z 2 X, and so that fAx2n�2g ; fSx2ng ; fBx2n�1g

and fTx2n�1g also converges to z. Since (A; S) and

(B; T ) are compatible of type (K), we have

AAx2n�2 ! Sz; SSx2n ! Az;BBx2n�1 ! Tz; TTx2n�1 ! Bz

(3.4)

From (b), we get

M(AAx2n�2; BBx2n�1; kt) �M(SAx2n�2; TBx2n�1; t)�

M(AAx2n�2; SAx2n�2; t) �M(BBx2n�1; TBx2n�1; t)

�M(AAx2n�2; TBx2n�1;t)

Taking limit as n!1 and using (3.4), we have

M(Sz; Tz; kt) �M(Sz; Tz; t)�M(Sz; Sz; t)�M(Tz; Tz; t)�

M(Sz; Tz; t)

(Sz; Tz; t) � 1 � 1 �M(Sz; Tz; t) �M(Sz; Tz; t).

It follows that

Sz = Tz (3.5)

Now, from (b), we get

M(Az;BBx2n�1; kt) � M(Sz; TBx2n�1; t) �M(Az; Sz; t)

�M(Bz; TBx2n�1; t) �M(Az; TBx2n�1; t)

Again, taking limit as n ! 1 and using (3.4) and
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(3.5), we have

M(Az; Tz; kt) � M(Sz; Sz; t) �M(Az; Tz; t)

�M(Tz; Tz; t) �M(Az; Tz; t)

� M(Az; Tz; t):

and hence

Az = Tz (3.6)

From (b), (3.5) and (3.6), we get

M(Az;Bz; kt) � M(Sz; Tz; t) �M(Az; Sz; t)

�M(Bz; Tz; t) �M(Az; Tz; t)

= M(Az;Az; t) �M(Az;Az; t)

�M(Bz;Az; t) �M(Az;Az; t)

� M(Az;Bz; t):

and hence

Az = Bz (3.7)

From (3.5),(3.6) and (3.7), we have

Az = Bz = Tz = Sz (3.8)

Now, we show that Bz = z. From (b), we get

M(Ax2n; Bz; kt) � M(Sx2n; T z; t) �M(Ax2n; Sx2n; t)

�M(Bz; Tz; t) �M(Ax2n; T z; t):
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And, taking limit as n!1 and using (3.5) and (3.4),

we have

M(z;Bz; kt) � M(z; Tz; t) �M(z; z; t)

�M(Bz; Tz; t) �M(z; Tz; t)

= M(z;Bz; t) � 1 �M(Az;Az; t) �M(z;Bz; t)

� M(z;Bz; t):

And hence Bz = z. Thus from (3.8), we get z = Az =

Bz = Tz = Sz and so z is a common �xed point of A,

B, S and T .

In order to prove the uniqueness of �xed point, let w be

another common �xed point of A, B, S and T . Then,

Aw = Bw = Sw = Tw, therefore, using (ii), we get

M(z; w; kt) = M(Az;Bw; kt)

� M(Sz; Tw; t) �M(Az; Sz; t)

�M(Bw; Tw; t) �M(Az; Tw; t)

� M(z; w; t):

From Lemma (3.0.33), we get z = w. This completes

the proof of theorem.

We have the following example.
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Example 3.0.43. Let X = [2; 10] with the metric

d de�ned by d(x; y) = jx � yj and de�ne M(x; y; t) =
t

t+d(x;y) for all x; y 2 X; t > 0. Clearly (X;M; �) is

a complete fuzzy metric space. De�ne A, B, S and

T : X ! X as follows: Ax = 2 if x � 3; Ax = 3

if x > 3; Bx = 2 if x � 5; Bx = 3 if x > 5 and

Sx; Tx = x for all x 2 X,

Then A, B, S and T satisfy all the conditions of the

above theorem and have a unique common �xed point

x = 2.

If A = B and T = S in above theorem, then we get

following result.

Corollary 3.0.44. Let (X;M; �) be a complete fuzzy

metric space and A and S be a self mappings of X sat-

isfying the following conditions:

(i) A(X) � S(X),

(ii)M(Ax;Ay; kt) �M(Sx; Sy; t)�M(Ax; Sx; t)�M(Ax; Sy; t)�

M(Ax; Sy; t),

for all x; y 2 X; k 2 (0; 1) and t > 0, and

(iii) S is continuous. If (A; S) compatible of type of

(K), then A and S have a unique common �xed point.

Remarks. Our result extends and generalizes the re-

sults of Cho[28], Koireng and Rohon[101] and Jha et
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al. [82]. Also, our result improves other similar results

in literature.
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Chapter 4

Common �xed point

theorems in intuitionistic

fuzzy metric space

In this chapter, we introduce the notion of compatible

of type (K) in intuitionistic fuzzy metric space and ob-

tain some common �xed point theorems in complete

intuitionistic fuzzy metric space with example. Our re-

sult in intuitionistic fuzzy metric space generalizes and

improves other similar results in literature.Also, the es-

tablished results has been published in peer reviewed

international journals.

4.0.7 Introduction

In 1986, the concept of intuitionistic fuzzy set was in-

troduced by K. Atanassov [5] as a generalization of
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fuzzy set. In 2004, the intuitionistic fuzzy metric s-

paces have been introduced by J.H. Park [147] with

the help of continuous t-norm and continuous t- conor-

m as a generalization of fuzzy metric space.

Recently, K. Jha et al. [82] introduced the concept of

compatible mappings of type (K) in metric space and

Manandhar et al. [112] extended compatible mappings

of type (K) in fuzzy metric space.

we have following basic de�nitions.

4.0.8 Basic de�nition

De�nition 4.0.45. [172] A binary operation � : [0; 1]�

[0; 1]! [0; 1] is a continuous t-norm if � is satisfying

the following conditions:

(a) � is commutative and associative;

(b) � is continuous;

(c) a �1 = a for all a 2 [0; 1];

(d) a � b � c � d whenever a � c and b � d, and

a; b; c; d 2 [0; 1].

De�nition 4.0.46. [172] A binary operation � : [0; 1]�

[0; 1]! [0; 1] is a continuous t-conorm,if it satis�es

the following conditions:

i. � is commutative and associative;

ii. � is continuous;

iii. a � 0 = a for all a 2 [0; 1];
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iv. a � b � c � d whenever a � c and b � d, for each

a; b; c; d 2 [0; 1].

De�nition 4.0.47. [4] A 5-tuple (X;M;N; �; �) is said

to be an intuitionistic fuzzy metric space (shortly

IFM-Space) if X is an arbitrary set, � is a continuous

t-norm, � is a continuous t-conorm and M, N are fuzzy

sets on X2� (0;1) satisfying the following conditions:

for all x; y; z 2 X and s; t > 0;

(IFM-1) M(x, y, t) + N (x, y, t) � 1;

(IFM-2) M(x, y, 0) = 0;

(IFM-3) M(x, y, t) = 1 if and only if x = y;

(IFM-4) M(x, y, t) = M(y, x, t);

(IFM-5) M(x, y, t)� M (y, z, s) � M(x, z, t + s);

(IFM-6) M(x, y, . ): [0;1)! [0; 1] is left continuous;

(IFM-7) limt!1 M (x, y, t) =1

(IFM-8) N(x, y, 0) = 1;

(IFM-9) N(x, y, t) = 0 if and only if x = y;

(IFM-10) N(x, y, t) = N(y, x, t);

(IFM-11) N(x, y, t)� N (y, z, s) � N (x, z, t + s) ;

(IFM-12) N(x, y, .): [0;1) ! [0; 1] is right continu-

ous;

(IFM-13) limt!1 N(x, y, t) = 0.

Then (M, N) is called an intuitionistic fuzzy metric on

X. The functions M(x, y, t) and N(x, y, t) denote the

degree of nearness and degree of non-nearness between
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x and y with respect to t, respectively.

Every fuzzy metric space (X;M; �) is an intuitionistic

fuzzy metric space if X of the form (X;M; 1�M; �; �)

such that t- norm � and t-conorm � are associated, that

is, x � y =1-((1 - x) � (1 - y)) for any x; y 2 X. But

the converse is not true [196].

Example 4.0.48. [102] Let (X, d) be a metric space.

We de�ne a� b = ab and a � b = minf1; a+ bg

for all a, b 2 [0, 1] and let Md and Nd be fuzzy sets on

X2 � (0;1) de�ned as follows:

Md(x; y; t) =
t

t+d(x;y), and Nd(x; y; t) =
d(x;y)
t+d(x;y).

Then (Md; Nd) is an intuitionistic fuzzy metric on X.

We call this intuitionistic fuzzy metric induced by a

metric d the standard intuitionistic fuzzy metric.

It is notated that the above example holds even with

the t-norm a � b =min fa; bg and the t-conorm a�b =

maxfa; bg and hence (Md; Nd) is an intuitionistic fuzzy

metric with respect to any continuous t-norm and con-

tinuous t- conorm.

De�nition 4.0.49. [29] Let (X;M; �) be a fuzzy metric

space and � > 0. A �nite sequence x = x0; x1; :::; xn = y

is called

� � chainable from x to y if M(xi; xi�1; t) > 1 � � for

all t > 0 and i = 1, 2, 3, . . ., n.

110



De�nition 4.0.50. [29] A fuzzy metric space (X, M,

*) is called � - chainable if for x; y 2 X there exists

an � -chain from x to y.

De�nition 4.0.51. [4] Let (X, M, N,� ,�) be an intu-

itionistic fuzzy metric space.

i. A sequence fxng in X is called Cauchy sequence if

for each t > 0 and p > 0,

limn!1M(xn+p; xn; t) = 1 and

limn!1N(xn+p; xn; t) = 0:

ii. A sequence fxng in X is convergent to x 2 X if

limn!1M(xn; x; t) = 1 and

limn!1N(xn; x; t) = 0 for each t > 0.

iii. An intuitionistic fuzzy metric space is said to be

complete if every Cauchy sequence is convergent.

De�nition 4.0.52. [196] Let A and B be two self map-

s on a intuitionistic fuzzy metric space (X, M,N, �,� )

then A is called B - absorbing if there exists a posi-

tive integer R > 0 such that

M (B x,BAx, t) � M (Bx;Ax; t
R
) and

N(Bx,BAx, t) � N (Bx;Ax; t
R
) for all x 2 X:

Similarly B is called A- absorbing if there exists a pos-

itive integer R > 0 such that M(Ax, ABx, t) � M

(Ax;Bx; t
R
) and

N(Ax,ABx, t) � N (Ax;Bx; t
R
) for all x 2 X

Lemma 4.0.53. [178] Let (X, M, N, � ,�) be an
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intuitionistic fuzzy metric space. If there exists a con-

stant k 2 (0, 1) such that,

M(yn+2; yn+1; kt) �M(yn+1; yn; t); and

N(yn+2; yn+1; kt) � N(yn+1; yn; t) for every t > 0 and

n = 1, 2,. . . then fyng is a Cauchy sequence in X .

Lemma 4.0.54. [177] Let (X, M, *) be a fuzzy met-

ric space with the condition: (FM6) limn!1M(x; y; t) =

1 for all x; y 2 X. If there exists k 2 (0; 1) such that

M(x; y; kt) �M(x; y; t) then x = y.

Proposition 4.0.55. If A and S be compatible map-

pings of type (K) on a intuitionistic fuzzy metric space

(X, M, N, � ,�) and if one of function is continuous.

Then, we have

i. A(x) = S(x) where limn!1Axn = x; limn!1 = x,

for some point x 2 X and sequence fxng,

ii. If these exist u 2 X such that Au = Su = x then

ASu = SAu.

Proof : Let fxng be a sequence of X such that

limn!1Axn = limn!1Sxn = x

for some x in X. Then, by the de�nition of compatible

of type (K),

we have limn!1AAxn = S(x).

If A is a continuous mapping, then we get

limn!1AAxn = Alimn!1Axn = A(x).

112



This implies A(x) = S(x). Similarly, if S is continuous

then, we get the same result. This is the proof of part

(a).

Again, suppose Au = Su = x for some u 2 X. Then,

ASu =A(Su) = Ax and SAu = S(Au) = Sx. From (a),

we have Ax = Sx. Hence, we get ASu = SAu.

This is the proof of part (b).

4.0.9 Common Fixed Point Theorems for pair

of mappings in intuitionistic fuzzy metric spaces

In 2006, S.H. Cho and Ji Hong Jung [29] established

the following theorems for pair of compatible mappings

in � chanable fuzzy metric space.

Theorem 4.0.56. [29] Let (X,M,*) be a � - chanable

fuzzy metric space and A, B, S and T be self maps of

X satisfying the following condition:

i. A(X) � T (X) and B(X) � S(X),

ii. the pairs (A, S) and (B, T) weakly compatible,

iii. If A and S are continuous,

iv. there exist q 2 (0; 1) such that

M(Ax, By, t) � M(Sx, Ty, t) * M(Ax, Sx, t)

*M(By, Ty, t) * M(Ax, Ty, t)

for every x, y in X and t > 0.

Then A, B, S and T have a unique common �xed point

113



in X.

In 2010, S. Manro et al.[114] established the following

theorem for pair of mapping in � - chanable intuition-

istic fuzzy metric spaces.

Theorem 4.0.57. [114] Let A, B, S and T be self

maps of a complete � chanable intuitionistic fuzzy met-

ric spaces (X, M, N, � ,�) with continuous t-norm *

and continuous t-conorm � de�ned by a � a � a and

(1 � a) � (1 � a) � (1 � a) for all a 2 [0; 1] satisfying

the following condition:

i. A(X) � T (X) and B(X) � S(X),

ii. If A and S are continuous.

iii. the pairs (A, S) and (B, T) are weakly compatible,

iv. there exist k 2 (0; 1) such that

M(Ax, By, kt) � M(Sx, Ty, t) * M(Ax, Sx, t)

*M(By, Ty, t) * M(Ax, Ty, t) and

N(Ax, By, t) � N(Sx, Ty, t) � N (Ax, Sx, t)

�N(By, Ty, t) � N(Ax, Ty, t),

for every x, y in X and t > 0.

Then A, B, S and T have a unique common �xed point

in X.

In 2012, M. Verma and R.S. Chandel [196] established

following theorem for absorbing mappings in complete

Intuitionistic fuzzy metric space.
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Theorem 4.0.58. Let A be S- absorbing and B be

T-absorbing self mapping on a complete Intuitionistic

fuzzy metric space

(X, M, N,* , �) with contineous t- norm de�ned by a*b

= minfa; bg where a; b 2 [0; 1] satisfying the conditions:

i. A(X) � TX); B(X) � S(X).

ii. there exists k 2 (0; 1) such that for every x; y 2 X

and t > 0,

M(Ax;By; kt) � min[M(Sx; Ty; t);M(Ax; Sx; t);M(By; Ty; t);

M(Ax; Ty; t);M(Ax;By; t);M(Sx;By; t)]; and

N(Ax;By; kt) � max[N(Sx; Ty; t); N(Ax; Sx; t); N(By; Ty; t);

N(Ax; Ty; t); N(Ax;By; t); N(Sx;By; t)]:

iii. for all x; y 2 X, limt ! 1 M(x, y, t)=1, and

limt !1 N(x,y,t)=1.

If the pair of mappings (A, S) is reciprocal continuous

mappings, then A, B, S and T have a unique common

�xed point in X.

We have introduce compatible mappings of type (K) in

Intuitionistic fuzzy metric space and proved the follow-

ing common �xed point theorem with example. This

theorem has been published in

Bulletin of Society for Mathematical Services
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and Standards Vol. 3 No. 2 (2014), pp. 81-87.

Theorem 4.0.59. [113] If A, B, S and T are self map-

ping on a complete Intuitionistic fuzzy metric space (X,

M, N,* , �), satisfying the conditions:

i. A(X) � TX); B(X) � S(X).

ii. there exists k 2 (0; 1) such that for every x; y 2 X

and t > 0,

M(Ax;By; kt) � min[M(Sx; Ty; t);M(Ax; Sx; t);M(By; Ty; t);

M(Ax; Ty; t);M(Ax;By; t);M(Sx;By; t)]; and

N(Ax;By; kt) � max[N(Sx; Ty; t); N(Ax; Sx; t); N(By; Ty; t);

N(Ax; Ty; t); N(Ax;By; t); N(Sx;By; t)]:

iii. B and T are weakly compatible mappings.

If the pair of mappings (A, S) is compatible of type (K)

and one of the mapping is continuous then A, B, S and

T have a unique common �xed point in X.

Proof: let x0 be any arbitrary point in X, Construct a

sequence fyng in X such that y2n�1 = Tx2n�1 = Ax2n�2

and y2n = Sx2n = Bx2n+1, for n = 1, 2, 3 . . . This can

be done by (1). By using contractive condition (2), we
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obtain

M(y2n+1; y2n+2; kt) = M(Ax2n; Bx2n+1; kt)

� min[M(Sx2n; Tx2n+1; t);M(Ax2n; Sx2n; t);

M(Bx2n+1; Tx2n+1; t);M(Ax2n; Tx2n+1; t);

M(Ax2n; Bx2n+1; t);M(Sx2n; Bx2n+1; t)]

= min[M(y2n; y2n+1; t);M(y2n+1; y2n; t);

M(y2n; y2n+1; t);M(y2n+1; y2n+1; t);

M(y2n+1; y2n; t);M(y2n; y2n; t)]

= min[M(y2n; y2n+1; t);M(y2n+1; y2n; t);

M(y2n; y2n+1; t); 1;M(y2n+1; y2n; t); 1]

= M(y2n; y2n+1; t); That is

M(y2n+1; y2n+2; kt) � M(y2n; y2n+1; t);

Similarly, we have M(y2n; y2n+1; kt) �M(y2n�1; y2n; t);

So, we get

M(yn+2; yn+1; kt) �M(yn+1; yn; t); (4.1)
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Also, we get

N(y2n+1; y2n+2; kt) = N(Ax2n; Bx2n+1; kt)

� max[N(Sx2n; Tx2n+1; t); N(Ax2n; Sx2n; t);

N(Bx2n+1; Tx2n+1; t); N(Ax2n; Tx2n+1; t);

N(Ax2n; Bx2n+1; t); N(Sx2n; Bx2n+1; t)]

� max[N(y2n; y2n+1; t); N(y2n+1; y2n; t);

N(y2n; y2n+1; t); N(y2n+1; y2n+1; t);

N(y2n+1; y2n; t); N(y2n; y2n; t)]

� max[N(y2n; y2n+1; t); N(y2n+1; y2n; t);

N(y2n; y2n+1; t); 0; N(y2n+1; y2n; t); 0]

= N(y2n; y2n+1; t);

so; wehave

N(y2n+1; y2n+2; kt) � N(y2n; y2n+1; t):

Similarly, we have N(y2n; y2n+1; kt) � (y2n�1; y2n; t):

So, we get

N(yn+2; yn+1; kt) � N(yn+1; yn; t): (4.2)

From (4.1), (4.2) and using Lemma (4.0.53), we get

that fyng is a Cauchy sequence in X.

But (X, M, N, * , � ) is complete so there exists a point

z in X such that fyng ! z.

Also, we have fAx2n�2g ; fTx2n�1g ; fSx2ng ; fBx2n+1g !

z.

Since, (A, S) is compatible of type (K) and one of the
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mapping is continuous. So, using proposition (4.0.55),

we get

Az = Sz: (4.3)

Since A(X) � T (X) then there exists a point u in X

such that Az = Tu. Now, by contractive condition (2),

we get

M(Az;Bu; kt) � min[M(Sz; Tu; t);M(Az; Sz; t);M(Bu; Tu; t);

M(Az; Tu; t);M(Az;Bu; t);M(Sz;Bu; t)]

= min[M(Az;Az; t);M(Az;Az; t);M(Bu;Az; t);

M(Az;Az; t);M(Az;Au; t);M(Az;Bu; t)]

So, we have

M(Az;Bu; kt) �M(Az;Bu; t): (4.4)

Also, we have

N(Az;Bu; kt) � max[N(Sz; Tu; t); N(Az; Sz; t); N(Bu; Tu; t);

N(Az; Tu; t); N(Az;Bu; t); N(Sz;Bu; t]

= max[N(Az;Az; t); N(Az;Az; t); N(Bu;Az; t);

N(Az;Az; t); N(Az;Au; t); N(Az;Bu; t)]

So, we have

N(Az;Bu; kt) � N(Az;Bu; t) (4.5)

Now, from (4.4), (4.5) and Lemma(4.0.53), we get Az

= Bu. Thus, we get

Az = Sz = Bu = Tu: (4.6)
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To prove Az = z, we have

M(Az;Bx2n+1; kt) � min[M(Sz; Tx2n+1; t);M(Az; Sz; t);

M(Bx2n+1; Tx2n+1; t);M(Az; Tx2n+1; t);

M(Az;Bx2n+1; t);M(Sz;Bx2n+1; t)]:

Taking limit as n!1, we get

M(Az; z; kt) � min[M(Sz; z; t);M(Az; Sz; t);M(z; z; t);

M(Az; z; t);M(Az; z; t);M(Sz; z; t)]

= min[M(Az; z; t); 1; 1;M(Az; z; t);

M(Az; z; t);M(Az; z; t)];

that is,

M(Az; z; kt) �M(Az; z; t): (4.7)

Also, we have

N(Az;Bx2n+1; kt) � max[N(Sz; Tx2n+1; t); N(Az; Sz; t);

N(Bx2n+1; Tx2n+1; t);

N(Az; Tx2n+1; t); N(Az;Bx2n+1; t);

N(Sz;Bx2n+1; t)]

Taking limit as n!1, we get

N(Az; z; kt) � max[N(Sz; z; t); N(Az; Sz; t); N(z; z; t);

N(Az; z; t); N(Az; z; t); N(Sz; z; t)]

= max[N(Az; z; t); 0; 0; N(Az; z; t);

N(Az; z; t); N(Az; z; t)]
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that is,

N(Az; z; kt) � N(Az; z; t): (4.8)

Now, from (4.7), (4.7) and Lemma (4.0.53), we get, Az

= z.

Hence, we have

Az = Sz = z: (4.9)

So, z is a common �xed point of A and S. Also, we get

Bu = Tu = z: (4.10)

Since B and T are weakly compatible, we have TBu

=BTu. So, from (4.6), we get

Tz = Bz: (4.11)

Again, we get

M(Ax2n�2; Bz; kt) � min[M(Sx2n�2; T z; t);M(Ax2n�2; Sx2n�2; t);

M(Bz; Tz; t);M(Ax2n�2; T z; t)

M(Ax2n�2; Bz; t);M(Sx2n�2; Bz; t)]:

Taking limit as n!1, we have

M(z;Bz; kt) � min[M(z; Tz; t);M(z; z; t);M(Bz; Tz; t);

M(z; Tz; t)M(z;Bz; t);M(z;Bz; t)]

= min[M(z;Bz; t); 1; 1;M(z;Bz; t);

M(z;Bz; t);M(z;Bz; t)];
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that is,

M(z;Bz; kt) �M(z;Bz; t): (4.12)

Also, we have

N(Ax2n�2; Bz; kt) � max[N(Sx2n�2; T z; t); N(Ax2n�2; Sx2n�2; t);

N(Bz; Tz; t); N(Ax2n�2; T z; t);

N(Ax2n�2; Bz; t); N(Sx2n�2; Bz; t)]

Taking limit as n!1, we get

N(z;Bz; kt) � max[N(z; Tz; t); N(z; z; t); N(Bz; Tz; t);

N(z; Tz; t); N(z;Bz; t); N(z;Bz; t)]

= max[N(z;Bz; t); 1; 1;M(z;Bz; t);

N(z;Bz; t); N(z;Bz; t)];

that is,

N(z;Bz; kt) � N(z;Bz; t): (4.13)

Now, from (4.12), (4.13) and Lemma (4.0.53), we get

Bz = z. Therefore, we have

Tz = Bz = z: (4.14)

Hence, we get z is a common �xed point of B and T.

From (4.9) and (4.14), we get Az = Sz = Bz =Tz = z.

So z is a common �xed point of A, B, S, and T.

For uniqueness, Let w be the another common �xed(w 6=
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z) point then Aw= Bw = Sw = Pw = w.

Using contractive condition (2), we get

M(Az;Bw; kt) � min[M(Sz; Tw; t);M(Az; Sz; t);M(Bw; Tw; t);

M(Az; Tw; t);M(Az;Bw; t);M(Sz;Bw; t)]

= min:[M(Az;Bw; t); 1; 1;M(Az;Aw; t);

M(Az;Bw; t);M(Az;Bw; t)];

that is,

M(Az;Bw; kt) �M(Az;Bw; t): (4.15)

Also, we have

N(Az;Bw; kt) � max:[N(Sz; Tw; t); N(Az; Sz; t); N(Bw; Tw; t);

N(Az; Tw; t); N(Az;Bw; t); N(Sz;Bw; t)]

= max:[N(Az;Bw; t); 0; 0; N(Az;Aw; t);

N(Az;Bw; t); N(Az;Bw; t)];

that is,

N(Az;Bw; kt) � (Az;Bw; t): (4.16)

From (4.15), (4.15) and Lemma (4.0.53), we get Az =

Bw, this implies Az = Aw and hence z is a unique �xed

point.

We have the following example.

Example 4.0.60. Let (X, M, N, * ,�) be a intu-

itionistic fuzzy metric, where X = [2, 20]
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M(x, y, t) = t
t+d(x;y), N(x, y , t) = d(x;y)

t+d(x;y) and d is the

Euclidean metric on X.

De�ne A, B, S and T : X ! X as follows;

Ax = 2 for all x;

Bx = 2 if x < 4 and � 5 Bx = 3 + x if 4 � x < 5;

Sx = if x �8, Sx = 8 if x > 8;

Tx = 2 if x < 4 or � 5, Tx = 5 + x if 4 � x < 5.

Then A, B, S and T satisfy all the conditions of the

above theorem and have a unique common �xed point x

= 2.

Remarks: Our result (4.0.59) is also true for the pair

of mappings (A, S) is compatible of type (E) in place

of compatible mapping of type (K). Our result extends

and generalizes the results of M. Verma and R.S. Chan-

del [196],K. Jha et al.[82], K.B. Manandhar et al.[111]

and improve the result of Manandhar et al.[112]. Also,

our result improves other similar results in literature.

Now, we prove a common �xed point theorem for com-

patible mappings of type (K) in complete Intuitionistic

Fuzzy Metric space.This theorem has been accepted for

publication in

Journal of Mathematical System and Sciences.(2015),

Theorem 4.0.61. Let A, B, S and T be self maps of a
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complete intuitionistic fuzzy metric spaces (X, M, N, �

,�) with continuous t-norm * and continuous t-conorm

� de�ned by a � a � a and a � a � a for all a 2 [0; 1]

satisfying the following condition:

i. A(X) � T (X) and B(X) � S(X),

ii. the pairs (A, S) and (B, T) are compatible map-

pings of type (K),

iii. If A, S and one of the mapping of pair (B, T)is

continuous.

iv. there exist k 2 (0; 1) such that

M(Ax, By, kt) � M(Sx, Ty, t) * M(Ax, Sx, t)

*M(By, Ty, t) * M(Ax, Ty, t) and

N(Ax, By, t) � N(Sx, Ty, t) � N (Ax, Sx, t)

�N(By, Ty, t) � N(Ax, Ty, t),

for every x, y in X and t > 0.

Then A, B, S and T have a unique common �xed point

in X.

Proof: As A(X) � T(X), for any x0 2 X, there ex-

ists a point x1 2 X such that Ax0 = Tx1. Since

B(X) � S(X), for this point x1, we can choose a point

x2 2 X such that Bx1 = Sx2. Inductively, we can �nd

a sequence fyng in X as follows:

y2n�1 = Tx2n�1 = Ax2n�2 and y2n = Sx2n = Bx2n�1 for

n = 1, 2,...This can be done by (1). By using contrac-
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tive condition (4), we obtain

M(y2n+1; y2n+2; kt) = M(Ax2n; Bx2n+1; kt)

� M(Sx2n; Tx2n+1; t) �M(Ax2n; Sx2n; t) �

M(Bx2n+1; Tx2n+1; t) �M(Ax2n; Tx2n+1; t)

�M(Ax2n; Bx2n+1; t) �M(Sx2n; Bx2n+1; t)

= M(y2n; y2n+1; t) �M(y2n+1; y2n; t) �

M(y2n; y2n+1; t) �M(y2n+1; y2n+1; t) �

M(y2n+1; y2n; t) �M(y2n; y2n; t)

= M(y2n; y2n+1; t) �M(y2n+1; y2n; t) �

M(y2n; y2n+1; t) � 1 �M(y2n+1; y2n; t) � 1

= M(y2n; y2n+1; t);

That is0

M(y2n+1; y2n+2; kt) � M(y2n; y2n+1; t):

Similarly, we haveM(y2n; y2n+1; kt) �M(y2n�1; y2n; t):;

So, we get

M(yn+2; yn+1; kt) �M(yn+1; yn; t); (4.17)
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Also, we get

N(y2n+1; y2n+2; kt) = N(Ax2n; Bx2n+1; kt)

� N(Sx2n; Tx2n+1; t) �N(Ax2n; Sx2n; t) �

N(Bx2n+1x2n+1; t)(Ax2n; Tx2n+1; t) �

N(Ax2n; Bx2n+1; t) �N(Sx2n; Bx2n+1; t)

� N(y2n; y2n+1; t) �N(y2n+1; y2n; t)

�N(y2n; y2n+1; t)(y2n+1; y2n+1; t) �

N(y2n+1; y2n; t) �N(y2n; y2n; t)

� N(y2n; y2n+1; t) �N(y2n+1; y2n; t) �

N(y2n; y2n+1; t) � 0 �N(y2n+1; y2n; t) � 0

= N(y2n; y2n+1; t);

so we have;

N(y2n+1; y2n+2; kt) � N(y2n; y2n+1; t):

Similarly, we have N(y2n; y2n+1; kt) � (y2n�1; y2n; t);

So, we get

N(yn+2; yn+1; kt) � N(yn+1; yn; t): (4.18)

From (4.17), (4.18) and Lemma (4.0.53), we get that

the fyng is a Cauchy sequence in X.

Since X is complete, therefore sequence fyng in X con-

verges to z for some z in X and so the sequences fTx2n�1g,

fAx2n�2g, fSx2ng and fBx2n�1g also converges to z. S-

ince pair (A, S) is compatible mappings of type (K), we
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get

Az = Sz: (4.19)

From (2), we haveASx2n ! Az and from (4.19)ASx2n !

Sz. Also, from continuity of S, we have, SSx2n ! Sz.

From (4), we get

M(ASx2n; Bx2n�1; kt) � M(SSx2n; Tx2n�1; t) �M(ASx2n; SSx2n; t)

�M(Bx2n�1; Tx2n�1; t) �M(ASx2n; Tx2n�1; t)and

N(ASx2n; Bx2n�1; kt) � N(SSx2n; Tx2n�1; t) �N(ASx2n; SSx2n; t)

�N(Bx2n�1; Tx2n�1; t) �N(ASx2n; Tx2n�1; t)

Proceeding limit as n!1, we have

M(Sz, z, kt) � M(Sz, z, t) * M(Sz, Sz, t) * M(z, z, t)

* M(Sz, z, t) and

N(Sz; z; kt)� N(Sz, z, t) �N(Sz; Sz; t) � N(z; z; t) �

N(Sz; z; t). From Lemma (4.0.54), we get Sz = z, and

hence from (4.19)

Az = Sz = z: (4.20)

Since (B, T) is compatible mappings of type (K)and

one of the mapping is continuous,we get,

Tz = Bz: (4.21)
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From (4),

M(Ax2n; Bz; kt) � M(Sx2n; T z; t) �M(Ax2n; Sx2n; t)

�M(Bz; Tz; t) �M(Ax2n; T z; t) and

N(Ax2n; Bz; kt) � N(Sx2n; T z; t) �N(Ax2n; Sx2n; t) �

N(Bz; Tz; t) �N(Ax2n; T z; t);

Letting n!1, we have

M(z;Bz; kt) � M(z; Tz; t) �M(z; z; t) �M(Bz; Tz; t) �M(z; Tz; t)

= M(z;Bz; t) �M(z; z; t) �M(Bz;Bz; t) �M(z;Bz; t)

� M(z;Bz; t)and

N(z;Bv; kt) � N(z; Tz; t) �N(z; z; t) �N(Bz; Tz; t) �N(z; Tz; t)

= N(z;Bz; t) �N(z; z; t) �N(Bz;Bz; t) �N(z;Bz; t)

� N(z;Bz; t);

which implies that Bz = z .From (4.19), (4.20), (4.21)

therefore, Az = Sz = Bz = Tz = z. Hence A, B, S and

T have common �xed point z in X.

For uniqueness, let w be another common �xed point
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of A, B, S and T.Then

M(z; w; kt) = M(Az;Bw; qt)

� M(Sz; Tw; t) �M(Az; Sz; t)

�M(Bw; Tw; t) �M(Az; Tw; t)

� M(z; w; t) and

N(z; w; kt) = N(Az;Bw; qt)

� N(Sz; Tw; t) �N(Az; Sz; t) �

N(Bw; Tw; t) �N(Az; Tw; t)

� N(z; w; t):

From Lemma (4.0.54), we conclude that z = w. Hence

A, B,S and T have unique common �xed point z in X.

We have the following example.

Example 4.0.62. Let (X, M, N, * ,�) be a intu-

itionistic fuzzy metric, where X = [2, 20]

M(x, y, t) = t
t+d(x;y), N(x, y , t) = d(x;y)

t+d(x;y) and d is the

Euclidean metric on X.

De�ne A, B, S and T : X ! X as follows;

Ax = 2 for all x;

Bx = 2 if x < 4 and � 5 Bx = 3 + x if 4 � x < 5;

Sx = if x �8, Sx = 8 if x > 8;

Tx = 2 if x < 4 or � 5, Tx = 5 + x if 4 � x < 5.

Then A, B, S and T satisfy all the conditions of the

above theorem and have a unique common �xed point x

= 2.
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Corollary 4.0.63. Let A, B, S and T be self maps

of a complete intuitionistic fuzzy metric spaces (X, M,

N, � ,�) with continuous t-norm * and continuous t-

conorm � de�ned by a � a � a and a � a � a for all

a 2 [0; 1] satisfying the following condition:

i. A(X) � T (X) and B(X) � S(X),

ii. the pairs (A, S) and (B, T) are compatible map-

pings of type (K),

iii. If A, S and one of the mapping of pair (B, T)is

continuous.

iv. there exist k 2 (0; 1) such that

M(Ax, By, kt) � M(Sx, Ty, t) * M(Ax, Sx, t)

*M(Sx, By, 2t)*M(By, Ty, t) * M(Ax, Ty, t) and

N(Ax, By, t) � N(Sx, Ty, t) � N (Ax, Sx, t)�

N (Sx, By, 2t)�N(By, Ty, t) � N(Ax, Ty, t),

for every x, y in X and t > 0.

Then A, B, S and T have a unique common �xed point

in X.

Corollary 4.0.64. Let A, B, S and T be self maps

of a complete intuitionistic fuzzy metric spaces (X, M,

N, � ,�) with continuous t-norm * and continuous t-

conorm � de�ned by a � a � a and a � a � a for all

a 2 [0; 1] satisfying the following condition:

i. A(X) � T (X) and B(X) � S(X),
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ii. the pairs (A, S) and (B, T) are compatible map-

pings of type (K),

iii. If A, S and one of the mapping of pair (B, T)is

continuous.

iv. there exist k 2 (0; 1) such that

M(Ax, By, kt) � M(Sx, Ty, t) and

N(Ax, By, t) � N(Sx, Ty, t)

for every x, y in X and t > 0.

Then A, B, S and T have a unique common �xed point

in X.

Remarks: Our result (4.0.61) is also true fore the pair

(A,S) and (B,T) are compatible mappings of type (E)

in place of compatible mappings of type (K). Our result

(4.0.61) extends and generalizes the results of S. Manro

et al. [114], C. Alaca et al. [4], K.B. Manandhar et. al

[113, 112]and similar other results of �xed point in the

literature.
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Conclusion

Fixed point theory is an important part of non- lin-

ear functional analysis and is one of the more dynamic

areas of research since last sixty years with wide ap-

plications to other disciplines. Theorems concerning

the existence properties of �xed point are �xed point

theorems. Also, it provide a powerful tool when it is

applied to concrete problem in mathematics or applied

mathematics to established the existence of solution of

given problems or solution with particular properties.

The fuzzy metric space is one of the important exten-

sion of metric space. On dealing with two or more self

mappings de�ned on metric and fuzzy metric space for

the establishment of common �xed point, we need to

choose suitable contractive condition in terms of com-

patibility.Establishing common �xed point results un-

der certain contractive condition has become an inter-

esting and challenging task and it continues to be an

active and very wide open area of research activities.

Among di�erent type of compatible mappings one of

the latest introduced compatible mapping is compat-

ible mapping of type (K). Therefore, some common
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�xed point theorems have been established by using

compatible mappings of type (K) in metric, fuzzy met-

ric and intuitionistic fuzzy metric spaces with example

and other corollaries. Our results generalizes and im-

proves similar existing �xed point results.

Research Scope

The future research scope of �xed point theorems in

various generalized fuzzy metric spaces is as follows:

i. To study generalized forms of fuzzy metric spaces

and to extend �xed point results under weaker con-

tractive de�nitions like compatible, semi-compatible,

weakly compatible, occasionally weakly compatible

and non compatible mappings.

ii. To establish common �xed point theorems for three

pairs of mappings and even for sequence of map-

pings.

iii. To Study the interrelationship between various type

of contractive mappings in generalized forms of fuzzy

metric space.

iv. To obtain common �xed point theorems without

completeness of the space and continuity or under

reciprocal continuity.

v. To �nd applications of �xed point results for pair

of self mappings in di�erent �elds.
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