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Abstract

We present a numerical scheme to simulate a moving rigid body with arbitrary shape
suspended in a rarefied gas micro flows, in view of applications to complex com-
putations of moving structures in micro or vacuum systems. The rarefied gas is
simulated by solving the Boltzmann equation using a DSMC particle method. The
motion of the rigid body is governed by the Newton-Euler equations, where the force
and the torque on the rigid body is computed from the momentum transfer of the gas
molecules colliding with the body. The resulting motion of the rigid body affects in
turn again the gas flow in the surroundings. This means that a two-way coupling
has been modeled. We validate the scheme by performing various numerical ex-
periments in 1-, 2- and 3-dimensional computational domains. We have presented
1-dimensional actuator problem, 2-dimensional cavity driven flow problem, Brow-
nian diffusion of a spherical particle both with translational and rotational motions,
and finally thermophoresis on a spherical particles. We compare the numerical re-
sults obtained from the numerical simulations with the existing theories in each test
examples.





Zusammenfassung

Wir stellen eine numerisches Schema vor, welches zur Simulation eines bewegten
Teilchens von beliebiger Form in einem Mikro-Fluss eines verdünnten Gases genutzt
werden kann, was in komplexen Berechnung von bewegten Strukturen in Mikro-
oder Vakuumsystemen Anwendung findet. Das verdünnte Gas wird durch die Lösung
der Boltzmann Gleichung mittels einer DSMC Partikelmethode simuliert. Die Be-
wegung des starren Teilchens ist durch die Newton-Euler-Gleichungen dominiert,
wobei Kraft und Drehmoment auf dem starren Körper durch den Impulstrans-
fer der auf den Körper kollidierenden Gas-Teilchen berechnet werden. Die resul-
tierende Bewegung des starren Körpers beeinflusst andererseits den Gasfluss in
seinem Umfeld. Das bedeutet, dass eine beiderseitige Kopllung modelliert wurde.
Das Schema wurde durch zahlreiche numerische Experiment in ein-, zwei und drei-
dimensionalen Gebieten validiert. Wir stellen das 1-dimensionale Aktuator Prob-
lem, das 2-dimensionale Hohlraumströmungsproblem, Brownsche Diffusion von
kugelförmigen Partikeln mit translativen und Rotationsbewegungen soie die Ther-
mophorese auf sphärischen Partikeln vor. Wir vergleichen dabei numerische Ergeb-
nisse von Simulationen mit den existierenden Theorien für jedes Fallbeispiel.
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Chapter 1
Introduction

1.1 Motivation

Past few decades science and engineering are increasingly operating at micro- and
nano-scales, application to microelectromechanical systems (MEMS), Lab-on-a-
Chip (LOC), micro system technologies (MST) etc [13, 73, 78]. Many important
physical and chemical processes occur across this range of time and length scales,
for example: nucleation and phase separation; combustion and ignition; fluid insta-
bilities; and surface science, such as catalytic processes [13]. A wide varieties of
microscale devices like sensors, actuators and valves are now extensively used in
our everyday life. Some MEMS devices have also been designed in the field of fluid
application such as micropumps, microvalves, and microturbines [73]. All devices
that operate at molecular scales, from MEMS to natural biomolecules, function in
chaotic conditions due to the thermal fluctuations. It is well-known that the hydro-
dynamic fluctuations play an important role in the Brownian motion of suspended
microscopic objects but other examples include: the breakup of droplets in jets;
Brownian molecular motors; Rayleigh-Bernard convection; Rayleigh-Taylor mix-
ing; and combustion and explosive detonation. Fluctuations also alter pattern forma-
tions in reaction-diffusion systems [13]. On the other hand, nanoparticles play a vital
role in many industrial processes and natural phenomenon in wide fields including
chemical engineering, chemistry, physics, public health and biology. Nanoparticle
technology is expected to have major impacts in medicine, catalysis, electronics
and life science. Furthermore, science and engineering of nanoparticles is central to
the environment (e.g. air pollution, climate change, and green house effect), energy
utilization (e.g. fossil fuel combustion, and fly ash formation), and food engineer-
ing (e.g. flavor retention). Nanoparticles are suspended in fluids during production,
handling, processing, and by unintentional and/or undesired release to the environ-
ment. In many cases the suspending fluid is a gas, as in the case of large scale
commercial production (million tons of nanoparticles per year for fillers in rubber,
opacifiers in paints etc.), air pollution (e.g. diesel emission and coal combustion),
clean room applications (semiconductor industry) and many more. A key concept
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2 1 Introduction

of the nanoparticle technologies with gases as the suspending fluids is the transport
of nanoparticles and their deposition [59].

These all sets of industrial and scientific research problems for the particles
suspended in the fluid can be categorized as the fluid particle interaction or mov-
ing boundary in the fluid or two phase flow of the solid and the fluid. A num-
ber of research has been done in past years theoretically and numerically to un-
derstand the flow behavior and the particles motion in the fluid, see for example
[10, 26, 41, 50, 69]. Basically two kinds of fluids, either in the continuum or in the
free molecular (rarefied) regime, are in the consideration for the motion of the solid
particles. The Knudsen number, the ratio between the mean free path and the typi-
cal length, is a parameter that represents the degree of rarefaction fluid. Gas flows
in the micro-scale devices or in the vacuum equipments are typical examples of the
free molecular gas flows. In both cases, the Knudsen number is not negligible, be-
cause the typical length is small in the former case and the mean free path is large
in the latter case, otherwise the fluid is said to be in the continuum regime. The fluid
in the continuum regime is modeled by the Navier-Stokes equations which solves
the fluid flow for the macroscopic field variables like density, velocity, pressure,
and temperature, and the fluid in the rarefied regime is modeled by the Boltzmann
equation which describes the behavior of the velocity distribution function of the
gas molecules. The velocity distribution function contains the mesoscopic (a scale
between micro and macro) information of the gas. The macroscopic quantities such
as density, flow velocity, pressure and temperature can be expressed by the suitable
moments of the distribution function. The solid particle that interacts with the sur-
rounding fluid is described by usual equations of motion given by the Newton-Euler
equations.

Numerical simulation of fluid-solid two-phase flow system can be classified into
different categories. In the continuum fluid assumption there are number of numer-
ical schemes for the flow of fluid with suspended solid particles. The fluid and the
solid particles can be modeled as multiphase continuum flow or continuum approach
for the fluid phase and a Lagrangian approach for the solid particles [69]. The most
usual approach is to use the continuum-continuum theory that views the solid and
the fluid as inter-penetrating mixture, each being governed by conservation laws,
either postulated or derived by averaging. This Eulerian continuum approach results
in the field equations for the flow properties for all phases in the system. It also leads
to unknown terms representing the interaction between the phases. Once the inter-
action is modeled to close the system description, the Eulerian continuum approach
is most efficient and has been widely used in multiphase flow simulations [42, 99].

Lagrangian numerical simulation (LNS) is another approach in multiphase flow
where fluid satisfies the continuum equations that are solved on fixed field in the
usual Eulerian way and the particle is described by the Newton’s equation of motion
with the knowledge of empirical forms of surrounding hydrodynamic forces. When
the particle concentration is low, model with one way coupling is often used where
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the particle motion does not influence the fluid flow. In the models with two-way
coupling, a momentum exchange term could be introduced into the fluid equations
to take the effect of the particle motion on the fluid flow into account [42].

The third type of approach which simulates the motion of both the fluid and the
solid particles is termed as direct numerical simulation (DNS), where hydrodynamic
force acting on the particle is directly computed from the fluid flow, and the motion
of the fluid flow and the solid particles are fully coupled. It is possible to simplify
the flow description considerably by ignoring the viscosity completely (inviscid po-
tential flow) or by ignoring the fluid inertia completely (Stokes flow), see [42] for
more references.

The flow simulation for the fluid-solid system at finite Reynolds numbers, a num-
ber of methods have been developed in the last decades. The arbitrary Lagrangian-
Eulerian (ALE) particle method that uses a technique based on a combined formu-
lation of the fluid and the solid particle momentum equations, together with an arbi-
trary Lagrangian-Euler (ALE) moving, unstructured, finite-element mesh technique
to deal with the movement of particles [41, 42, 43]. This method has been used to
solve particle motions in both Newtonian and viscoelastic fluids under two and three
dimensional flow geometries. It also handles the particles of different sizes, shapes
and materials.

Second method for solving problems with moving boundaries and interfaces uses
space-time finite element methods. In this approach, along with the spatial coordi-
nates, the temporal coordinate is also discretized by using finite-element methods.
The deformation of the spatial domain with time is reflected simply in the deforma-
tion of the mesh in the temporal coordinate [40, 45, 46, 90]. Using this technique
parallel 3D simulations have been performed for sedimentation of large number of
spherical particles in a Newtonian fluid by the authors [46, 47].

The distributed Lagrange multiplier (DLM) particle method is another type of
numerical technique to simulate the fluid-solid systems to extend a problem on a
time-dependent geometrically complex domain to a stationary larger, but simpler
domain (fictitious domain). On this fictitious domain, the constraints of the rigid-
body motion of the particles are enforced using a distributed Lagrange multiplier,
which represents the additional body force needed to maintain the rigid-body mo-
tion inside the particle, much like the pressure in incompressible fluid flows is used
to maintain the constraint of incompressibility [32, 33, 42, 81]

All the methods mentioned above are based on the finite-element or finite differ-
ence methods. An approach, called the lattice Boltzmann method (LBM), has been
developed into an alternative and promising numerical scheme for simulating the
fluid flows. Unlike the conventional numerical schemes based on discretizations of
macroscopic continuum equations, LBM is based on the microscopic models and
the mesoscopic kinetic equations. The fundamental idea of the LBM is to construct
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simplified kinetic models that incorporate the essential physics of the microscopic
or mesoscopic processes so that the macroscopic-averaged properties obey the de-
sired macroscopic equations; see the review by [22]. The LBM has been adapted to
simulate the motion of solid particles in a Newtonian fluid. Most of the work in this
area can be found in the articles by [2, 3, 8, 51, 52, 72]. Their schemes are based
on a fully explicit scheme, where the hydrodynamic forces and moments acting on
solid particles are first calculated from lattice Boltzmann simulation, and the mo-
tion of the solid particles is then determined from these forces and moments using
Newton’s second law. The LBM simulations can be easily performed on parallel
computers. The computational cost for simulating particle motion scales linearly
with the number of particles.

All the methods mentioned above are to simulate the fluid-solid system where
fluid is always modeled as a continuum regime. Gas flow in micro/nano scale ge-
ometries, for example, MEMS (Micro Electro Mechanical Systems), where device
size is small enough that flow of the gas can not be modeled correctly as a con-
tinuum regime. In such systems, the flow of the gas requires the kinetic treatment
even at the normal pressure and the temperature conditions, and such a regime of
gas is known as the rarefied gas. The rarefied gas flow is generally modeled by the
Boltzmann equation. There are a number of deterministic and stochastic numerical
techniques to solve the rarefied gas flow problems.

Deterministic methods based on the model Boltzmann equations are usually em-
ployed with the help of known techniques in computational fluid dynamics (CFD),
such as the moving mesh technique and the immersed boundary method [26, 76, 86].
An immersed boundary method is a standard Eulerian approach to simulate the in-
compressible viscous flows with moving boundaries. This approach has been ex-
tended by Dechristé et al [26] to a deterministic simulation of rarefied flows based
on the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation. The im-
mersed boundary approach consists in keeping the same mesh all along the calcula-
tion: every cell of the mesh remains fixed for all time steps while domain occupied
by gas changes. This technique avoids to use moving mesh and re-meshing ap-
proaches, and should be easily implemented to the problems with complex geome-
tries. This method has been tested with both specular and diffuse boundary con-
ditions, and it has been implemented to validate on 1D problems (moving piston,
actuator, etc.) [26]. Russo et al. [75, 76] have presented a semilagrangian numer-
ical method of BGK model of the Boltzmann equation in a rarefied gas domain
with moving boundary. The method is based on the discretization of the equation
on a fixed grid in the space and the velocity. The equation is discretized in the
characteristic form, and the distribution function is reconstructed at the foot of the
characteristics by a third order piecewise Hermit interpolation. Recently, Tsuji et al.
[86] have investigated, numerically on the basis of BGK model of the Boltzmann
equation, unsteady flows of a rarefied gas in a full space caused by the oscillation
of an infinitely wide plate in its normal direction. They have developed a numeri-
cal method on the basis of method of characteristics which is capable of describing



1.1 Motivation 5

singularities caused by the oscillating plate. They have applied the method to two
problems on oscillating plates with forced and free motion.

This increasing interest in the micro/nano fluidics has demanded the development
of numerical schemes for hydrodynamic calculations at molecular level. Direct sim-
ulation Monte Carlo (DSMC) of Bird [9] was developed to model the gas flows
in which Knudsen number is large, and the original applications were rarefied gas
flows in which transport properties are not well-approximated by the Navier-Stokes
equations. Since the early 90’s DSMC has also been used in modeling molecular-
scale devices with system length of microns down to nanometers. DSMC is also
an ideal particle based scheme for the study of hydrodynamic fluctuations. Inter-
estingly, it also turns out that hydrodynamic transport models are often still ac-
curate at the microscopic scales for which thermodynamic fluctuations are signif-
icant. Specifically, the fluctuating Navier-Stokes equations, introduced by Landau
and Lifshitz, have been validated by laboratory experiments and molecular simula-
tions [13]. Generally DSMC simulations have been performed for fixed geometry,
however Ohwada et al. [65] have analyzed numerically, a non-linear wave driven by
a plane wall oscillating in its normal direction, on the basis of the Boltzmann equa-
tion for hard-sphere and Maxwellian type boundary conditions by using DSMC
method. Recently Radar et al. [77] have investigated the moving-boundary algo-
rithm for DSMC method for a microbeam that moves towards and away from a par-
allel substrate, and one-dimensional situation of a piston between to parallel walls
using two moving-boundary algorithms has been studied.

Gallis et al. [36] have presented an approach for computing the force on and heat
transfer to a spherical particle from a rarefied flow of a monoatomic gas that is com-
puted using direct simulation Monte Carlo (DSMC) method. They have also found
analytically the Green’s function for the force and the heat transfer and are verified
by showing that they yield certain well-known results, and are implemented numer-
ically within DSMC code. They have performed the simulation for the gas confined
between plates at different temperatures for broad range of pressures and particle
velocities.

To simulate moving the rigid bodies in a rarefied gas, not only the influence of the
moving boundary on the gas has to be included in the simulation, but also the forces
exerted by the gas accelerating the rigid body. See, for example [86, 89] for one-
dimensional situations with such a two-way coupling. We remark that, on the one
hand, using DSMC based approaches for the above time-dependent problems with
slow fluid flows requires some control over the large fluctuations inherent in these
methods. On the other hand, the deterministic approaches are complicated to ex-
tend and computationally costly for higher dimensions. Finally, we note that DSMC
methods are especially suited to couple moving rigid objects due to the Lagrangian
nature of the gas molecules.



6 1 Introduction

In this thesis we present a simulation scheme for the moving rigid bodies of arbi-
trary shape suspended in a rarefied gas suited for 1-, 2- and 3-dimensional problems.
The rarefied gas flow is simulated by solving the Boltzmann equation in a time de-
pendent domain of computation using a DSMC method. The rigid body motion is
given by the Newton-Euler equations, where the forces and the torque on the rigid
body are calculated from the momentum transfer due to gas molecules impinging
on the surface of the rigid body. The resulting motion of the rigid body affects in
turn again the gas flow in the surroundings. This means that a two-way coupling
has been modeled. To validate our numerical scheme, we investigate various test
examples performed in 1-, 2-, and 3-dimensional geometries where a rigid body is
suspended in a gas, and we compare the numerical results with the existing theories.

The thesis is organized as follows: In chapter 2, a short description of the Boltz-
mann equation complemented with different models of the boundary conditions
are presented. The important properties of the Boltzmann equation are also pre-
sented, and using some of these properties the local conservations equations are
derived. From these local conservation laws, two macroscopic balance equations
are presented. In chapter 3, the numerical schemes to solve the Boltzmann equation
and the compressible Navier-Stokes equations are explained. The direct simulation
Monte Carlo (DSMC) method is used to solve the Boltzmann equation and the fi-
nite pointset method (FPM) is used to solve the Navier-Stokes equations. Both the
schemes are based on particle methods. In chapter 4, the fluid dynamic force and
the torque exerted on the rigid body in a gas are explained. The usual way of com-
puting the force and the torque on the rigid body is by integrating the stress tensor
on its surface. The expression of the stress tensor is based on the type of model that
is used to describe the fluid flow. For example, when the fluid is modeled by the
Navier-Stokes equations, the stress tensor is expressed in terms of the macroscopic
quantities like pressure and the derivatives of the fluid velocity. On the other hand
when the fluid is modeled by the Boltzmann equation, the stress tensor is given by
the suitable moment of the velocity distribution function. A simple naive approach
is proposed to compute the force and the torque on the rigid body when the fluid
is modeled by the Boltzmann equation and solved numerically by DSMC method.
This is a microscopic approach where the rigid body collides massively with the gas
molecules, and the force and the torque are computed by calculating the momentum
transfered due to the impinging and the re-emitting gas molecules on the surface of
the rigid body. In chapter 5, four different numerical experiments are presented to
validate the proposed scheme to compute the force and the torque on the rigid body
in the rarefied gas flow. In section 5.1, the first numerical experiment is performed
to simulate a 1-dimensional actuator problem where the movement of the piston is
induced by the temperature difference in both sides of the piston, and it reaches to
its equilibrium position after the system recovers its the equilibrium state. In sec-
tion 5.2, a 2-dimensional driven cavity gas flow problem is presented where a rigid
circular body is suspended inside a square domain. The flow of the gas is driven
by moving one of the wall of the domain. The flow of the gas is solved by using
the Navier-Stokes equations and the Boltzmann equation separately. The numeri-
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cal results, obtained from these two models for the motion of the rigid body in the
gas domain, are compared for small and large values of Knudsen numbers. In sec-
tion 5.3, the third numerical experiment is performed for the translational and the
rotational Brownian motion of a spherical particle suspended in a rarefied gas in 3-
dimensional domain, and the translational Brownian motion of the circular particle
suspended in a rarefied gas in 2-dimensional domain. A detailed derivation of the
translation and the rotational diffusion coefficients of the spherical particle in the
rarefied gas in thermally equilibrium state is also presented. The numerical results
are presented for the diffusion of the Brownian spherical particle in the rarefied gas
by solving the Boltzmann equation using DSMC method, and finally compared the
results with the theoretical values. In section 5.4, the last numerical experiment is
performed for the thermophoresis on the rigid body in the rarefied gas. We have nu-
merically computed the thermophoretic force on a rigid spherical body for different
values of Knudsen numbers ranging from larger to smaller by using DSMC method,
and compared the results with the existing theoretical values. The thermophoretic
velocity of a spherical rigid body in the transition regime is proposed, and com-
pared with the numerical results obtained from DSMC simulations. The motions of
the circular and the spherical Janus particle caused by the thermophoresis are also
studied numerically by using DSMC method. The distributions of the orientation of
the Janus particles in the rotational motion are also presented.





Chapter 2
Mathematical Model for Gas Flow

The flow of the gas can be modeled at either the macroscopic or the microscopic
level. The macroscopic model regards the gas as a continuum medium and descrip-
tion is in terms of the spatial and temporal variation of the flow properties such as
density, velocity, pressure, and temperature. The Navier-Stokes equations provide
the conventional mathematical model of a gas as a continuum. The macroscopic
properties are the dependent variables in spatial coordinates and time. The alterna-
tive to the continuum model is the microscopic or molecular model which recognize
the gas as a swarm of discrete molecules and ideally provides the information on
the position, velocity, and the state of every molecule at all time. The mathematical
model at this level is the Boltzmann equation whose solution is the only dependent
variable that gives the fraction of molecules in a given location and state, but the
independent variables are increased by the number of physical variables in which
the state depends. The macroscopic properties can be identified with the average
values of the appropriate molecular quantities at any location in a flow. These quan-
tities can be defined as long as there are a sufficient number of molecules within the
smallest significant volume of flow. This condition is almost always satisfied and the
results from the molecular model can therefore be expressed in terms of the familiar
continuum flow properties. Moreover, the equations that express the conservation of
mass, momentum, and energy in a flow are common to, and can be derived from,
either model. While this might suggest that neither of the approaches can provide
information that is not also accessible to the other, it must be remembered that the
conservation equations are not closed unless the stress tensor and heat flux can be
expressed in terms of the lower-order macroscopic quantities. It is the failure to meet
this condition, rather than the breakdown of the continuum description, which im-
poses a limit on the range of validity of the continuum equations. More specifically,
the transport terms in the Navier-Stokes equations of continuum gas dynamics fail
when the gradient of macroscopic variables become so steep that their scale is of
the same order of the mean free path [9].

Flow of the gas is described by variety of dimensionless quantities. The most
useful for our purpose is the Knudsen number Kn. The Knudsen number is a mea-

9
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sure of the degree of rarefaction of gases encountered in the flow in the domain. It
is defined as the ratio of the gas mean free path λ and the characteristic length scale
L of the physical system [9], that is,

Kn =
λ

L
,

where mean free path λ is the average distance traveled by gas molecules between
successive collision. In kinetic theory of gases, the mean free path is given by [31]

λ =
kB√

2πρRd2
, (2.1)

where kB is the Boltzmann constant in J/K, ρ is the density of the gas in kg/m3 and
R is the specific gas constant in J/(kgK).

The traditional requirement for the Navier-Stokes equations to be valid is that
the Knudsen number should be less than 0.1. The error in the Navier-Stokes result
is significant in the regions of the flow where the appropriately defined local Knud-
sen number exceeds 0.1, and the upper limit on the Knudsen number at which the
continuum model fails to describe the fluid flow may be taken to be 0.2 [9]. The
transport terms vanish in the limit of zero Knudsen number and the Navier-Stokes
equations then reduce to the inviscid Euler equations. The flow is then isentropic
from the continuum viewpoint, while the equivalent molecular viewpoint is that the
velocity distribution function is everywhere of the local equilibrium or Maxwellian
form. The opposite limit of infinite Knudsen number is the collisionless or free-
molecular flow regime. A large Knudsen number may result either from a large
mean free path or a small scale length of the flow. The former is a consequence
of the very low gas density. Figure 2.1 describes different regimes of fluid flow
depending on the Knudsen numbers [9]. As Knudsen number increases, the rarefac-
tion effects become more dominant and eventually the continuum assumption break
down.

Boltzmann Equation

Navier-Stokes Equations

No-slip Slip-conditions
Euler
Eqns.

Burnett
Equation

0← Kn 10−3 10−2 10−1 100 101 Kn→ ∞

Continuum Flow Slip Flow Transition
Flow

Free-molecular
Flow

Fig. 2.1: The Knudsen number limits on fluid models [9].
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2.1 The Boltzmann Equation

2.1.1 Physical model

We consider a simple rarefied monoatomic gas, which has only translational degree
of freedom. The time evolution of the one particle distribution function f (t,x,v) for
a gas with velocity v ∈ R3 and position x ∈ R3 at time t > 0 is described by the
Boltzmann equation [9, 24, 89]

∂ f
∂ t

+v ·∇x f = J( f , f ) (2.2)

with initial condition
f (t = 0,x,v) = f0(x,v). (2.3)

The left hand side of (2.2) is the transport term, which describes the free transport
flow of the gas molecules and the right hand side is the collision term or collision
operator, which describes the binary collision between the gas molecules. The col-
lision operator J( f , f ) is described by the integral

J( f , f ) =
∫
R3

∫
S2
+

k(||v−v∗|| ,ηηη)[ f ′ f ′∗− f f∗]dω(ηηη)dv∗, (2.4)

where S2
+ = {ηηη ∈R3 : ||ηηη ||= 1 and (v−v∗) ·ηηη > 0}, dω(ηηη) is the surface element

on S2
+ described by ηηη , f ′ = f (t,x,v′), f = f (t,x,v) and so on. The post-collision

velocity pair (v′,v∗′) is associated to the pre-collision velocity pair (v,v∗) and the
parameter ηηη by the relation [9, 71], (derivation is presented in Appendix A)

v′ = vc +
1
2
||vr||ηηη , v∗′ = vc−

1
2
||vr||ηηη , (2.5)

where vc =
v+v∗

2 and vr = v−v∗ are the velocity of the center of mass and the rel-
ative velocity between the pair of colliding molecules, respectively. The collision
kernel k(||v−v∗|| ,ηηη) is a non-negative function which characterizes the details of
the binary interaction between the gas molecules. For the general class of interac-
tion, the kernel can be written as

k(||v−v∗|| ,ηηη) = β (θ) ||v−v∗||
σ−4

σ , (2.6)

where θ is the scattering angle between vr and ||vr||ηηη . σ is the collision parameter
such that σ > 4 corresponds to the ”hard” collision, σ = 4 corresponds to the so-
called ”Maxwell molecules”, and 2 < σ < 4 corresponds to the ”soft” interaction.
In particular, the hard sphere model corresponds to the case of σ tending to infinity.
We have considered the hard sphere model in our study.

Remark 2.1. The collision operator can also be written as a bilinear operator given
by
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J( f ,g) =
1
2

∫
R3

∫
S2
+

k(||v−v∗|| ,ηηη)[ f ′g′∗− f g∗+ f ′∗g
′− f∗g]dω(ηηη)dv∗. (2.7)

It is clear that when g = f equation (2.7) reduces to equation (2.4), and J( f ,g) =
J(g, f ).

2.1.2 Boundary conditions

Equations (2.2) and (2.3) are usually complemented with the boundary conditions
for v ·n ≥ 0 and x ∈ ∂Ω , where n is the unit vector normal to the surface ∂Ω at x
and directed from the wall into the gas, given by (see [19] in detail)

| v ·n | f (t,x,v) =
∫

v′·n<0
| v′ ·n |R(v′→ v; t,x) f (t,x,v′)dv′, (2.8)

for all t ∈ R+, x ∈ ∂Ω . The boundary condition (2.8) is the so-called reflective
condition on ∂Ω . The ingoing flux is defined in terms of the outgoing flux modified
by the boundary kernel R according to the integral in (2.8). This kernel is called the
scattering kernel and satisfies the positivity and mass conservation at the boundaries:

R(v′→ v; t,x)≥ 0,
∫

v·n≥0
R(v′→ v; t,x)dv = 1 (2.9)

One can use different models for R. For example classical models for R are spec-
ular, diffuse and mixed reflections.

Model 2.1. (Specular reflection)
The simplest possible model of the gas-surface interaction is to assume that the
gas molecules are specularly reflected at the solid boundary, that means, the re-
emitted molecules have same flow mass, temperature and tangential momentum of
the incoming molecules. From physical point of view this model is not realistic. The
scattering kernel of the specular reflection is given by

R(v′→ v; t,x) = δ (v′−v+2(v ·n)n).

Then from (2.8), we have

f (t,x,v) = f (t,x,v−2(v ·n)n).

Model 2.2. (Diffuse reflection)
On the other hand, diffuse reflection model is quite realistic with respect to the phys-
ical point of view. In this model the re-emitted molecules completely loose the mem-
ory of incoming molecules, except the conservation of the number of molecules, and
re-emit with the velocity corresponding to those in a still gas at the temperature and
moving frame of reference of the solid wall. The scattering kernel of the diffuse
reflection is given by
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R(v′→ v; t,x) =| (v−VW) ·n | f 0(x,v),

where

f 0(x,v) :=
1

2π(RTw)2 exp
(
− ||v−VW||2

2RTw

)
,

Tw is the temperature and VW is the velocity of the solid wall, and R the specific gas
constant. Then from (2.8), we have

f (t,x,v) = f 0(x,v)
∫

v′·n≤0
| v′ ·n | f (t,x,v′)dv′.

Model 2.3. (Mixed reflection)
One can construct a more complicated intermediate model which is devoted to be
more physically realistic. This model is the intermediate between the specular and
diffuse reflection models. In this model there is a fraction α of molecules which
accommodates to the temperature of the solid wall, while remaining portion 1−α

is perfectly reflected by the solid wall. In this case the scattering kernel is given by

R(v′→ v; t,x) = (1−α)δ (v′−v+2(v ·n)n)+α | v ·n | f 0(x,v).

Then from (2.8), we have

f (t,x,v) = (1−α) f (t,x,v−2(v ·n)n)+α f 0(x,v)
∫

v′·n≤0
| v′ ·n | f (t,x,v′)dv′.

Here, the coefficient α , with 0 ≤ α ≤ 1, is called the accommodation coefficient.
It represents the tendency of gas to accommodate to the wall. It means that a frac-
tion (1−α) of molecules satisfies specular boundary condition whereas a fraction α

satisfies half-range Maxwell diffuse boundary condition. The main drawback of this
model is that it gives the same accommodation coefficient for energy and momen-
tum though it is known that energy and the momentum accommodate differently in
the physical molecule-wall interaction [20]. However, this model has been widely
used, both for theoretical studies and numerical simulations for practical applica-
tions.

Remark 2.2. The above mentioned models are the boundary conditions for the solid
walls. We may have other kinds of boundary conditions, for example, inflow/outflow
as well as the periodic boundary conditions.

2.2 Properties of the Boltzmann Equation

In this section we state few important properties of the Boltzmann equation without
proof. For other properties and detailed proofs we refer [9, 19, 24].

Lemma 2.1. (Collision invariants) The collision invariants are the functions ψ(v)
satisfying
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R3

ψ(v)J( f ,g)dv = 0, ∀ f ,g≥ 0

if and only if ψ(v) = a+b ·v+c ||v||2, where the constants a, c are the scalars and
the vector b ∈ R3.

The elementary collision invariants are ψα (0≤ α ≤ 4) where ψ0 = 1, ψi = vi, (1≤
i≤ 3) and ψ4 =

1
2 ||v||

2. For f = g≥ 0, we have∫
R3

ψα J( f , f )dv = 0, (0≤ α ≤ 0). (2.10)

Equation (2.10) physically tells that during the evolution process the collision oper-
ator J( f , f ) preserves mass, momentum and energy.

Lemma 2.2. For every distribution function f ≥ 0 satisfying the Boltzmann equa-
tion, the following inequality holds∫

R3
J( f , f ) ln f dv≤ 0.

”Equality” holds if and only if ln f is collision invariant or equivalently

f = ea+b·v+c||v||2 .

Theorem 2.1. The equilibrium distribution function satisfying J( f , f ) = 0 is given
by Maxwellian distribution, or Maxwellian

fM(v) = Ae−β ||v−w||2 , (2.11)

where A, β and w ∈ R3 are the parameters.

Theorem 2.2. (H-theorem) In the spatially homogeneous case, the tendency of a gas
relax to a thermodynamic equilibrium is expressed by the Boltzmann’s H-theorem

d
dt

H ≤ 0, H =
∫
R3

f ln f dv. (2.12)

”Equality” holds if and only if f is Maxwellian.

Remark 2.3. There are two interpretation of the Boltzmann H-theorem [19]. First
one is at the microscopic level which describes it as the likelihood of a microscopic
state that in an isolated system the evolution is towards the most probable states.
That means H, as a measure of unlikelihood, is also a measure of the information
which f contains about the microscopic state, and this information decrease with
time, because the Boltzmann equation describes an evolution towards more likely
one. The second interpretation of H is at macroscopic level where negative H is
related to the thermodynamic entropy of the gas and it is non-decreasing quantity in
the system.
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2.3 The Macroscopic Balance Equations

The microscopic description or the solution f (t,x,v) of the Boltzmann equation
(2.2) itself is often not the quantity of interest. The basic quantities of the interest
are the macroscopic observable ones, like the density ρ(t,x), bulk (or mean) velocity
u=u(t,x) and the specific total energy E =E(t,x) of the gas, which are the different
moments of f (t,x,v) and defined by [19, 24, 89]

ρ =
∫
R3

f (t,x,v)dv, (2.13)

ρu =
∫
R3

v f (t,x,v)dv, (2.14)

ρE =
∫
R3

1
2
||v||2 f (t,x,v)dv. (2.15)

The quantity ρu that appears in the equation (2.14) is the mass flux or the mo-
mentum density of the gas. The quantity of similar nature are the momentum flux,
specific internal energy and the energy flux of the gas.

We can express the momentum flux by

mi j =
∫
R3

viv j f (t,x,v)dv = ρuiu j +ϕi j (1≤ i≤ 3), (2.16)

where v = (v1,v2,v3), u = (u1,u2,u3) denote the components of velocities and ϕ =
(ϕi j), 1≤ i, j ≤ 3, is the stress tensor defined by

ϕi j =
∫
R3
(vi−ui)(v j−u j) f (t,x,v)dv (1≤ i≤ 3). (2.17)

Equation (2.16) shows that the momentum flux is described by the components of
a symmetric tensor of second order, because we need to describe the flow in the ith

direction of the momentum in the jth direction. It can also be seen in a macroscopic
description that only a part of this tensor will be identified as a bulk momentum
flow, because in general, mi j will be different from zero even in the absence of a
macroscopic motion (u = 0). The microscopic momentum flow is associated with
the stress tensor ϕ and it is equivalent to the force distributed on the boundary of
any region of gas, according to the macroscopic description. We can also rewrite the
specific total energy (2.15) into the form

ρE =
∫
R3

1
2
||v||2 f (t,x,v)dv =

1
2

ρ ||u||2 +ρe, (2.18)

where e is the internal energy, defined by

ρe =
∫
R3

1
2
||v−u||2 f (t,x,v)dv. (2.19)
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Finally, we define the energy flux of the gas by

ri =
∫
R3

1
2
||v||2 vi f (t,x,v)dv

= ρui
(1

2
||u||2 + e

)
+

3

∑
j=1

u jϕi j +qi (1≤ i≤ 3), (2.20)

where q = (q1,q2,q3) is the heat flux vector, defined by

qi =
∫
R3
(vi−ui)

1
2
||v−u||2 f (t,x,v)dv. (2.21)

The decomposition of energy flux (2.20) show that the microscopic energy flow is
a sum of a macroscopic flow of energy (both kinetic and internal), of the work (per
unit area and unit time) done by stresses, and of the heat flow. We also have

3

∑
i=1

ϕi j =
∫
R3
||v−u||2 f (t,x,v)dv = 2ρe (2.22)

and, therefore, it is convenient to define the gas pressure as 1/3 of the trace (i.e. sum
of the three diagonal terms) of ϕ and thus given by

p =
1
3

3

∑
i=1

ϕi j =
2ρe

3
=

1
3

∫
R3
||v−u||2 f (t,x,v)dv. (2.23)

For the monoatomic perfect gas, equation of state

p = ρRT (2.24)

holds, where R is the specific gas constant and T is the temperature of the gas. Using
the equation of state (2.24) in (2.23), we have

T =
2e
3R

or e =
3
2

RT (2.25)

Now, to get the macroscopic description supplied by the continuum gas dynamics
from the microscopic description supplied by the kinetic theory, we multiply the
Boltzmann equation (2.2) by its five collision invariants 1,vi,

1
2 ||v||

2 (1 ≤ i ≤ 3),
and integrate with respect to the velocity space v ∈ R3, and by changing the order
of integration and differentiation, we get the local conservation laws

∂

∂ t

∫
R3

f (t,x,v)dv+∇x ·
∫
R3

v f (t,x,v)dv = 0,

∂

∂ t

∫
R3

vi f (t,x,v)dv+∇x ·
∫
R3

viv f (t,x,v)dv = 0,

∂

∂ t

∫
R3

1
2
||v||2 f (t,x,v)dv+∇x ·

∫
R3

1
2
||v||2 v f (t,x,v)dv = 0,


(2.26)
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for (1≤ i≤ 3), which correspond to the mass, momentum and energy conservation,
respectively. Now using the definitions introduced in (2.13 - 2.21) to the system of
equations (2.26), we have the following lemma:

Lemma 2.3. (Conservation laws) Assume that f is the solution of the Boltzmann
equation (2.2). Then the above moments of f satisfies the following system of con-
servation equations

∂ρ

∂ t
+∇ · (ρu) = 0

ρu
∂ t

+∇ · (ρu⊗u+ϕ) = 0

∂

∂ t

(
ρ
(1

2
||u||2 + e

))
+∇ · (ρu

(1
2
||u||2 + e

)
+ϕ ·u+q) = 0


(2.27)

The system of equations (2.27) is the basic equations of continuum mechanics, in
particular of macroscopic gas dynamics, however, this system of equation is not
closed, since there are five equations for the 13 unknowns ρ,u,T,ϕ,q if the equa-
tion (2.25) is taken into account. In order to have a closed system, one must have
some expression for stress tensor ϕ and heat flux q in terms of ρ,u,e. Otherwise,
one has to go back to Boltzmann equation (2.2) and solve it; and once this has been
done, everything is done, and system of equation (2.27) is useless ! One way to
close this system is by assuming the distribution function f to be Maxwellian. In
this case, we get the well-known model for the fluid so-called the Euler equations
[24, 83].

We note that if we apply the equations (2.13), (2.14) and (2.19) to the Maxwellian
given by (2.11), we find that the constant w appearing in the latter equation is actu-
ally the mean flow velocity u, while

A =
(

ρ

2πRT

)3/2
, β =

3
4e

=
1

2RT
(2.28)

Thus the Maxwellian fM in the equation (2.11) has the following form

fM(v) =
ρ

(2πRT )3/2 exp
(
− ||v−u||2

2RT

)
. (2.29)

Here, the parameters ρ , u and T depend on the position x and time t. Therefore we
call fM a local Maxwellian. If the distribution function f is the local Maxwellian
(2.29), applying it in the equations (2.17) and (2.21) yield

ϕ = pI= (ρRT )I and q = 0, (2.30)

where I is the identity matrix. Therefore we have the following corollary:

Corollary 2.1. (Euler equations) If f is the local Maxwellian fM, then the macro-
scopic quantities ρ , u and T of fM satisfy the following compressible Euler equa-
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tions:
∂ρ

∂ t
+∇ · (ρu) = 0,

∂

∂ t
(ρu)+∇ · (ρu⊗u)+∇p = 0,

∂

∂ t

(
ρ
(1

2
||u||2 + e

))
+∇ ·

(
ρu
(1

2
||u||2 + e+ p

))
= 0,


(2.31)

where the pressure p and the specific internal energy e are given by the equations
(2.24) and (2.25), respectively. This system consists of five equations and six un-
knowns, and it is a closed system together with the equation of state (2.24). One
has to solve the compressible Euler equations with appropriate initial and boundary
conditions. There exist other ways to obtain the Euler equations from the Boltzmann
equation [24].

The fact that the distribution function f is a Maxwellian (or close enough to it)
can be justified by scale analysis. The limit obtained from scale analysis is called
the hydrodynamic limit [24].

We consider the parameter ε , arbitrary small. We introduce the new space and
time variables

r = εx, t̃ = εt.

The velocity is kept fixed in this scaling. Then the scaled Boltzmann equation can
be expressed in the form

∂ f
∂ t̃

+v ·∇r f =
1
ε

J( f , f ). (2.32)

Usually, one considers ε to be the order of the Knudsen number Kn [24]. As ε tends
to zero, we expect that the collision operator J( f , f ) tends to zero and by theorem
2.1, f tends to fM, where the macroscopic quantities ρ , u and T obtained as the mo-
ments of the solution of the Boltzmann equation satisfying the compressible Euler
equations (2.31).

The classical asymptotic methods for solving the Boltzmann equation are meth-
ods of Hilbert’s expansion [24], Chapman-Enskog’s expansion [23] and Grad’s
13 moments expansion [30]. In these expansions, the hydrodynamic limits of the
Boltzmann equation are derived in terms of macroscopic variables. The resulting
equations are either the Euler or the Naviver-Stokes equations. For example, the
Chapman-Enskog method provides a solution of the Boltzmann equation for a re-
stricted set of problems in which the distribution function f is perturbed by a small
amount from the equilibrium Maxwellian distribution. It is assumed that the distri-
bution function may be expressed in the form of the power series [9]

f = f0 + ε f1 + ε
2 f2 + · · · , (2.33)



2.3 The Macroscopic Balance Equations 19

where ε is a parameter which may be regarded as a measure of either the mean
collision time or the Knudsen number. The zeroth order approximation f0 is the
Maxwellian fM in the equation (2.29) whose parameters are the solution of the com-
pressible Euler equations (2.31). The first order approximation gives the Chapman-
Enskog distribution [9, 89]

fCE(t,x,v) = fM(t,x,v)
[
1+

2
5

q · c
ρ(RT )2

( ||c||2
2RT

− 5
2

)
+

1
2

τ : c⊗ c
ρ(RT )2

]
, (2.34)

where c = v−u, and the stress tensor ϕ and heat flux vector q for the monoatomic
gas are given by

ϕ = pI− τ, τ = µ
[
(∇u+∇uT)− 2

3
(∇ ·u)I

]
, (2.35)

q = −κ∇T, (2.36)

where µ = µ(t,x) and κ = κ(t,x) are the dynamic viscosity and thermal conduc-
tivity of the gas, respectively. They are of order ε . For example, first approximation
for the viscosity and thermal conductivity of a monoatomic gas is given by [9, 89]

µ =
5

16d2

√
mgkBT

π
, κ =

15kB

4mg
µ, (2.37)

where kB is the Boltzmann constant, and d and mg are the mass and the diameter of
a gas molecule, respectively. Therefore we have the following corollary:

Corollary 2.2. (Navier-Stokes equations) If f is the Chapman-Enskog distribution
fCE, then the macroscopic quantities ρ,u and T of fCE satisfy the following com-
pressible Navier-Stokes equations:

∂ρ

∂ t
+∇ · (ρu) = 0,

∂

∂ t
(ρu)+∇ · (ρu⊗u) =−∇p+∇ · τ,

∂

∂ t
(ρE)+∇ · (ρEu) = ∇ ·

((
− pI+ τ

)
u
)
+∇ ·

(
κ∇T

)
,


(2.38)

where E = 1
2 ||u||

2 + e is the specific total energy. The pressure p and the specific
internal energy e are given by the equations (2.24) and (2.25), respectively. This
system consists of five equations and thirteen unknowns, and it is a closed system
together with the equations (2.35), (2.36) and the equation of state (2.24).

Since we solve the Navier-Stokes equations (2.38) with a mesh free Lagrangian
particle method, we express them in Lagrangian form with respect to the primitive
variables as
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Dx
Dt

= u,

Dρ

Dt
=−ρ∇ ·u,

Du
Dt

=
1
ρ

(
−∇p+∇ · τ

)
,

DT
Dt

=
1

cvρ

(
− p∇ ·u+(τ ·∇) ·u+∇ · (κ∇T )

)
,


(2.39)

where D
Dt is the material derivative, cv is the specific heat at the constant volume,

given by 3
2 R for a monoatomic gas. We have expressed the internal energy of the

gas as e = cvT .

The system of equations (2.39) has to be solved with appropriate initial and
boundary conditions which are specified in the section where numerical experiments
are performed. We take the values of the viscosity µ and thermal conductivity κ be
fixed given by (2.37).



Chapter 3
Numerical Methods

We have already mentioned that the flow of the gas, in general, can be modeled by
the Boltzmann equation. But it has been observed that for the small values of Knud-
sen numbers Kn� 1, the flow of the gas can also be modeled by the Navier-Stokes
equations [9]. The analytical solution of the gas flow in a given domain is almost
difficult to obtain and therefore we have to rely on an appropriate numerical scheme
to solve the flow problems. In our work we mostly talk about the moving rigid body
whose motion is caused by the surrounding gas in a given domain. Because of the
movement of the rigid body, the domain occupied by the fluid changes continu-
ously in time. The best numerical scheme to tackle this kind of problem is particle
methods which can be simply implemented for wide varieties of flow problems with
complex domain and rapidly changing geometry. In our work we have used direct
simulation Monte Carlo method (DSMC) to solve the Boltzmann equation and the
finite pointset method (FPM) to solve the Navier-Stokes equations. Both the numer-
ical schemes are based on the particle methods and the brief review of these schemes
are explained in the next sections.

3.1 Particle Method for the Boltzmann Equation

The flow of a dilute gas can not be described by the continuum models given by the
Navier-Stokes and the Euler equations which describe the Newtonian fluids such as
gases and simple liquids, over wide ranges of conditions. Although very useful, the
continuum description of a fluid has its limit. The flow of a rarefied gas requires a
kinetic theory description. In such cases, the continuum description based on partial
differential equations is inadequate, and a particle-based approach is needed. As a
result, various specialized methods for simulating such flow have been developed
[1]. For the physicists, the best known particle-based algorithm is the molecular
dynamics where each particle represents a gas molecule. In molecular dynamics,
the trajectory of every molecule in the fluid is computed from the Newton’s equa-
tions, given an empirically determined inter-molecule potential. Although molecular

21
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dynamics is a useful technique in statistical mechanics, its application is limited to
simple hydrodynamic flows due to its enormous computational effort. Molecular dy-
namic simulations of a dilute gas are extremely time-consuming even when run on
most powerful computers. Fortunately there is an efficient alternative particle-based
method to simulate a dilute gas known as direct simulation Monte Carlo (DSMC),
originally developed by Bird [9] in the 1960. This method was derived on the basis
of physical intuition. DSMC originated by Bird is practicable in terms of compu-
tational effort and has given satisfying results in many applications. Wagner [93]
has proved that the Bird’s simulation is convergent to the solution of the Boltzmann
equation in the limit of infinite number of molecules. More sophisticated and in-
volved simulation methods were also presented by various authors [18]; the consis-
tency and convergence of some of these methods look more promising. Later Nanbu
[60] suggested a different simulation procedure, which he derived directly from the
Boltzmann equation. The collision was done in a totally different way from the
Bird’s method, and propagation of chaos seems to be assured from at least a for-
mal viewpoint. Babovsky [5] later gave the rigorous mathematical interpretation of
Nanbu’s scheme; his analysis shows that one major step in the procedure amounts
to a suitable linearization of the Boltzmann equation over short time intervals. This
idea leads in a natural way to a linearized time-discretized version of the Boltzmann
equation, and the effect of the collision operator in this equation is efficiently mod-
eled by a certain Markov process.

DSMC method can be viewed as a Monte Carlo method for solving the time de-
pendent non-linear Boltzmann equation which describes the evaluation of a dilute
gas at the level of the single-molecular distribution function. Rather than exactly
calculating the collisions as in the molecular dynamics, the DSMC method gen-
erates collision stochastically with the scattering rates and post collision velocity
distribution determined from the kinetic theory of a dilute gas. The method has
been thoroughly tested in high Knudsen number flows over past more than 30 years
and found to be in excellent agreement with both experimental data and molecular
dynamic computations. The DSMC method has been used successfully for several
decades in the study of rarefied gas flows and its exciting application can also be
found in chemistry and physics [1]. We present a brief description of DSMC method
for flow of the rarefied gas in a micro-scale domain. Detailed explanation of DSMC
method can be found in [9].

In the micro geometry flow problems, the system consists of a spatial bounded
domain with thermal boundary wall at temperature Tw. The domain contains simple
monoatomic gas, for example Argon gas in our study, which has only three trans-
lational degrees of freedom. The physical domain is divided into N number of
regular DSMC cells, each of which has linear dimension less than a mean free path
λ [9]. A rigid body that is suspended in the gas domain overlaps the DSMC cells.
The overlapped cells, we call inactive DSMC cells. We store all the information, if
needed, only in the non-overlapping cells, we call them active DSMC cells. Initially
n0 molecules are randomly distributed in each active DSMC cell with uniform den-
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sity throughout the system with position of each molecule being x, such that there
are at least minimum number of simulated molecules in each cell. Each simulated
molecule represents a large number of real physical molecules in the system. In this
sense DSMC method solves the Boltzmann equation using a representative random
sample drawn from the actual velocity distribution. This representation allows us
to model many systems of interest using only (104−105) simulated molecules (al-
though simulations using over 108 simulated molecules are not uncommon) [1]. In
addition to its location x, each molecule is initialized with a velocity v chosen from
initial velocity distribution (2.3). Thus in DSMC algorithm the state of the system is
given by the position and the velocity of the DSMC molecules {x,v}. The molecule
evolution is integrated in time step ∆ t and the method is based on the time splitting
of the Boltzmann equation for free transport and the collision. This splitting of the
evaluation between the advection and collision is accurate only when the time step
∆ t is a fraction of the mean collision time [9].

Introducing the fractional steps, one first solves the free transport equation (the
collisionless Boltzmann equation). In this step, the molecules are moved as if they
did not interact, that is, their positions are updated to x+v∆ t. Molecules that reach
a boundary are processed according to appropriate boundary condition as described
below. If a molecule strikes a wall, the time for the collision is determined by tracing
the straight line trajectory from the initial location x to the point of impact xw ∈ ∂Ω

to the wall. The time of flight from the molecule’s initial position to the point of
impact is ∆ tw = (xw−x) ·n/(v ·n), where n is the unit normal to the surface. After
striking the surface, the molecule moves off with a new velocity as prescribed by
the boundary conditions and with the remaining time ∆ t−∆ tw.

DSMC method employs various types of boundary conditions, for example, spec-
ular, diffuse and periodic surfaces. When a molecule strikes a specular surface, its
component of velocity normal to the surface is reversed and other two tangential
components remain unchanged. When molecule strikes a diffuse boundary wall
which is at temperature Tw and velocity Vw, all the three components of the ve-
locity are reset according to half-range Maxwellian distribution given by [83]

fd =| (v−Vw) ·n |
1

2π(RTw)2 exp
(
− ||v−Vw||2

2RTw

)
, (v−Vw) ·n > 0. (3.1)

In other words, each molecule colliding with the diffuse boundary wall is re-emitted
with the new molecular velocity v′ sampled from distribution given by (3.1). Let
t1, t2,n be a local orthonormal basis with n normal to the wall, then the three com-
ponents of the re-emitted velocity v′ relative to the wall velocity Vw with respect to
the basis t1, t2,n are given by (derivation is presented in the Appendix B)
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v′t1 =
√
−2RTw logα1 cos(2πα2),

v′t2 =
√
−2RTw logα1 sin(2πα2),

v′n =
√
−2RTw logα3,

where α1,α2,α3 are the uniformly distributed random numbers between 0 and 1.
Hence the re-emitted velocity from the diffuse boundary wall is given by

v′ = v′t1 t1 + v′t2 t2 + v′nn+Vw. (3.2)

The problem of surface effects can be overcome by implementing periodic
boundary conditions. In mathematical models and computer simulations, periodic
boundary conditions are a set of boundary conditions that are often used to simulate
a large system by modeling a small part that is far from its edge. Periodic boundary
conditions resemble the topologies of some video games; a simulation box of a ge-
ometry suitable for perfect three-dimensional tiling is defined, and when an object
passes through one face of the box, it reappears on the opposite face with the same
velocity [4].

After, all the molecules have been moved and boundary conditions are processed,
a given number of molecules are selected randomly for the collision. The rules for
this random selection process are obtained from the kinetic theory, for example, see
[9] . We select those molecules that are near to each other as collision partners. In
other words, molecules far from each other should not be allowed to interact. To
implement this condition, we sort the molecules into spatial active DSMC cells and
allow only molecules in the same cell to collide. In each cell, a set of representative
collisions is processed at each time step. All pairs of molecules in a cell are consid-
ered to be candidate for collision partners, regardless of their positions within the
cell. Because only the magnitude of the relative velocity between molecules is used
in determining their collision probability, even the molecules that are moving away
from each other may collide. This condition allows two molecules to collide by sim-
ply being located within the same cell; no other positional information is used in the
evaluation of collisions. We give a brief explanation of elastic binary collision for
hard sphere model to compute the post-collision velocity of the two colliding gas
molecules.

The collision operator J( f , f ) in the Boltzmann equation (2.2) is derived under
the consideration of binary collisions involving just two molecules. The collision
is considered to be an elastic in which there is no interchange of translation and
internal energy. Given the pre-collision velocities v and v∗, and the given physical
properties of the molecules and the orientation of the trajectories of the two collision
partners in a typical binary collision, we can determine the post-collision velocities
v′ and v′∗.
The linear momentum and the energy must be conserved in the elastic collision and
hence the post-collision velocities are given by [9], (detailed derivation is presented
in the Appendix A)
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v′ = vc +
1
2

v′r

v′∗ = vc−
1
2

v′r,

 (3.3)

where vc =
1
2 (v+ v∗) is the velocity of the center of mass of the pair of colliding

molecules. It can be found that the magnitude of pre-collision and post-collision
relative velocities vr = v−v∗ and v′r = v′−v′∗ between the molecules is unchanged
by collision, i.e. ||vr||= ||v′r||. Since both vc and vr may be calculated from the pre-
collision velocities, the determination of the post-collision velocities reduces to the
calculation of the change in direction θ of the relative velocity vector after collision.
The calculation of direction θ depends on the choice of the collision model, see
[9] for detail. The required expression of the components (u′r,v

′
r,w
′
r) of the post-

collision relative velocity vector v′r are given by [9]

u′r = ur cosθ +
√

v2
r +w2

r sinθ sinε,

v′r = vr cosθ +
(||vr||wr cosε−urvr sinε)sinθ√

v2
r +w2

r
,

w′r = wr cosθ − (||vr||vr cosε +urwr sinε)sinθ√
v2

r +w2
r

,


(3.4)

where (ur,vr,wr) are the components of the pre-collision relative velocity vector
vr, and ε is the angle between the collision plane (plane in which the trajectories
of two colliding gas molecules lie in the center of mass frame of reference) and
some reference plane. In our DSMC simulation we employ the hard sphere collision
model, and for this model the deflection angle θ has the following expression

cos(
θ

2
) =

b
d
, and 0≤ b

d
≤ 1, (3.5)

where d is the diameter of the gas molecule and b is the distance of the closest ap-
proach of the undisturbed trajectories of two colliding gas molecules in the center of
mass frame of reference. In hard sphere collision it can be concluded that the scat-
tering from the hard sphere molecules is isotropic in the center of mass reference.
That means, all directions are equally likely for v′r. Thus in our numerical simulation
we compute sinθ , cosθ from equation (3.5) by using uniformly distributed random
number α1 ∈ [0,1], and sinε and cosε are computed by using another uniformly
distributed random number α2 ∈ [0,1]. From equation (3.5), we can write

cosθ = 2
(b

d

)2
−1

and
( b

d

)2 is uniformly distributed between 0 and 1 so that selection rule can be
written as [9]
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cosθ = 2α1−1,
sinθ = 2

√
α1(1−α1).

Since ε is uniformly distributed in [0,2π], so

cosε = cos(2πα2),

sinε = sin(2πα2).

Now substituting the expressions of cosθ , sinθ , cosε and sinε in the equations
(3.4), we get the complete information of the post-collision velocity of two col-
liding gas molecules from the equation (3.3). The flow chart for a typical DSMC
simulation is shown in the figure 3.1. For more detail we refer to [1, 9].

Start

Set up cell network and
set initial molecule state

Distribute molecules into cells with
their initial position and velocity

Move individual molecule and com-
pute interaction with boundaries

Indexing molecules in cells

Select collision pair and per-
form intermolecular collisionsGo to

Sample flow properties

Output results

t >
Tf inal

Stop

No

yes

Fig. 3.1: DSMC flow chart.
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Since the DSMC method is inherently stochastic in nature, the most physical
quantities of interest are computed as averages. Let n = n(t, x̃) be the number of
molecules at position x̃ at time t. Here, position x̃ is generally taken as the DSMC
cell center. Initially n0 = n(0, x̃) number of simulated gas molecules are distributed
at each active DSMC cell at position x̃ . The values of mass density ρ(t, x̃), velocity
u(t, x̃), temperature T (t, x̃), pressure p(t, x̃), pressure tensor ϕ(t, x̃) at the position x̃
at time t are measured as

ρ =
n
n0

ρ0, (3.6)

u =
1
n ∑v, (3.7)

T =
1

3R

(1
n ∑ | v |2 − | u |2

)
, (3.8)

p = ρRT, (3.9)

ϕ =
ρ0

n0
∑v⊗v−ρu⊗u, (3.10)

where ρ0 is the initial density of the gas molecules and sum is taken over the number
of molecules in the cell at location x̃.

3.2 FPM for the Compressible Navier-Stokes Equations

We solve the Navier-Stokes equations (2.39) by the finite pointset method (FPM).
The FPM is a messfree and fully Lagrangian particle method. The fluid domain is
represented by finite number of particles (pointset), which are so-called the numer-
ical grid points and can be arbitrarily distributed. Particles move with fluid velocity
and carry with them all the fluid information like density, velocity, pressure and
so on. This method is found to be appropriate for flow problems with complicated
and rapidly changing geometry, free surface flows and multiphase flows [84, 87].
In order to solve the Navier-Stokes equations (2.39) by using the FPM, one first
fills the computational domain Ω ⊂Rd , d = 1,2,3 by particles xi ∈Ω and then ap-
proximates the spatial derivatives occurring on the right hand side of (2.39) at each
particle position from its neighboring particles with the help of the weighed least
squares method. This reduces the system of partial differential equations (2.39) into
a time dependent system of ordinary differential equations (ODE). This system of
equations can be solved by a simple integration scheme. The time steps for the
compressible as well as the incompressible Navier-Stokes equations are restricted
by CFL condition and by the value of the transport coefficient max[µ/ρ,κ/(ρcv)].
The brief introduction of the least square approximation for the spatial derivatives
is presented in the next subsection and detail can be found in papers [84, 88]. We
note that we need to introduce a particle management scheme during the simulation.
Because of the Lagrangian description of the method, particles may accumulate or
thin out causing the holes in the computational domain. This gives rise to some in-
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stability of the method. Therefore, we have to add or remove the particles. If the
distance between a particle and its nearest neighbor is large enough, we add a new
particle in the center. On the other hand, if the two particles are closer enough we
remove both of them and add a new particle at the mid point. Users can specify their
own measure of distance between two particle, how much far enough and much
close enough is not permitted, accordingly the particles can be added and removed.
The fluid dynamic quantities of newly added particle are approximated from their
neighbor particles with the help of the least squares method.

3.2.1 Least square approximation of the spatial derivatives

The main advantage of the least square method is that it is very general and can
be applied to very irregular moving geometries. In many practical applications the
mesh plays the most important role in determining the solution, and many solvers
lose their accuracy if the mesh is poorly constructed [84]. The least square method
can be employed for the randomly distributed grid points to approximate the deriva-
tives. In mesh free methods even if the initial discretization of the domain is done
in regular grid points, their discretization becomes quite arbitrary once the grid
points move with the fluid velocity. The general procedure for the approximation
the derivatives of a function by FPM is described below.

In this method the particle positions represent the grids. To approximate the spa-
tial derivatives at every grid points means the approximation of the derivatives at ev-
ery particle position. Let Ω ⊂Rd , d = 1,2,3 and f : [0,T ]×Ω→R be a scalar func-
tion, d denotes the dimension of the space and fi(t) is its value at xi for i= 1,2, . . . ,N
at time t. Consider the problem to approximate the spatial derivatives of that partic-
ular function f (t,x) at some particle position x based on the discrete function values
of its neighbor points. In order to restrict the number of points we introduce a weight
function w = w(xi−x;h) with small compact support, where h determines the size
of the support. The weight function can be quite arbitrary, however it makes sense
to choose a Gaussian weight function of the form [84]

w(xi−x;h) =

{
exp(−α

||xi−x||2
h2 ), if ||xi−x||

h ≤ 1
0, else

where α is a positive constant and the radius h defines a set of neighboring particles
around x. We work on a user given radius h so that new particles will have to be
brought into play as the particle distribution becomes too sparse or particles will
have to be removed from the computation as they become too dense.

Let P(x,h) = {x j : j = 1,2, . . . ,m} be the set of m neighbor points of x = (x,y,z)
in a ball of radius h. We note that the central particle x is one element of the neighbor
set P(x,h). The distribution of neighboring points need not to be uniform and it can
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be quite arbitrary. For consistency reasons, some obvious restrictions are required,
for example, in 3D there should be at least 9 particles in addition to the central point
and they should neither be on the same plane nor on the same sphere, and in 2D
there should be at least 5 particles other than the central point and they should not
on the same line. In the following we derive the least squares method for three di-
mensional problems.

We determine the derivatives of a function by using the Taylor series expansion,
and finally we apply the method of least squares approximation. Hence, consider m
Taylor expansions of f (t,x j) about x

f (t,x j) = f (t,x)+∑
k

∂ |k| f
∂xk1∂yk2∂ zk3

1
k!

(x j− x)k1(y j− y)k2(z j− z)k3 + e j, (3.11)

for j = 1, . . . ,m, where e j is the error in the Taylor’s expansion at the point x j.
Here k = (k1,k2,k3)

T ∈ N3
0 denotes the multi-index of order |k|= k1 + k2 + k3 with

|k| 6= 0, k! = k1!k2!k3! and x j = (x j,y j,z j).

Considering the Taylor’s series only upto second derivatives, that means, taking
|k|= 2 and denoting the coefficients by

a1 =
∂ f
∂x , a2 =

∂ f
∂y , a3 =

∂ f
∂ z , a4 =

∂ 2 f
∂x2 , a5 =

∂ 2 f
∂x∂y ,

a6 =
∂ 2 f
∂x∂ z , a7 =

∂ 2 f
∂y2 , a8 =

∂ 2 f
∂y∂ z , a9 =

∂ 2 f
∂ z2 .

Let us assume that f = f (t,x) is the known discrete function value at the particle
position x. For m > 9, this system is overdetermined with respect to the unknowns
ai, i = 1,2, · · · ,9 and can be rewritten as

e = Ma−b, (3.12)

where

M =

 dx1 dy1 dz1
1
2 dx2

1 dx1dy1 dx1dz1
1
2 dy2

1 dy1dz1
1
2 dz2

1
...

...
...

...
...

...
...

...
...

dxm dym dzm
1
2 dx2

m dxmdym dxmdzm
1
2 dy2

m dymdzm
1
2 dz2

m

 ,

a = (a1,a2, . . . ,a9)
T , b = ( f1− f , . . . , fm− f )T , e = (e1, . . . ,em)

T and dx j = x j−
x, dy j = y j−y, dz j = z j−z. The unknown a is computed by minimizing a weighted
error over the neighboring points. Thus, we have to minimize the following quadratic
form

J =
m

∑
j=1

w je2
j = (Ma−b)TW (Ma−b) (3.13)

with
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W =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wm

 ,

where w j = w(x j−x;h). The minimization of J with respect to a formally yields (
if MTWM is nonsingular)

a = (MTWM)−1(MTW )b, (3.14)

which gives the derivatives of the function f (t,x) at a specific position x as a linear
combination of the known values of the function f (t,x j) at neighbor points x j, j =
1, . . . ,m at an instant of time t.

3.2.2 Approximation of the spatial derivatives of the Navier-Stokes
equations

The spatial derivatives in the right hand side of the system of equation (2.39) is
approximated by using (3.14) at every point xi ∈Ω , i = 1, . . . ,N and the system of
equations (2.39) is then reduced to a system of ordinary differential equations:

Dρi(t)
Dt

=−ρi(t)Π∇ ·ui(t),

Dui(t)
Dt

=
1

ρi(t)
(−Π∇pi(t)+Π∇ · τi(t)),

DTi(t)
Dt

=
1

ρi(t)cv

(
− pi(t)Π∇ ·ui(t)+Π(τi(t) ·∇)ui(t)+Π∇ · (κ∇Ti)

)
,


(3.15)

with the equation of state pi(t) = ρi(t)RTi(t) for all i = 1, . . . ,N number of La-
grangian particles and Π∇(.) denotes the least square approximation of ∇(.).
Additionally, new position of Lagrangian particles is given by

dxi

dt
= ui. (3.16)

The system of ordinary differential equations (ODEs) (3.15) and (3.16) can be
solved by a simple integration scheme. We use the explicit Euler scheme to solve
these ODEs system.



Chapter 4
Moving Rigid Body in a Gas

4.1 The Force and the Torque on a Rigid Body

The rigid body suspended in a fluid moves because of the force and the torque ex-
erted on it by the surrounding fluid. The problem of finding the force and the torque
on a rigid body moving inside a fluid is central in many branches of engineering,
so there is an enormous literature dedicated to the subject. In principle if the mo-
tion of the fluid is known, then the computation of the force and the torque reduces
to the integration of fluid stresses on the body surface [79]. There are two kinds
of forces which act on a matter in bulk. The first group are long-range forces like
gravity which acts equally on all the matter within a small element of volume, and
the total force is proportional to the size of the volume element. Long range forces
may thus also be called volume or body forces. The second group are short range
forces, which have direct molecular origin, decrease extremely rapid with increase
of the distance between the interacting elements, and are appreciable only when
that distance is of the order of the separation of the molecules of the fluids. They are
negligible unless there is direct mechanical contact between the interacting elements
because without contact none of the molecules of one of the elements is sufficiently
close to a molecule of the other element. If an element of mass of fluid is acted on by
short-range forces arising from the reaction with matter outside this element, these
short-range force can act only on a thin layer adjacent to the boundary of the fluid
element. The total of the short-range forces acting on the element is thus determined
by the surface area of the element, and the volume of the element is not directly rel-
evant.

The scaling law is helpful to analyze the physical properties of the microscale
systems. A scaling law expresses the variation of physical quantities with the size L
of given system, while keeping other quantities such as time, pressure, temperature,
etc, constant. As an example, consider volume forces, such as gravity and inertia,
and surface forces, such as surface tension and viscosity. The basic scaling law for
the ratio of these two classes of forces can generally be expressed by [12]
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surface force
volume force

∝
L2

L3 = L−1→ ∞ as L→ 0

This scaling law implies that when scaling down to the microscale systems, the vol-
ume forces, which are very prominent in our daily life, become largely unimportant.
Instead the surface forces become more dominant. In our work we are interested in
a micro/nano size rigid body moving in a fluid contained in a micro/nano scale
domain. Hence the effect of the volume forces, like gravity, is negligibly small com-
pared to the surface forces, and these volume forces are not incorporated in our
study. Now we explain briefly on the theory to compute the surface force exerted on
the rigid body by surrounding fluid.

In a continuum flow if the motion of the fluid is known by solving the Navier-
Stokes equations or in a kinetic description of the fluid flow the velocity distribution
function of the Boltzmann equation is known, the force and the torque on the rigid
body are computed by integrating the stress tensor on its surface. Let us consider a
rigid body B ⊂ Rd , d = 1,2,3, suspended in a fluid. Let S(t) = {y(t) ∈ B} be the
configuration of the rigid body with boundary ∂S(t) and center of mass X(t) at any
moment of time t. The force FFF and the torque TTT exerted on the rigid body from
the surrounding fluid are given by following theorem:

Theorem 4.1. The force FFF and the torque TTT exerted on a rigid body by surround-
ing fluid are given by

FFF =
∫

∂S
(−ϕ ·ns)dA, (4.1)

TTT =
∫

∂S
(y−X)× (−ϕ ·ns)dA, (4.2)

where ns is the outward normal to the boundary ∂S of the rigid body. The stress
tensor ϕ is given by (2.17).

Proof. Suppose that an element dA of boundary ∂S of the rigid body B with unit
normal ns pointing toward the gas domain is moving with velocity U. Let C = v−U
is the velocity of a gas molecule relative to the element dA. Then the total momen-
tum p of the gas molecules impinging on the element dA during the time interval dt
is given by

p = dAdt
∫

C·ns<0
(−C ·ns)v f dv. (4.3)

The integration is extended only over that part of the velocity-range for which C ·ns,
the ns-component of the velocity of a molecule relative to dA, is negative (since only
molecules for which C ·ns < 0 can impinge on the surface). The minus sign before
C ·ns is introduced because C ·ns enters into the integrand through the mass of the
molecules entering dA during dt, and this number is essentially positive. Similarly
the total momentum p′ of the molecules re-emitting from dA during the time interval
dt is
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p′ = dAdt
∫

C·ns>0
(C ·ns)v f dv. (4.4)

The range of integration is taken over all values of v for which C ·ns is positive. Thus
the total momentum communicated to dA during dt is the difference dp between
the momentum of the impinging molecules and that of those re-emitting from the
surface, which is equal to

dp = dAdt
[∫

C·ns<0
(−C ·ns)v f (v)dv−

∫
C·ns>0

(C ·ns)v f dv
]

dp = −dAdt
∫
(C ·ns)v f dv. (4.5)

If the gas is neither condensing upon nor evaporating from the surface, the total
mass of impinging molecules on the element dA during dt, namely,

dAdt
∫

C·ns<0
(−C ·ns) f dv

must be equal to the mass of the re-emitting molecules, which is

dAdt
∫

C·ns>0
(C ·ns) f dv;

hence ∫
(C ·ns) f dv = 0. (4.6)

Now using this result, we have∫
(C ·ns)v f dv =

∫
(C ·ns)(u+ c) f dv

= u
∫
(C ·ns) f dv+

∫
(C ·ns)c f dv

(4.6)
=

∫
(C ·ns)c f dv

=
∫
((c+u−U) ·ns)c f dv

=
∫
(c ·ns)c f dv+(u−U) ·ns

∫
c f dv

=
∫
(c ·ns)c f dv

=
(∫

c⊗ c f dv
)
·ns,

and we have ∫
(C ·ns)v f dv =

(∫
(v−u)⊗ (v−u) f dv

)
·ns (4.7)
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Using equation (4.7) in the equation (4.5), we obtain

dp = −dAdt
(∫

(v−u)⊗ (v−u) f dv
)
·ns. (4.8)

The force dFFF on the element dA is given by dp
dt , and the equation (4.8) is written as

dFFF = −dA
(∫

(v−u)⊗ (v−u) f dv
)
·ns. (4.9)

Now using equation (2.17) in (4.9), we get

dFFF = −ϕ ·nsdA (4.10)

and the torque on element dA during time dt is given by

dTTT = (y−X)× (−ϕ ·ns)dA, y ∈ S. (4.11)

The total force FFF and the torque TTT on the rigid body is obtained by integrating the
equation (4.10) and (4.11), respectively over the boundary ∂S of the body and given
by

FFF =
∫

∂S
(−ϕ ·ns)dA,

TTT =
∫

∂S
(y−X)× (−ϕ ·ns)dA. �

Remark 4.1. If the flow of the fluid is solved by the Boltzmann equation (2.2), the
pressure tensor ϕ is given by (2.17), and ϕ is given by (2.35) if the flow of the fluid
is solved by the Navier-Stokes equations (2.38).

Using the equations (4.1) and (4.2), the translational and rotational motion of the
rigid body is described by the standard Newton-Euler equations [42]

M
dV
dt

= FFF , (4.12)

d
dt
(Iωωω) = I

dωωω

dt
+ωωω× Iωωω =TTT , (4.13)

where M and I are the mass and the moment of inertia of the rigid body, V and ωωω are,
respectively, the translational and rotational velocities of the body. The equations
(4.12) and (4.13) can be solved for V and ωωω , and the total velocity U that combines
both translational and rotational motion of the rigid body is given by U = V+(y−
X)×ωωω, y ∈ S. Now the motion of the rigid body is given by

dy
dt

= U, y ∈ S. (4.14)
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Remark 4.2. In 2-dimensional geometry the moment of inertia of the rigid body is
proportional to the identity matrix, and in 3-dimensional geometry if the rigid body
is axially symmetric like spherical object, the moment of inertia is also proportional
to the identity matrix. In both the cases ωωω × Iωωω = 0, and the Euler equation (4.13)
for rotational motion reduces to

I
dωωω

dt
= TTT . (4.15)

4.1.1 Numerical approximation of the force and the torque in
DSMC method

To compute the force FFF and the torque TTT on the rigid body exerted by the sur-
rounding fluid there are basically three approaches. These approaches are based on
the models that have been used to solve the fluid flow problem. The flow of fluid
can be solved either in the continuum model given by the Navier-Stokes equations
or in the kinetic model based on the Boltzmann equation.

4.1.1.1 In the continuum model

In the continuum model the fluid flow is solved by the Navier-Stokes equations(2.38).
As we have already explained in the chapter 2 that the Lagrangian form of the
Navier-Stokes equations (2.39) is solved numerically by a meshfree scheme named
as finite pointset method (FPM). The stress tensor (2.35) on the rigid body is ap-
proximated by computing the velocity field on its boundary, and finally plugging in
this stress tensor in the equations (4.1) and (4.2) to approximate the force and the
torque on the rigid body.

4.1.1.2 In the kinetic model

In the kinetic model the fluid flow is described by the Boltzmann equation. The
Boltzmann equation is solved by the DSMC method. In the DSMC framework there
could be two approaches to approximate the force and the torque on the rigid body.

First approach: Moment method
In this approach first of all we approximate the velocity distribution of the gas
molecules in the domain by using the DSMC method to approximate the stress
tensor (2.17) on the rigid body by using (3.10) which is a moment of the velocity
distribution function in a discrete sense, and finally employing this stress tensor in
the equations (4.1) and (4.2) to compute the force and the torque on the rigid body.
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For moving boundary problems the correct numerical approximation of the stress
tensor (3.10) by the moment method in the DSMC cell which is partially covered by
the rigid body could not be accurately calculated, because of the fewer number of
simulated molecules in that cell. Thus we need an efficient method to overcome this
problem. Hence we have proposed a method that can be implement in the DSMC
framework to compute the force and the torque on the rigid body which is based on
the direct interaction of the simulated gas molecules with the rigid body.

Second approach: Momentum method
We have introduced a new approach to compute the force and the torque by the direct
interaction of the fluid molecules with the rigid body. This is a microscopic approach
where the force and the torque are computed by the collision of the rigid body by
the simulated molecules. When the gas molecules collide with the rigid body, they
transfer the momentum and energy. Each gas molecule transfers the momentum
to the rigid body. So the total force and the torque exerted on the rigid body are
computed by accumulating, respectively, the increments of the linear and angular
momentum imparted by all the colliding molecules to the rigid body. This leads
to the following procedure to approximate the force and the torque exerted on the
rigid body in the DSMC simulation. The construction of the scheme is based on the
theorem 4.1.

vi

v′i

U

yi

S

Fig. 4.1: Momentum transfer during the interaction of gas molecules with rigid
body.

Let us discretize the boundary ∂S of the rigid body by finitely many mutually
disjoint surface elements ∂Si, 1, · · · ,m such that ∂S = ∪̇∂Si. Let yi ∈ ∂Si be the
center of the surface element ∂Si, i = 1, · · · ,m. Consider a gas molecule hits the
rigid body at a point y ∈ ∂S with momentum p, and reflected by the momentum
p′. The gas molecule is reflected diffusively from the boundary of the rigid body,
so the reflected momentum is sampled from the half-range Maxwellian distribution
given by (3.1). Then we find the element ∂Si that contains y, and we store the pre-
and post- collision momenta at the center yi of the element ∂Si due to that collid-
ing molecule. During the time interval ∆ t, there could be the large number of gas
molecules that hit the same surface element ∂Si of rigid body. The total pre- and
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post- collision momenta on the surface element ∂Si are calculated by taking the
sum of pre-collisional momenta p and post-collisional momenta p′ respectively of
those molecules that hit the surface element ∂Si during the time interval ∆ t. Let pi
and p′i be the total pre- and post- collisional momenta on the surface element ∂Si.
Then the force FFF i and the torque TTT i exerted on surface element ∂Si of the rigid
body in the time interval ∆ t are given by

FFF i =
pi−p′i

∆ t
, (4.16)

TTT i = (yi−X)×FFF i, i = 1, · · · ,m, (4.17)

where X is the center of mass of the rigid body.
Hence the total force FFF and the total torque TTT on the rigid body are given by

FFF = ∑
i

FFF i = ∑
i

pi−p′i
∆ t

, (4.18)

TTT = ∑
i

TTT i = ∑
i
(yi−X)×FFF i. (4.19)

Each DSMC simulated molecule represents the large number of real physical gas
molecules. Here we need to find the mass of each DSMC simulated molecule to find
the momentum of the each gas molecule colliding the rigid body. The momentum
of the simulated molecule is the product of its mass and velocity. Now we explain to
find the mass of a single DSMC simulated molecule by using the ideal gas equation.
From the ideal gas law

pV = ηℜT, and (4.20)
p = ρRT, (4.21)

where η is the number of moles, V is the system volume. ℜ and R are respectively
the universal and specific gas constants. From (4.20) and (4.21), we can write

η =
ρV

mgNA

, (4.22)

where NA is the Avogadro number. Total number of physical gas molecules in the
system is

N =
ρV
mg

, (4.23)

where mg is the mass of a real physical gas molecule.
Define

ν :=
N
Ns

, (4.24)

where Ns is the total number of DSMC simulated molecules in the flow domain, and
hence ν ≥ 1 represents the number of physical gas molecules representing a single
DSMC simulated molecule. The number ν is also known as statistical weight of the
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simulated DSMC molecule. Thus the mass of a DSMC simulated molecule is given
by

ms = mgν . (4.25)

Equations (4.23), (4.24) and (4.25) finally gives

ms =
ρV
Ns

. (4.26)

Thus the force (4.18) and the torque (4.19) are written as

FFF = ∑
i

ms(vi−v′i)
∆ t

, (4.27)

TTT = ∑
i
(yi−X)× ms(vi−v′i)

∆ t
, (4.28)

where vi and v′i are the pre- and post- collisional velocities of the simulated
molecules in the surface element ∂Si of the rigid body. With these force and torque
exerted on the rigid body due to the collision of gas molecules, we can find the
velocity and the position of the rigid body. The translation and the rotational mo-
tion of the rigid body are obtained by solving the equations (4.12), (4.13) and
(4.14) by performing the time integration using the explicit Euler scheme with
given initial velocities V(t = 0) = V0, ω(t = 0) = ω0, and initial configuration
y(t = 0) = y0 ∈ S(t = 0) of the rigid body.



Chapter 5
Numerical Results

In this chapter we present various test examples to validate the proposed numerical
scheme for computing the force and the torque exerted by the surrounding gas on a
micro-size rigid particle in 1-, 2- and 3-dimensional domains.

The first numerical experiment is performed to simulate the 1-dimensional actu-
ator problem, and the numerical results are presented to validate with the theoretical
values.

The second numerical experiment is performed to transport a rigid circular par-
ticle suspended in a closed 2-dimensional cavity that contains the argon gas. The
motion of the particle is caused by the flow developed in the gas due to a mov-
ing boundary wall of the domain. In this experiment we compute numerical results
based on two different physical models (Boltzmann and Navier-Stokes equations)
by applying the relevant numerical schemes, and finally we compare the results
obtained from these two different models for large and small values of Knudsen
numbers.

The third numerical experiment is performed to validate the Brownian diffu-
sion of a spherical particle both in translational and rotational motions in a 3-
dimensional domain containing rarefied gas at thermally equilibrium state. Theo-
ries for the diffusion of the spherical particle in the translational and the rotational
motions are already well-established results which can be found in the literatures
[14, 29, 39, 49, 58, 59]. Numerically computed translational and rotational diffusion
coefficients using the DSMC simulation are compared with the theoretical values for
the spherical particle suspended in rarefied argon gas. The Brownian motion and the
diffusion of a circular particle is also performed in a 2-dimensional geometry by
using the DSMC method considering only the translation motion. To the best of the
author knowledge, there are no well-known theory for the diffusion of the circular
particle, so we only present the numerical results on the Brownian motion and the
diffusion of the circular particle.

39
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In the last numerical experiment we consider the transport of a rigid parti-
cle caused by the thermophoresis. Thermophoresis is one of the well-known phe-
nomenon for the transport of the colloidal particle from the hotter to the colder re-
gion if the temperature gradient is provided. In this experiment we take various test
cases by simulating the rigid particles in 2- and 3-dimensional geometries by using
the DSMC method for solving the Boltzmann equation. In the 3-dimensional geom-
etry we take a stationary spherical particle suspended in the argon gas, and compute
the themophoretic force. The numerical results are validated with the theory for
different values of Knudsen numbers. We also propose a theory for computing the
themophoretic velocity of the spherical particle in the transition regime which is
obtained by using the Sherman interpolation of the drag coefficients in two extreme
regimes (continuum and free molecular). Furthermore, we simulate the spherical
particle in the thermal gradient, and compute the thermophoreic velocity at different
values of Knudsen numbers to compare with the proposed theory. We also present
the thermophoretic effect for orientation of a spherical and a circular Janus parti-
cles, particle having two boundaries differ by physical or chemical properties. We
compare the numerical distribution of the polar angle of the spherical Janus particle
with the theory, and we numerically explain the orientation and the distribution of
the polar angles of the circular Janus particles due to the thermophoretic force and
the torque.

5.1 Actuator

In this numerical experiment we present a 1-dimensional actuator containing a
monoatomic gas. This problem has already been studied by Dechriste et al [26]
using the deterministic numerical scheme based on the immersed boundary method
to solve Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation. In our
experiment we solve the flow of gas modeled by Boltzmann equation and solve
numerically by using DSMC method where the motion of piston in the actuator is
computed by using the equations (4.27) and (4.12). This problem is the first Bench-
mark to validate the numerical scheme that is proposed in the chapter 4.

Consider a flat piston of width 2l whose center is initially at x = 0 contained in
a slab [−(L+1),(L+ l)] containing a monoatomic gas. At initial time, temperature,
pressure and density are the same in the whole domain and are denoted by T0, P0 and
ρ0. The right wall of the piston is heated to T1 where as the left wall is maintained
at the initial temperature T0. In the similar way, the right wall of the slab is heated
and the left wall is fixed at initial temperature. The experimental set up is illustrated
in the figure 5.1.
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−(L+ l) (L+ l)0

2l

T0 T0 T1 T1

Fig. 5.1: Schematic view of a actuator.

The pressure increases on the right side of the plate because of the rise in the
temperature, and the motion of the plate occurs due to the pressure difference be-
tween the two sides. The motion of the plate is observed until the equilibrium state
is reached. The equilibrium state of the gas and the equilibrium position of the plate
can be easily calculated. The state of the gas can be completely described by the
equation of state and the mass conservation. Once the system reaches at the equilib-
rium state, let us denote the Pequi and ρle f t (ρright ) be the equilibrium pressure and
left (right) density, respectively, and xequi be the coordinate of the center of the plate
[26].

Now applying the equation of state and the mass conservation on the left side of
the place, we have

ρ0RT0 = P0,

ρle f tRT0 = Pequi,

ρ0L = ρle f t(L+ xequi).

 (5.1)

From (5.1), we get

Pequi =
L

(L+ xequi)
P0 (5.2)

Similarly applying the equation of state and the mass conservation on the right
side of the place, we have

ρ0RT0 = P0,

ρrightRT1 = Pequi,

ρ0L = ρright(L− xequi).

 (5.3)

From (5.3), we get
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Pequi =
T1

T0

L
(L− xequi)

P0. (5.4)

Finally from the equations (5.2) and (5.4), the equilibrium position of the piston
is given by

xequi = L
(T0−T1)

(T0 +T1)
. (5.5)

5.1.1 Numerical results

Let us consider one dimension slab with L = 10−1 m containing the gas and the
width of the piston is 2l = 2×10−2 m. Initially both sides of the piston are kept at
equilibrium with the temperature T0 = 270 K and the pressure P0 = 10 Pascal, and
the velocity of the plate is V = 0 m/s. We have used the following parameters for the
gas. The gas is argon which is monoatomic gas with mass mg = 6.63× 10−26 kg.
For the Boltzmann constant we have kB = 1.38× 10−23 J/K, and we obtained the
specific gas constant R = kB/mg = 208 J/(kgK) [89]. The gas model for the binary
collision is taken to be the hard sphere of diameter d = 3.68×10−10 m. With these
physical parameters, the Knudsen number with respect to the width of the piston
is 0.031. The domain is discretized by 400 DSMC cells, and in each active cell,
2000 simulated gas molecules are uniformly distributed with initial velocity sam-
pled from the Maxwellian distribution (2.29) with the mean velocity u = 0 m/s and
the temperature T0 = 270 K. The diffuse boundary condition is applied on the walls
of the slab and the walls of the piston. When the temperature on the right side in-
creased to T1 = 330 K, the gas molecules on the right side gain the thermal energy,
and pushes the piston to the left side with positive acceleration. The motion of the
piston is obtained by using the equations (4.27) and (4.12). There is a time at which
the system approaches to equilibrium on both the sides, and hence dV

dt = 0. But since
V 6= 0, the piston keeps moving and eventually oscillates around the equilibrium po-
sition. The oscillations are observed in the figure 5.2 in which (a) is the plot of the
center of the piston and (b) is the plot of the velocity of the piston until the time 0.05
seconds. The oscillatory behavior in the velocity is naturally from the stochasticity
in the DSMC method. It is observed that the numerically computed center of the
piston oscillates about the theoretical value with maximum 3% of relative error.
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(a) Position (b) Velocity

Fig. 5.2: Comparison of the solutions obtained from the DSMC method and the
theory. The red curves are the exact values and the blue curves are the numerical

values.

5.2 Driven Cavity Flow

Micro-sized mechanical devices such as microelectromechanical system (MEMS)
are widely studied, both in commercial applications and scientific inquiry. MEMS
devices in micro dimension usually work in gaseous environment under standard
atmospheric conditions. In such condition the molecular mean free path is of the
order of the characteristic size of the micro device, and hence the flow dynamics as-
sociated with MEMS can exhibit rarefied gas phenomenon, and the continuum hy-
pothesis which is the fundamental for the Navier-Stokes equations breakdown [9].
Fluid flows in micro devices differ from those in macroscopic machines. The perfor-
mance of MEMS-based ducts, nozzles, valves, bearing, turbo-machines, etc, cannot
always be correctly predicted or described by using conventional flow models such
as the Navier-Stokes equations with no-slip boundary conditions at the fluid-solid
interface, which has been successfully applied to the traditional fluid devices. Many
questions have been raised when the measurements carried out in the micro devices
could not be explained via traditional flow modeling [44]. When the flow is close
to the continuum regime (Kn� 1), the well known hydrodynamic equations cou-
pled with suitable boundary conditions may be applied to yield accurate results for
engineering purposes. For Kn� 1, the kinetic approach based on the Boltzmann
equation or simplified kinetic model equations is required [9, 62, 64].

In many instances fluid flows involved in MEMS devices, vacuum systems, and
high altitude aerodynamics do not have a local equilibrium. In these applications gas
flows in channels, tubes, and ducts due to pressure and temperature gradients in the
flow directions are very common and have been extensively investigated by solving
the hydrodynamic equations with slip boundary conditions [44] and by the direct
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simulation Monte Carlo methods [37, 66, 89]. In addition, due to the similarity be-
tween the non-equilibrium flows and the rarefied gas flows, corresponding results
obtained over the years implementing classical kinetic theory approaches (Boltz-
mann equation and simplified kinetic models) are also applicable [64]. Another
type of flow which is also encountered in systems not in equilibrium are bound-
ary driven flows. Prototype flows of this kind are the Couette flow problmes in one
dimension and the cavity flow problem in two or three dimensions. It is clarified
that in the hydrodynamic limit, the cavity problem is a well known typical bench-
mark problem for testing and verifying continuum solvers and has been throughly
studied. However, the research work for the same flow pattern in the free molecu-
lar, transition, and slip regimes is very limited [64]. Nie et al. [62] have studied the
two-dimensional cavity flow problem using the lattice Boltzmann method with slip
boundary conditions. Naris et al. [64] have solved the driven cavity flow of rarefied
gas in a rectangular enclosure due to the motion of the upper wall over the whole
range of the Knudsen numbers. Moreover the moving rigid body in the micro/nano
cavity flow might be an interesting topic for studying the industrial and the scientific
applications.

In this section we consider a circular rigid body suspended inside a domain con-
taining gas. The rigid body moves due to the flow developed in the gas by moving
one of the wall of the domain with constant velocity. One may choose different
methods to compute these types of fluid-solid interaction however, meshfree La-
grangian particle methods seem to be one of the preferred choices for such problems
[89]. For the rarefied gas phase we solve the Boltzmann equation (2.2) by DSMC
type particle method [9, 18, 63]. The flow of the gas exerts the force on the rigid
body, and the motion of the body is computed by the Newton’s equations. To vali-
date the solutions obtained by solving the Boltzmann equation, we further solve the
flow of the gas by using compressible Navier-Stokes equations (2.39) by using the
finite pointset method (FPM) [87, 88], and hence the force exerted on the rigid body
is computed to find the motion of the rigid body by solving the Newton’s equation.
It will be shown in the numerical results that for a small Knudsen number the solu-
tions obtained from the Boltzmann equation are quite close to the solutions obtained
from the compressible Navier-Stokes equations. However, the same is no longer true
for larger Knudsen numbers. We present the test cases with smaller as well as larger
Knudsen numbers. In this numerical experiment we consider a 2-dimensional com-
putational domain Ω = [a,b]× [a,b]⊂ R2, where size of the domain is micro-scale
that contains the argon gas. A circular rigid body S is kept inside the domain Ω . The
boundaries at x= a, x= b, and y= a are stationary, while the upper boundary y= b is
in motion with a constant velocity VW = (u0,0). All the walls are considered isother-
mal with a fixed temperature T0. In Ω\S we solve either the Boltzmann equation or
the Navier-Stokes equations. We assume that the gas is initially in the thermal equi-
librium with the values ρ(0,x), u(0,x) and T (0,x), which are the initial conditions
for the compressible Navier-Stokes equations. If we solve the Boltzmann equation
in the gas domain, we prescribe the initial condition as the local Maxwellian with
parameter ρ(0,x), u(0,x) and T (0,x). Then we compare the results obtained from
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both models. In all cases the circular body is surrounded by the compressible gas
inside the computational domain and kept initially at rest.

5.2.1 Numerical experiment I: Comparation between the moment
and the momentum approaches for the Knudsen number
0.417 in DSMC simulations

In this numerical experiment we consider a square domain with a = 0.5× 10−6 m
and b = 1.5×10−6 m. Initially a circular body S of radius r = 0.12×10−6 m occu-
pies the computational domain with the center of mass at the point (10−6 m,10−6 m),
while gas occupies the rest of the domain. The initial temperature of the computa-
tional domain is 300 K, and the boundaries of the domain are always kept at fixed
temperature 300 K. For the Boltzmann solver, if the gas molecules cross the physi-
cal domain or enter inside the circular body, we reflect them back by using the dif-
fuse reflection boundary condition with new velocity sampled from the half-range
Maxwellian velocity distribution (3.1). The Knudsen number with respect to the di-
ameter of the rigid body is Kn = 0.417. The simulation is performed until the time
8.4919×10−8 seconds.

We generate 100× 100 regular DSMC cells in the domain, and in each active
DSMC cell, initially 50 simulated gas molecules are uniformly distributed with ini-
tial velocity chosen from the Maxwellian distribution (2.29) with mean velocity
u = 0 m/s and temperature at T = 300 K. The upper wall of the domain is moving
with velocity VW = (100,0) m/s and other walls of the domain are kept stationary.
The schematic diagram for the physical setup is shown in the figure 5.3.
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Fig. 5.3: Physical set up for the DSMC simulation.
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We compute the force on the circular body by using two different approaches, the
moment and the momentum methods, in the DSMC framework as explained in the
chapter 4. Applying these forces, computed from two different approaches, in the
equations of motion (4.12) and (4.14), we compute the velocity and the trajectory
of the rigid body. The comparison of the numerical results obtained from both the
approaches are shown in the figure 5.4 where (a) is the trajectory, (b) and (c) are
the components of velocity of the rigid body, and (d) and (e) are the components of
the force on the rigid body. We observe in the figure 5.4 that the solutions obtained
from these two different approaches in DSMC simulation match quite well. In the
moment approach the statistical error is reduced by its in-build nature of approx-
imation but in the momentum approach statistical error present which is obvious
by the nature of its numerical approximation of the force which can be seen in the
plots of two components of the force on the rigid body. These statistical errors in the
momentum method can be reduced by taking the average of samples by performing
number of independent numerical experiments under similar physical conditions.

(a) Trajectory

(b) x-velocity (c) y-velocity
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(d) x-force (e) y-force

Fig. 5.4: Comparison of the moment and the momentum approaches for the
solutions of the Boltzmann equation for the Knudsen number 0.417. The red

and the blue curves are, respectively, the solutions obtained from the
momentum and the moment methods in the DSMC simulation.

5.2.2 Numerical experiment II: Comparation between the solutions
of the Boltzmann and the Navier-Stokes equations for the
Knudsen numbers 0.023 and 0.417

In this numerical experiment we consider a square domain with a = 0.5× 10−5 m
and b = 1.5×10−5 m. Initially a circular body S of radius r = 0.12×10−5 m occu-
pies the computational domain with the center of mass at the point (10−5 m,10−5 m),
while gas occupies the rest of the domain. The initial temperature of the computa-
tional domain is 300 K and the boundaries of the domain are always kept at fixed
temperature 300 K. We solve both the Boltzmann and the Navier-Stokes equations
separately in the gas domain, and approximate the force on the rigid body by em-
ploying these two different models to compute its motion. Finally we compare the
numerical results obtained from these two different models for two different values
of Knudsen numbers vary from small to large numbers. For the Boltzmann solver,
the experimental set up is exactly same as in the numerical experiment in the subsec-
tion 5.2.1, see figure 5.3. Taking the characteristics length as a diameter of the circu-
lar body we perform the numerical simulations for two different values of Knudsen
numbers Kn = 0.023 and Kn = 0.417. The simulation is performed until the time
8.9390×10−7seconds.

For the Boltzmann solver, we generate 190× 190 regular DSMC cells in the
domain, and in each active cell, initially 20 simulated gas molecules are uniformly
distributed with initial velocity chosen from the Maxwellian distribution (2.29) with
mean velocity u = 0 and temperature at T = 300 K.
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The upper wall of the domain is moving with the velocity VW = (100,0) m/s and
other three walls are at rest. The schematic diagram for the experimental setup for
the DSMC method to solve the Boltzmann equation is shown in the figure 5.3.

We also solve the Navier-Stokes equations by finite pointset method (FPM) in
the computational domain. The four boundary walls of the domain and the moving
wall of the circular body are modeled to be no-slip boundary walls. The schematic
diagram for the experimental setup for the Navier-Stokes equations is shown in the
figure 5.5.
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Fig. 5.5: Physical set up for FPM simulation.

In the FPM framework for the Navier-Stokes equations the force on the rigid
body is computed by using the equation (4.1), where the stress tensor ϕ is approxi-
mated from the equation (2.35). In the DSMC framework for the Boltzmann equa-
tion the force on the rigid body is approximated by using the direct interaction of the
gas molecules and the rigid body which is given by the equation (4.27). Using these
forces in the equations of motion (4.12) and (4.14), we compute the velocity and
the trajectory of the rigid body. The comparisons of the numerical results obtained
from two different models are shown in the figure 5.6, where (a) is the trajectory,
(b) and (c) are the components of velocity of the rigid body, and (d) and (e) are the
components of the force on the rigid body. We observe that the solutions obtained
from the Navier-Stokes equations and the Boltzmann equation agree well enough
for small value of Knudsen number Kn = 0.023.
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(a) Trajectory

(b) x-velocity (c) y-velocity

(d) x-force (e) y-force

Fig. 5.6: Comparison of the solutions obtained from the Boltzmann and the
Navier-Stokes equations for the Knudsen number 0.023. The red curves are

the solutions obtained by applying the momentum method in DSMC
simulation and the blue curves are the solutions obtained from the stress

tensors in FPM.
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Next we consider a 10 times larger domain with a = 0.5× 10−6 m and b =
1.5× 10−6 m to increase the value of the Knudsen number up to Kn = 0.417 by
keeping all the physical conditions similar to the last experimental setup. Initially
the circular body S of radius r = 0.12×10−6 m occupies the computational domain
with its center of mass at (10−6 m,10−6 m), while gas occupies rest of the domain.
The simulation is performed until the time 8.4072×10−8 seconds.

For the Boltzmann solver we generate 100×100 regular DSMC cells in the do-
main and in each active cell, initially 100 simulated gas molecules are uniformly
distributed with initial velocity chosen from the Maxwellian distribution (2.29) with
mean velocity u = 0 and temperature at T = 300 K. The force on the rigid body is
computed by FPM for the Navier-Stokes equations and DSMC for the Boltzmann
equation as explained in the last example to find the velocity and the trajectory of
the rigid body by solving the Newton’s equations of motion. The numerical results
are presented in the figure 5.7, where (a) is the trajectory, (b) and (c) are the compo-
nents of velocity of the rigid body, and (d) and (e) are the components of the force
on the rigid body. For this larger Knudsen number it can be seen that the solutions
obtained from the Navier-Stokes equations significantly deviate from the Boltzmann
equation. This is, as expected, due to the failure of the compressible Navier-Stokes
equations for the larger values of Knudsen number.

(a) Trajectory

(b) x-velocity (c) y-velocity
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(d) x-force (e) y-force

Fig. 5.7: Comparison of the solutions obtained from the Boltzmann and the
Navier-Stokes equations for the Knudsen number 0.417. The red curves are

the solutions obtained by applying momentum method in the DSMC
simulation and the blue curves are the solutions obtained from the stress

tensors in the FPM.

5.3 Theory of Brownian Motion and Brownian Diffusion

The continuous random motion of small particles suspended in liquid were first
reported by Robert Brown, a biologist, in 1828. Concerning the origin of the mo-
tion, for many decades series of experiments were performed by scientists in the
nineteenth-century including Perrin and notable theories were developed by Ein-
stein, Smoluchowski, Langevin, and Lorentz. This early work, reviewed by Nel-
son, eventually confirmed the molecular nature of the matter by relating the particle
motion to the thermal fluctuations of the molecules in the fluid [74]. Theory of
translational Brownian motion is concerned with the calculation of the probability
density for the position of a particle in the fluid. The theory is usually based on the
Langevin’s equation, which is the Newton’s second law with assumption that the
force acting on the particle is the sum of a viscous retarding force proportional to
the velocity of the particle and rapidly fluctuating force whose statistical properties
are such that the probability for the velocity distribution approaches to the Maxwell-
Boltzmann distribution [39]. By use of Langevin’s equation, a Fokker-Planck equa-
tion for the distribution function of the position can be derived, and the equation can
be solved to find the distribution function. The derivation is presented in the next
section.

Analogously, the rotational motion is concerned with the calculation of the prob-
ability density of the orientation of a body in the fluid. The rotational problem is
more complicated than the translational problem, primarily because it is not possi-
ble to specify the orientation of the rigid body by a vector whose time derivative
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is the angular velocity of the body. The specification of the orientation of a body
requires three coordinates, such as Euler’s angles, whose relation to the components
of the angular velocity are not particularly simple [39]. In our work, we consider a
simple case where the rigid particle rotates only about a fixed axis through the cen-
ter of mass of the particle. The theory for the rotational Brownian motion is analog
Langevin’s equation based on Euler’s equation with the assumption that the torque
on the particle is the sum of the viscous retarding torque proportional to the an-
gular velocity of the particle and the fluctuating torque whose statistical properties
are such that the probability for the angular velocity approaches to the Maxwell-
Boltzmann distribution [39]. Hence the corresponding Fokker-Planck equation for
the angular distribution of the particle can be derived from Langevin’s equation for
the rotational motion and the equation can be solved to find the angular distribution
of the particle [39].

5.3.1 Translational Brownian motion of a particle

Consider a system composed of N number of monoatomic gas molecules occupying
a volume V and having absolute temperature T. Let us consider a particle suspended
in a rarefied gas whose size is the order of the mean free path of the gas. Under an
ultramicroscope one can observe an irregular motion of the particle. Such a random
motion of the particle is well-known as a direct evidence of the thermal molecular
motion which is, of course, the very basis of the microscopic theory of the structure
of matter, because the random force driving the particle is apparently due to the im-
pacts exerted by the surrounding gas molecules. These are the classical examples of
the Brownian motion which always exists, even in thermal equilibrium, as a fluctu-
ation [49]. Let V = dX(t)

dt be the velocity of the particle with respect to the gas at a
given instant of time. It was realized by A. Einstein and J. Perrin that the Boltzmann
distribution not only applied to atoms or molecules. It equally holds for the much
larger particles in a colloidal suspension because the principle of ’equipartition of
energy’ does not distinguish the thermal motion of a solvent molecules from that
of a suspended colloid [67]. Thus the particle must follow the Maxwellian velocity
distribution at absolute temperature T in thermally equilibrium condition, which is
given by [91, 94]

fV = (
M

2πkBT
)3/2exp

(
− M ||V||2

2kBT

)
, (5.6)

where M is the mass of the particle, kB is the Boltzmann constant. The Maxwellian
distribution fV of the translational velocity of the particle is a Gaussian with co-
variance matrix Σ =

√
kBT/MI about the mean value < V >= 0. Although the

Maxwellian distribution is formally derived in a fixed NVT system, the velocity
distribution should be Maxwellian in any equilibrium situation because, in the ther-
modynamic limit, the properties in different ensembles becomes equivalent. (The
thermodynamic limit means that both N and V are made small or large but the ratio
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N/V is held fixed.) [38]. The mean square velocity can be calculated by taking the
second moment of the velocity distribution (5.6) and given by

< ||V||2 >=
∫
R3
||V||2 fVdV =

3kBT
M

. (5.7)

Hence the mean translational kinetic energy of the particle is given by

1
2

M < ||V||2 >=
3
2

kBT. (5.8)

The random impact of the surrounding gas molecules generally cause two kinds of
effect: firstly they act as a random driving force on the Brownian particle to main-
tain its endless irregular motion, and secondly they give rise to the frictional force
for a forced motion. The first part is the systematic part of the effect and the second
is the random part. This in turn means that the frictional force and the random force
must be related, because both come from the same origin. This internal relationship
between the systematic and the random parts of the microscopic forces is , in fact,
a very general matter, which is manifested in so-called the fluctuation-dissipation
theorem [49].

In the classical theory of Brownian motion of the center of mass X of a particle of
mass M, we usually start from a phenomenological stochastic differential equation
such as [49]

M
d2X(t)

dt2 =−γ
dX(t)

dt
+F(t) (5.9)

which is the simplest example of the Langevin equation for a free Brownian particle
in three dimensional space. The frictional force exerted by the medium is repre-
sented by the first term on the right-hand side where γ is the translational friction
coefficient assume to be independent of the particle velocity, and it depends only
on the particle size and shape, and the second term F(t) is the random force due to
the random collision of the surrounding gas molecules. For the sake of simplicity
and idealization, the random force is usually assumed to satisfy two conditions [49]:
that (i) the process F(t) is Gaussian with < F(t) >= 0, and (ii) its correlation time
is infinitely short, namely the autocorrelation function of F(t) has the form [49]

< F(t1)⊗F(t2)>= ςδ (t1− t2)I. (5.10)

The Gaussian assumption is quite reasonable for a Brownian particle having mass
much larger than the colliding molecules, because then its motion is a result of
a great number of successive collisions, which is a condition for the central limit
theorem to work. This situation also justifies the second assumption, because cor-
relation between successive impacts remains only for the time of such molecular
motion, which is short compared with the time scale of the Brownian motion. The
Fourier transform of the autocorrelation function (5.10) is called the power spec-
tral density of the the random force F(t), and it is just a constant equal to ς . Thus
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the random force is said to have a white spectrum. Spectral density measures the
strength of the random force F(t). We will find the value of ς later.

Now taking the dot product on both sides of (5.9) with X, we get

MX(t) · d
2X(t)
dt2 = −γX(t) · dX(t)

dt
+X(t) ·F(t)

M
2

d2

dt2 ||X(t)||2−M ||V||2 = −γ

2
d
dt
||X(t)||2 +X(t) ·F(t). (5.11)

Taking the expectation < ·> on both sides of (5.11), we get

M
2

d2

dt2 < ||X(t)||2 >−M < ||V||2 >=−γ

2
d
dt

< ||X(t)||2 >+< X(t) ·F(t)> .

(5.12)
Since X(t) and F(t) are two independent processes so < X(t) ·F(t) >= 0. Letting
Y := d

dt < ||X(t)||2 >, and using (5.7) in (5.12), we get

dY
dt

+
γ

M
Y =

6kBT
M

. (5.13)

Equation (5.13) is the first order linear differential equation. The general solution of
(5.13) is given by

Y =
6kBT

γ
+Cexp

(
− γ

M
t
)
. (5.14)

Equation (5.14) is also derived in the paper [54] by considering one dimensional
Langevin’s equation (5.9) for the motion of a spherical particle suspended in the
liquid. Equation (5.14) enters a constant regime in which it assumes the constant
value of the first term at the end of time of order τT = M/γ seconds, i.e. t >> τT,
for the particle for which Brownian motion is observable [54]. Here τT is called the
gas-particle response time for the translational motion [14]. The response time τT

depends on the fluid properties and the mass of the particle. In our numerical work,
we observe motion of the spherical particle at the end of t seconds at which t >> τT

so that the second term in the equation (5.14) vanishes.
One therefore has

d
dt

< ||X(t)||2 >=
6kBT

γ
. (5.15)

Integrating on the time interval [0, t], we get

< ||X(t)−X0||2 >=
6kBT

γ
t, (5.16)

where X0 = X(t = 0) is the initial position of the particle.

We present another procedure to derive the relation (5.16) by integrating the
Langevin’s equation (5.9) to get
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V(t) = V0exp(− γ

M
t)+

1
M

∫ t

0
exp(

γ

M
(α− t))F(α)dα, (5.17)

where V(t = 0) = V0 is the initial velocity of the particle. Taking the scalar product
of (5.17) with itself and, then taking the expectation, we get

< ||V(t)||2 >= ||V0||2 exp(−2γ

M
t)+

1
M2

∫ t

0
exp(

2γ

M
(α−t))dα

∫ t

0
<F(α)·F(β )> dβ .

Applying the relation (5.10) into the interior integral, we get

< ||V(t)||2 >= ||V0||2 exp(−2γ

M
t)+

3ς

2γM
(1− exp(−2γ

M
)t). (5.18)

The quantity τT := M
γ

is called the gas-particle response time for the translation
motion [14]. In our numerical experiment, the particle in initially at rest, i.e, V0 = 0,
and for the t >> τT the equation (5.18) becomes

< ||V(t)||2 >=
3ς

2γM
. (5.19)

Combining the equations (5.7) and (5.19), we get the power spectral density of the
random force F(t), and given by

ς = 2kBT γ. (5.20)

This relation is known as the fluctuation-dissipation theorem which states that the
systematic part of the microscopic force appearing as a friction is actually deter-
mined by the correlation of the random force. Conversely the random force has to
satisfy this condition, that means, the random force must have the power spectrum
determined by the friction. The friction or more generally the resistance of the given
system, represents the method by which the external work is dissipated into micro-
scopic thermal energy. The reverse process is the generation of the random force
as the result of the thermal fluctuation [49]. The fluctuation-dissipation theorem ex-
presses the balance between the friction and the noise which is required to have a
system in thermally equilibrium state for long time.

If the observation time is comparatively larger than the response time τT for the
translational motion of the particle, i.e. t >> τT , the inertial term on the left side
of the Langevin equation (5.9) will be negligibly small compared to other existing
forces, see [14, 16], and in this condition (5.9) becomes

dX(t)
dt

=
1
γ

F(t). (5.21)

Integrating equation (5.21) from 0 to t, and then taking scalar product with itself,
and finally taking the expectation, we get
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< ||X(t)−X0||2 >=
1
γ2

∫ t

0
dα

∫ t

0
< F(α) ·F(β )> dβ , (5.22)

where X(t = 0) = X0 is the initial position of the Particle. Now using the relation
(5.20) in (5.22), we get

< ||X(t)−X0||2 >=
3ς

γ2 t. (5.23)

Finally using (5.20) in (5.23) yields the relation (5.16).

5.3.1.1 Translational Brownian diffusion of a particle

Brownian particle diffusion is one of the most important mechanism leading to sig-
nificant transport rate. Diffusion is well-known in mass transfer of gases and liquids.
However, diffusion of the nanoparticles differs because of the wide spectrum of
nanoparticle sizes and their morphology (aggregate structure)- a concept understood
in particle science and technology but needed in many diverse fields of nanoparticle
applications [59].

In this section we derive the diffusion equation which describes the probability
density of finding a single Brownian particle in the fluid at any position x at any time
t. Since the autocorrelation function of the random force F(t) has the form (5.10),
the random force F(t) can be written in the form of

F(t) =
√

ςξξξ (t), (5.24)

where ξξξ (t) is a standard 3D Gaussian noise with < ξξξ (t)>= 0 and < ξξξ (t1)ξξξ (t2)>=
δ (t1− t2)I.
Using (5.24) in (5.21), we get

dX(t)
dt

=

√
ς

γ2 ξξξ (t). (5.25)

The stochastic process in the equation (5.25) is equivalent of the Fokker-Planck
equation, see [16], for the probability density p(t,X) of a particle to be found at the
position X at time t, and given by

∂ p(t,X)

∂ t
= DT∇

2 p(t,X) (5.26)

which is the standard diffusion equation with translational diffusion coefficient

DT =
ς

2γ2 . (5.27)
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If initially at time t = 0, the particle is at the position X = X0, then the diffusion
equation (5.26) with initial condition p(t = 0,X) = δ (X−X0) has the solution

p(t,X) =
1

(4πDTt)3/2 exp
(
− ||X−X0||2

4DTt

)
. (5.28)

From (5.28), it can be readily shown that the average particle displacement is zero
because the particle diffusion is isotropic. However, the mean square displacement
of the particles is non-zero. The mean square displacement represents the spreading
of the particle concentration (width of the distribution). The mean square displace-
ment can be calculated as the second moment of the spatial distribution given by

< ||X(t)−X0||2 >=
∫
R3
||X(t)−X0||2 p(t,X)dX = 6DTt. (5.29)

This is usually referred as the Einstein equation [29], and shows that the mean square
displacement of a diffusion particle is proportional to the diffusion time. Equation
(5.29) is a very important expression which is used to derive the particle diffusivity
DT. It also enables the first approximation about the distance that particles are trans-
ported by diffusion during any time interval.
By equating the equations (5.16) and (5.29), we get

DT =
kBT

γ
. (5.30)

This is known as the Einstein relation [29, 59], and combines the property of the
fluid and the particle through the coefficients.
Combining the equations (5.27) and (5.30), we get also the spectral density (5.20)
of the fluctuating force F(t).

The particle friction coefficient γ is the proportionality constant between the drag
force, and the relative velocity between the particle and the fluid, that means,

FD =−γV. (5.31)

The friction coefficient combines the properties of the fluid such as viscosity, density
and the size of the particle. In Stokes flow regime (Re << 1), the friction coefficient
for the spherical particle has the following form [80]

γC = 6πµRP, (5.32)

where µ is the viscosity of the fluid and RP is the radius of the spherical particle.
This equation is valid under the assumption that the fluid satisfies no-slip boundary
condition, that means, the relative velocity of the fluid at the surface of the parti-
cle is zero. This assumption holds for the fluid in the continuum regime where the
Knudsen number Kn << 1. Substituting the value of frictional coefficient γC from
(5.32) into (5.30), we get
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DC =
kBT

6πµRP

. (5.33)

This is known as the Stokes-Einstein equation [59] for diffusion of the spherical
particles in the fluid with low Reynolds number.

In the case of very large Knudsen number Kn >> 1, that means, in the free
molecular regime an expression for the friction coefficient is derived by Epstein
[27] using the kinetic theory, and it is given by

γFM =
8
3

R2
P ρ

√
2πkBT

mg

(
1+

πα

8

)
, (5.34)

where ρ is the density of the gas and mg is the mass of the gas molecule. The coef-
ficient α represents the fraction of gas molecules that are reflected diffusively and
(1−α) is the fraction of molecules with specular reflection. In our numerical ex-
periment we consider the complete thermal accommodation, that mean, α = 1.
In our work, we are mainly concerned with the Brownian motion of the spherical
particle in the rarefied gas. Thus the translational diffusion coefficient of the spheri-
cal particle in the bath of rarefied gas is obtained by combining the equations (5.30)
and (5.34), and it is given by

DT =
3
8

√
mgkBT

2π

1
(1+ απ

8 )RP
2ρ

. (5.35)

5.3.2 Rotational Brownian motion and Brownian diffusion of a
particle

So far we have been discussing only about the translational diffusion, the motion
of the center of mass of the spherical particle through the Brownian motion. There
also exists rotational diffusion, the change of the orientation of particle due to ran-
dom torque exerted on it by the surrounding gas molecules. Rotational diffusion is
important for the study of dielectric relaxation, fluorescence depolarization, NMR
line width, and in short almost any phenomenon that has to do with the relaxation of
some polarized quantity [58]. The theory of the rotational diffusion of the spherical
particle rotating about a fixed axis can be derived from the rotational analog of the
Langevin’s equation based on the Euler’s equation [39], and it is given by

I
d2Θ

dt
=−ϒ ω3 +Γ , (5.36)

where Θ is the angular displacement about a fixed line parallel to z-axis through
the center of mass of the spherical particle, ω3 =

dΘ

dt is the third component of the
angular velocity ωωω = (ω1,ω2,ω3), and I = 2

5 MR2 is the moment of inertia of the
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spherical particle. When body rotates only about a line parallel to z-axis, the first
two components ω1,ω2 of the angular velocity ωωω are zero. The first term on the
right hand side of (5.36) refers to the friction torque with the rotational friction
coefficient ϒ . The second term is the stochastic torque on the spherical particle, and
this random torque has following two statistical properties [39]:

i. < Γ (t) = 0 >, for all t ≥ 0.
ii. < Γ (t1)Γ (t2 >) = 2kBTϒ δ (t1− t2), for any t1, t2 ≥ 0.

By the theory of equipartition of energy, the distribution of the angular velocity of
the spherical particle has to be the Maxwell-Boltzmann expression given by [39, 94]

fωωω =
( I

2πkBT

)3/2
exp
(−I ||ωωω||2

2kBT

)
. (5.37)

So the mean square angular velocity of the spherical particle is given to be

< ||ωωω||2 >=
∫
R
||ωωω||2 fωωω dωωω =

k BT
I

, (5.38)

and hence the rotational kinetic energy of the particle is given by

1
2

I < ||ωωω||2 >=
3
2

kBT. (5.39)

Since the components ω1,ω2,ω3 of the rotational velocity of the Brownian particle
are mutually independent. The rotational kinetic energy in each component is

1
2

I < ω
2
i >=

1
2

kBT, i = 1,2,3.

In analogy to the theory of the translational Brownian motion as explained in
the last section, the theory for the rotational Brownian diffusion coefficient can be
derived in similar manner. If the observation time is comparatively larger than the
response time τR = I

ϒ
for the rotational motion, i.e, t >> τR, the term on the left

hand side of (5.36) is negligibly small compared to other existing forces, see [14].
Hence the diffusion equation

∂P(t,Θ)

∂ t
= DR∇

2 p(t,Θ) (5.40)

for the probability density P(t,Θ) of the orientation Θ of the particle at time t is
the Fokker-Plank equation of (5.36) once the rotational inertial term I d2Θ

dt ≈ 0. If
initially at time t = 0, the orientation of the particle is Θ =Θ0, the solution P(t,Θ)
of the diffusion equation is given by

P(t,Θ) =
1

(4πDRt)1/2 exp
(
− |Θ −Θ0|2

4DRt

)
, (5.41)
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where DR is the rotational diffusion coefficient of the particle. From the density
function (5.41), we can find the mean and the mean square angular displacement of
the particle, which are given by

<Θ −Θ0 > = 0, (5.42)
< |Θ −Θ0|2 > = 2DRt. (5.43)

Also the rotational diffusion coefficient is obtained to be

DR =
kBT
ϒ

. (5.44)

In our work, we are only concern with the Brownian diffusion of a spherical
particle in the rarefied gas, for Kn >> 1. To find the rotational diffusion coefficient
of the particle from (5.44), we need to know the rotational frictional coefficient ϒ in
the rarefied gas. When the particle rotates in the fluid, the rotational motion is slow
down by the rotational friction. The rotational friction is the proportionality constant
between the drag torque on the particle and the angular velocity of the the particle.
The drag torque on the rigid particle rotating about a fixed line parallel to z-axis is
given by

ΓD =−ϒ ω3. (5.45)

The rotational friction coefficient ϒ combines the properties of the fluid and the size
of the particle, and it is independent of the angular velocity of the particle. In the
continuum regime (Kn << 1), the rotational friction coefficient for the spherical
particle is given by [53]

ϒC = 8πµR3
P . (5.46)

In the continuum fluid regime the rotational friction coefficient ϒC depends on the
viscosity µ of the fluid and the radius of the spherical particle RP.

In the free molecular regime (Kn >> 1), the expression for the rotational friction
coefficient is given by [27, 53]

ϒFM =
2π

3

√
8kBT
πmg

ρR4
P . (5.47)

In the free molecular regime the rotational friction coefficient ϒFM depends on the
temperature T , density ρ of the gas and the radius RP of the spherical particle. Our
work is mainly on the gas in free molecular regime so the rotational diffusion coef-
ficient is obtained by combining the equations (5.44) and (5.47), and it is given by

DR =
3

4π

√
πmgkBT

2
1

ρR4
P

. (5.48)
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5.3.3 Numerical results

5.3.3.1 Brownian diffusion: Spherical particle

In this subsection we present the DSMC method to approximate the translational
and the rotational diffusion coefficients of a spherical Brownian particle suspended
in a rarefied gas contained in a confined cube of size [0,L]× [0,L]× [0,L] with
L = 10−6m which is kept at a uniform temperature of T = 300 K. To implement
DSMC method, the computational domain is divided into 30× 30× 30 regular
cells. We have taken the different number n0 of gas molecules such that ν ≥ 1
to compute the numerical values of the diffusion coefficients and the results are
compared with the theoretical values. The radius of the spherical particle is taken
to be 10−7 m. We have used the following parameters for the gas. The gas is ar-
gon which is monoatomic gas with mass mg = 6.63×10−26 kg. For the Boltzmann
constant we have kB = 1.38×10−23 J/K, and we obtained the specific gas constant
R = kB/mg = 208 J/(kgK) [89]. The gas model for the binary collision is taken to
be the hard sphere of diameter d = 3.68× 10−10 m. The numerical computation is
performed only for the Knudsen number Kn = 11 with respect to the particle diam-
eter. The spherical particle in initially kept at rest in the center of the computational
domain with center of mass at (5×10−7,5×10−7,5×10−7). The hard collision is
performed between gas molecules and spherical particle. In our simulations diffuse
boundary condition is applied on the boundary of the rigid particle as well as on the
walls of the domain. The force and the torque are computed using (4.27) and (4.28).
The trajectory of the spherical particle is computed using (4.14). The spherical par-
ticle shows the continuous irregular motion because of the massive random hit by
the surrounding gas molecules. The trajectory of the center of mass of the particle
until the time 3.7879×10−6 seconds is shown in the figure 5.8.

(a) Normal View (b) Zoom View

Fig. 5.8: Brownian motion of the spherical particle until the time
3.7879×10−6 seconds.
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To compute the diffusion of the spherical particle, we perform the number of
independent numerical experiments under similar physical conditions. The dis-
placement of the center of mass of the particle is sampled at end of time t =
2.617×10−8 seconds in each experiment. The diffusion of the center of mass of the
particle is shown in the figure 5.9 (a) and (b). The distribution of the displacement
of the center of mass is shown in the figure 5.10 (a), (b) and (c). The displacement
of the center of mass of the particle follows the Maxwellian distribution (5.28) with
mean displacement zero and the variance in each direction is approximately equal
to 2DTt.

(a) Normal View (b) Zoom View

Fig. 5.9: Brownian diffusion of the spherical particle at the end of time
2.2617×10−8 seconds.

(a) (b) (c)

Fig. 5.10: Distributions of x-, y- and z- displacements at the end of the
time 2.2617×10−8 seconds. The histograms represent the simulation
data and the solid red curves are the Gaussian distribution function.

We have performed the numerical experiments for different number of simulated
gas molecules, and the data are sampled for Knudsen number Kn = 11 to get the
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center of mass of spherical particle at the end of time t = 2.617× 10−8 seconds,
and the translational diffusion coefficient of the particle is numerically computed
by using (5.29). The theoretical value of the translational diffusion coefficient is
computed from (5.35). Figure 5.11 shows the numerical approximation of the trans-
lation diffusion coefficient of the particle that converges to the theoretical value with
increasing number of simulated molecules.

Fig. 5.11: Convergence of transnational diffusion coefficients with increasing
number of gas molecules. The solid red line is the theoretical value and blue line

with −o− represents DSMC numerical value of the translational diffusion
coefficient.

To compute the value of the rotational diffusion coefficient of the spherical Brow-
nian particle using DSMC method, we fix the spherical particle at its center of mass.
Then the particle only rotates because of the torque exerted on it by the surrounding
gas molecule. The torque on the particle is computed by using (4.28). Applying this
torque in the Euler equation (5.36) to get the angular velocity ω = (0,0,ω3). The
first two components of the angular velocity ω are zeros because the rotational mo-
tion of the particle is only taken about a fixed line that is parallel to z-axis. Finally
the angular displacement Θ is computed by the equation of angular motion given
by

dΘ

dt
= ω3, with initial angle Θ0 = 0. (5.49)

Number of independent numerical experiments are performed under similar
physical conditions, and the angular displacement of the spherical particle is sam-
pled at the end of time t = 2.2617× 10−8 seconds in each experiment. The distri-
bution of the angular displacement is shown in figure 5.12. The angular distribution
of the particle follows the Maxwellian (5.41) with mean angular displacement zero
and the variance is approximately equal to 2DRt.



64 5 Numerical Results

Fig. 5.12: Distribution of angular position about z-axis at the end of time
2.2617×10−8 seconds. The histogram represents the simulation data and the solid

red curve is the Gaussian distribution function.

We have also computed the rotational diffusion coefficient of the spherical par-
ticle by using (5.43) for different number of simulated molecules, and the approxi-
mated values are compared with the theoretical value (5.48). The convergence of the
numerically computed rotational diffusion coefficient to the theoretical value with
increasing number of simulated molecules is shown in the figure 5.13.

Fig. 5.13: Convergence of rotational diffusion coefficients with increasing number
of gas molecules. The solid red line is the theoretical value and blue line with −o−

represents DSMC numerical value of the rotational diffusion coefficient.

The translational and the rotational velocities of a Brownian particle must fol-
low the Maxwellian distributions as explained in (5.6) and (5.37). The numerical
experiment is run for long time at the given temperature T = 300 K of the gas, and
the translational and the rotational velocities are sampled at each time step. Figure
(5.14) (a), (b) and (c) are the plots of the distribution of the translational velocity
in x-, y- and z- directions, and figure (5.15) (a), (b) and (c) are the plots of the dis-
tribution of the each component of the rotational velocity. The bar plots represent
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the histogram of the simulated data and the red solid curve is the model Gaussian
curve. The plots in the figure (5.14) and (5.15) qualitatively agree with the velocity
distributions (5.6) and (5.37). To verify that the simulated translational and the rota-
tional velocity distributions agree quantitatively with the theories given by (5.8) and
(5.39), we compute the translational and the rotational kinetic energies of the par-
ticle by computing the average mean square of the translational and the rotational
velocities of the particle. The translational and the rotational kinetic energies of the
spherical particle is equal to 3

2 kBT . The numerical experiment is performed at tem-
perature T = 300 K for the Knudsen number Kn = 11 to sample the translational
and the rotational velocity of the Brownian spherical particle. Figure 5.16 (a) shows
the plots of the numerically approximated translational and rotational kinetic ener-
gies of the spherical particle that convergence to the theoretical value of the energy
of the particle at the temperature T = 300 K of the gas for the increasing number of
simulated molecules. Figure 5.16 (b) shows the linear profile of numerically calcu-
lated translational and rotational kinetic energies of the particle versus temperature.
It can be observed from the figure that both the energies are proportional to the
temperature as expected from the theory.

(a) (b) (c)

Fig. 5.14: Distributions of x-, y- and z- components of the translational
velocity of the spherical particle at T = 300 K. The histograms represent
the simulation data and the red solid curves are the Gaussian distribution

function.
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(a) (b) (c)

Fig. 5.15: Distributions of three components of the rotational velocity of
the spherical particle at T = 300 K. The histograms represent the

simulation data and the red solid curves are the Gaussian distribution
function.

(a) (b)

Fig. 5.16: Translational and rotational kinetic energies of the spherical
Particle. The red solid line represents the theoretical value, the blue line
with −o− and black line with ∗−∗ are the simulated translational and

rotational kinetic energies.

5.3.3.2 Brownian diffusion: Circular particle

In this subsection we present only the translational motion of the circular Brownian
particle in a 2-dimensional square geometry. The particle is suspended in a rarefied
gas contained in the computation domain of size [0 L]× [0 L], where L = 10−6 m.
To implement DSMC method, the domain is discretized into N×N, where N = 50,
regular cells of width ∆x = L/N. The number of cells is chosen in such a way that
∆x < λ for the stability of DSMC method [9]. A circular Brownian particle is in-
troduced inside the domain with center of mass at (5× 10−7,5× 10−7) with its
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initial velocity zero. Then n0 number of simulated molecules are distributed uni-
formly in each active DSMC cell with initial velocity v sampled from the Maxwell
distribution (2.29) with mean flow velocity u = 0 and the temperature at T = 300K.
The numerical computation is performed for the Knudsen number Kn = 10 with
respect to the particle diameter. The time integration is performed in each time step
∆ t = 0.3∆x/

√
2RT . During each time step ∆ t, the simulated molecules are moved

with its velocity v, and the reflection through the boundaries are processed. The
diffuse reflection model (3.2) is used on the wall of the domain as well as on the
boundary of the particle to sample the velocity of the reflected molecule. To com-
pute the motion of the Brownian particle, we compute the force by using (4.27) and
employed in the equations (4.12) and (4.14). A trajectory of the Brownian particle
until the time t = 1.860× 10−5 seconds is shown in the figure 5.17. We have also
performed the number of independent numerical experiment under similar physi-
cal condition until the time t = 1.6984×10−8 seconds to observed the translational
Brownian diffusion of the particle. In each numerical experiment, the particle is kept
inside the domain with center of mass at the position (5× 10−7,5× 10−7). Figure
5.18 shows center of mass of the particle after time t = 1.6984×10−8 seconds, and
figure 5.19 shows the normalized histogram and model probability density function
of x- and y- displacement of center of mass of the particle. It can be observed qual-
itatively that the distribution functions follow the Maxwellian. Though there is no
theory to validate the simulated diffusion coefficient for the spherical particle in 2D
geometry, we compute the diffusion coefficient of the Brownian particle for the in-
creasing number of simulated molecules, and the convergence plot is shown in the
figure 5.20. The simulated diffusion coefficient is computed by using the relation
(5.29) for 2-dimensional motion.

(a) Normal View (b) Zoom View

Fig. 5.17: Brownian motion of the circular particle until the time
1.860×10−5 seconds
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(a) Normal View (b) Zoom View

Fig. 5.18: Brownian diffusion of the circular particle at the end of the
time 1.6984×10−8 seconds.

(a) (b)

Fig. 5.19: Distributions of x- and y- displacements at the end of the time
1.6984×10−8 seconds. The histograms represent the simulation data

and the red solid curves are the Gaussian distribution function.
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Fig. 5.20: Convergence of transnational diffusion coefficients with increasing
number of gas molecules. Blue line with −o− represents DSMC numerical value

of the translational diffusion coefficient.

Figure 5.21 (a) and (b) show the x- and y- components of the velocity distribu-
tion of the circular particle in 2-dimensional geometry. Both the components of the
velocity follow the Maxwellian distribution.

(a) (b)

Fig. 5.21: Distributions of x- and y- components of translational velocity
of the spherical particle at T = 300 K. The histograms represent the
simulation data and the solid red curves are the Gaussian distribution

function.

5.4 Thermophoresis

Thermophoresis is a phenomenon by which small particles suspended in a fluid
with non-uniform temperature are subjected to move in the direction opposite to
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the temperature gradient. The thermophoresis is caused by the energy transferred to
the particle by the mean thermal motion of the surrounding gas molecules even in
the absence of gas flow, causing the particle to move from the warmer to the cooler
regions [85].
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Fig. 5.22: Schematic diagram of a particle suspened in a gas.

Schematic diagram of a particle (large center sphere) immersed in a gas is shown
in the figure 5.22. The small dots represent the gas molecules which are randomly
fluctuating. Their velocity is the function of gas temperature indicated as vector ar-
rows. In a temperature gradient the mean velocity of the gas molecules also has
a gradient. Momentum is transferred upon collision of the gas molecules with the
particle. The momentum transfer is a function of the gas molecule velocity. The
gradient in the mean molecular velocity produces a force on the particle and, the
particle moves against the temperature gradient towards the colder region.

The force arising from a temperature gradient, acting on particles in a rarefied
gas has been the subject of the theoretical and the experimental investigation for
many years. This kind of force is termed as themophoretic force which describes a
phenomenon by which the colloid particles suspended in a fluid with non-uniform
temperature are subject to force in the direction opposite to the temperature gradi-
ent. This phenomenon was first described by Tyndall [85], who observed that in a
chamber filled with dusty air there existed a spatial region around a hot body free of
colloid particles. No quantitative explanation of the phenomena was developed until
early 1920’s when Einstein and Epstein each developed the theories. Both are based
on the continuum approach, and only the Epstein theory is of interest today [25].

In the recent years the thermophoretic phenomenon received considerable atten-
tion because of its practical importance in a variety of applications, including aerosol
science [37, 48], biology [17], combustion [34], and nanocrystals [100]. Many au-
thors have realized the possibility of protecting valuable surfaces from the particles
contaminant deposition by keeping the surface warmer than the surrounding gas;
examples include thermophoretic protection of painting and other works of art and
semiconductor wafers during the manufacturing [37]. The thermophoretic protec-
tion has been shown to be powerful wafer-protection strategy at ambient pressure,
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but questions have emerged about the potential effectiveness of the thermophoresis
at the low pressures likely to encountered in modern semiconductor manufacturing
processes [37]. This concern is well founded, as in the limit of a perfect vacuum
the thermophoretic force vanishes along with the gas molecules that cause it [37].
Another area of concern is the potential effectiveness of using thermophoresis to
protect MicroElectroMechanical Systems(MEMS); although these devices may be
operated at ambient pressures, the very small feature size of such devices lead to
gas rarefaction effects that could affect the magnitude of the thermophoretic force
[37]. Various technological applications require reliable theoretical predictions for
the thermophoretic force and velocity over wide range of Knudsen numbers Kn
(Kn = λ/R, where λ is the mean free path of the fluid and R is the radius of the
particle), covering the range from the slip flow to the free-molecular flow [15].

Epstein [27] treated the problem for small Knudsen number or near the contin-
uum regime (Kn << 1). He considered a spherical, motionless particle in a gas, in
which a uniform temperature gradient exists at an appreciable distance from the par-
ticle. On application of the linearised Navier-Stokes and energy equations he calcu-
lated the stress tensor and the temperature field in the gas which enable the thermal
force to be determined. Brock [11] improved on Epstein’s solution by considering
slip boundary conditions in the continuum derivation. Other attempts were made
using the Boltzmann equation as the starting point of the analysis, but the validity of
these approaches remains questionable [95]. In the free molecular regime Kn→ ∞,
the thermophoretic force on the spherical particles in simple monoatomic gases un-
der the assumption of rigid body collision (i.e., gas molecules do not interact with
the particles unless they are in physical contact) was developed by Waldmann [95].
He proposed an expression for the thermophoretic force that remains the founda-
tion of the modern engineering analysis for the thermophoresis. The thermophoretic
force is often counteracted by the fluid drag on the particle, and in steady state
motion of particles has a constant velocity due to the balance between the ther-
mophoretic and the drag forces. This velocity is known as the thermophoretic ve-
locity.

There are at least three length scales needed to quantify the thermophoretic force:
a particle size RP, a characteristic system dimension L, and the molecular mean
free path λ . A general description of the thermophoretic would involve at least
two dimensionless parameters related to the geometry: a particle Knudsen number,
KnR = λ/Rp, and system Knudsen number, KnL = λ/L [37]. The continuum regime
applies for small Knudsen number, Kn → 0, while the free molecular regime is
reached in the limit of very large Knudsen number Kn→ ∞. The rarefaction effects
can be observed either because of small length scales or because of large mean free
paths. Extensive literature can be found in the case where the gas is restricted to the
continuum regime KnL→ 0, while the particle Knudsen number may lie in the range
0 < KnR < ∞ [37]. One of the very widely used result is due to Waldmann for the
thermophoretic force on a free-molecular particle (KnR → ∞) in a continuum gas
described by a first order approximation the Chapman-Enskog molecular velocity
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distribution function. Waldmann found that the thermophoretic force for this case is
proportional to the particle area and the local gas translational heat flux, is inversely
proportional to the mean molecular speed and is independent of pressure. Gallis et
al. [36] have provided a new theoretical computation for the thermophoretic force in
rarefied gas flow. They have used a force Green’s function [36] to compute the force
on a spherical particle directly from the molecular velocity distribution calculated
by the DSMC method. They have calculated [35] the thermophoretic force, on a
motionless spherical particle suspended in a monoatomic, quiescent gas (argon and
helium) filling the region between two infinite parallel plates over a range of pres-
sures that spanned the transition regime. Their calculations agreed very well with
the theoretical free-molecular results of Brock & Phillips [11, 35, 68] and contin-
uum results of Waldmann [95] respectively. In the transition regime, however their
results on the thermophoretic force showed remarkable differences from the model
of Phillips.

There is a relation between the thermophoretic force and the gas heat flux on
the particle. The thermophoretic force is proportional to the particle cross-sectional
area and the local heat flux, and inversely proportional to the mean molecular speed
both in the free molecular and the continuum regimes. Gallis et al. [35] has used
the DSMC/Green’s function to analyze the relation between the gas heat flux and
the thermophoretic force though Vestner [92] appears to be the first who noticed
the relationship. Gallis et al. [36] have conjectured based on the theoretical ar-
guments that the constant of proportionality depends on the form of the molec-
ular velocity distribution. Even for apparently distinct velocity distributions, such
as the Chapman-Enskog (nonequilibrium continuum) or the combination of two
half-range Maxwellians (free molecular), the proportionality constant differ by only
about 10%. They have calculated the thermophoretic proportionality constant over
the entire transition regime and found that the constant varied smoothly from the
continuum to the free-molecular for particles in the argon gas in a parallel plate ge-
ometry.

In this thesis we present the numerical results on the thermophoretic force, for
wide range of Knudsen numbers (Free molecular to Transition regimes), exerted
on the micro-scale spherical particle lying between two infinitely extended paral-
lel plates separated by a microscopic distance. We have used the numerical scheme
presented in the chapter 4 that is based on the DSMC framework where the force
on the particle exerted by the surrounding gas molecules is computed by the di-
rect interaction of particle and gas molecules. We have adopted the theory on the
thermophoretic force on the particle from the continuum to the rarefied gas regime
presented by Gallis et al. [37] for the validity of the numerical results.

We consider a motionless spherical particle of radius RP suspended inside a
monoatomic gas filling the region between two infinitely extended parallel plates
separated by a micrometer size distance L as shown in the schematic diagram (fig-
ure 5.23). The particle is assumed to be much smaller than the plate separation,
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RP << L. The coordinate system is defined such that z = 0 corresponds to the sur-
face of the bottom plate which is kept at the temperature Tc, and z = L corresponds
to the surface of the top plate which is kept at the temperature Th such that Th > Tc
and Th−Tc << Tc. Then the particle experiences a thermophoretic force pushing it
away from the warmer surface. The gas is assumed to be quiescent (no mass flow);
consequently, heat transfer between the plates is dominated by conduction only. The
perfect accommodation is assumed at all gas/solid interfaces, i.e., the thermal tan-
gent and the normal accommodation coefficients are assumed to be unity at each
plate and on the particle surface.
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Fig. 5.23: Schematic diagram of a particle suspended between two parallel plates.

5.4.1 Gas heat flux and the thermophoretic force

The gas heat flux and the thermophoretic force acting on a particle are closely related
quantities both in the continuum and the rarefied gas limits [36, 37, 92]. In this sec-
tion we present the closed form expressions for the gas heat flux and thermophoretic
force between infinite parallel plates for the case of entire range of the Knudsen
numbers. Reliable theories for the gas heat flux and the particle thermophoretic
force are well-known results both in the continuum and the free molecular limits,
and the approximated expression in the transition regime is given by Gallis et al.
[37] by using Sherman interpolation [37, 82]. Applying the similar ideas, the ther-
mophoretic velocity on the particle is also proposed in this section.
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5.4.1.1 Continuum gas

Waldmann derived an expression for the thermophoretic force in the free-molecular
particle limit (KnR→∞) but where the system is continuum (KnL→ 0). In his deriva-
tion the particle is assumed to be immersed in an infinite bath of gas molecules with
a first-order approximation the Chapman-Enskog molecular velocity distribution,
and the force on the particle is calculated by integrating the momentum exchange
from molecular collision over the particle’s surface. Assuming the complete thermal
accommodation at the particle surface, the Waldmann thermophoretic force on the
spherical particle in a parallel plate geometry is given by [9, 37, 57]

Fth,C =
32

15π

πR2
P

c̄
qtr

C , (5.50)

where c̄ and qtr
C are, respectively, the gas mean molecular speed and the translational

component of the heat flux, which are given by

c̄ =

√
8kBT
πmg

, (5.51)

qtr
C = −κ

tr dT
dz

, (5.52)

kB is the Boltzmann constant, T is the local gas temperature, mg is the mass of the
gas molecule, and κ tr is the translational part of the thermal conductivity. For the
monoatomic gas the expression for κ tr, which is accurate to the first approximation
according to the kinetic theory [9, 37, 89], is given by

κ
tr =

15kB

4mg
µ, (5.53)

where µ is the viscosity of the gas which is correct to the first approximation from
kinetic theory [9, 89], is given by

µ =
5

16d2

√
mkBT

π
, (5.54)

d is the diameter of the gas molecule.
Waldmann equation (5.50) states that the thermophoretic force is proportional to
the cross-sectional area of the particle and the translational component of the heat
flux, and inversely proportional to the mean thermal speed. It can be seen from the
Waldmann equation (5.50) that in the continuum regime the themophoretic force is
independent of the gas pressure as long as gas is described by the continuum, the
Chapman-Enskog velocity distribution. Clearly the thermophoretic force and the
translational heat flux are closely related in the continuum limit.
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5.4.1.2 Free-molecular gas

In the free-molecular gas limit (KnL → ∞), gas molecules travel back and forth be-
tween the plates without colliding with each other; in this case the heat transfer
between the plates can be described from the molecular point of view. The walls
are assumed to reflect molecules diffusely with thermal accommodation meaning
that the molecules reflected from a stationary wall assume a half-range Maxwellian
distribution (3.1) in equilibrium with the wall temperature.

An expression for the thermophoretic force between two parallel plates when
both the system and the particle are free-molecular (KnL → ∞ and KnR → ∞) is
obtained by Gallis et al. using the idea of force Green’s function. For small temper-
ature difference Th−Tc << Tc along with the approximation

√
Th +

√
Tc = 2

√
T ,

the thermophoretic force is given by

Fth,FM =
3
4

(
πR2

P

c̄

)
qtr

FM, (5.55)

where qtr
FM is the translational component of the heat flux in the free-molecular limit,

and given by

qtr
FM =− c̄

2
ρR(Th−Tc), (5.56)

ρ is the density of the gas and R = kB/mg is the specific gas constant. The heat flux
(5.56) between two parallel plates for small temperature difference Th−Tc << Tc
was also derived by Bird [9] in the rarefied gas limit by characterizing the space
between the walls by two stream of non-collisional molecules with higher energy
molecules streaming downward from the hot plate while lower energy molecules
stream upward from the cold plate. Unlike the continuum result, the free-molecular
heat flux is directly proportional to the gas density ρ , so in the limit of vanishing
density the heat flux approaches to zero, as it must in a vacuum. But as in the con-
tinuum limit, the free molecular thermophoretic force (5.55) is proportional to the
cross-sectional area of the particle and the local translational heat flux, and inversely
proportional to the mean thermal speed.

Observing from the equations (5.50) and (5.55), it can be concluded that the
Continuum and the free-molecular limits thermophoretic forces are identical within
the numerical factor. This striking result was first realized by Vestner [92] and later
exploited by Gallis et al [35, 36, 37]. The resulting numerical factor differs only
by 10%, although these two liming cases are derived from substantially different
molecular velocity distributions (Chapmann-Enskog for the continuum gas and two
half-range Maxwellian at different temperatures for the rarefied gas). In both the
limits the thermophoretic force is proportional to the particle cross-sectional area
and the local translational component of the heat flux, and inversely proportional to
the mean molecular thermal speed.
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5.4.1.3 Transition regime gas

The prediction of the heat flux and hence the thermophoretic force on the gas in
transition regime is challenging, ultimately requires the complete solution of the
Boltzmann equation. Based on the direct relationship between the thermophoretic
force and the heat flux in the limits of both continuum and rarefied gas, Gallis et al.
[36, 37] explored the relation between the thermophoretic force and the heat flux
over entire range of gas in the transition regime using an equation of the form

Fth = ξ

(
πR2

P

c̄

)
qtr, (5.57)

where ξ is the constant of proportionality and termed as thermophoresis parameter
depends on the local molecular velocity distribution in a weak way. For example,
the thermophoretic parameter varies slightly between the free molecular (two half-
range Maxwellian ) limit ξFM = 0.75 and the continuum (Chapmann-Enskog) limit
ξCE = 0.6791. Based on these results, Gallis et al. [36, 37] have suggested to ap-
proximate the thermophoretic force with equation (5.57) and using the Waldmann
thermophoretic result (5.50) to guide the choice for the coefficient:

ξ ≈ ξCE =
32

15π
. (5.58)

The use of the value of ξCE in the equation (5.57) is exact for a first-order approx-
imation the Chapman-Enskog molecular velocity distribution and, except for high
anisotropic velocity distribution, is probably accurate to roughly 10% [37].

To compute the thermophoretic force given in the equation (5.57), the expres-
sion for the translational heat flux qtr for the transition regime has to be estimated
properly so that the limiting cases for the continuum and free-molecular could be
obtained. Bird [9, 37] gave an approximate closed-form of the heat flux for a Lee’s
four-moment solution of the Boltzmann equation for the monoatomic gas. For two
parallel plates where the temperature difference is assumed to be small, the heat flux
for a monoatomic gas at all pressure P can be approximated by

q =−
κ tr

L (Th−Tc)

1+( κ tr

2PL )
[√

πmgTh
2kB

+
√

πmgTc
2kB

] , Th−Tc << Tc. (5.59)

This relation reduces to the continuum heat flux limit for large pressure and to the
free-molecular heat flux limit at very small pressure.

A simple interpolation formula for the heat flux has been suggested by Sherman
[37, 82] that connects the continuum to the free-molecular heat flux limits, and given
by

qSh =
qFM

1+qFM/qC

. (5.60)
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The heat flux (5.60) given by Sherman, by applying the relations (5.52) and (5.56),
reduces to the heat flux (5.59) derived by Bird if the approximation

√
Th +
√

Tc =
2
√

T is used. Springer [37, 82] has noted that equation (5.60) is identical expression
resulting from Lee’s four-moment method applied to the linearised (small tempera-
ture difference) limit of 3 different one dimensional geometries (concentric spheres,
concentric cylinders, and parallel plates) and agree well with the limited experi-
mental data for the monoatomic and the diatomic gases for both large and small
temperature differences. Gallis et al. [37] have presented the DSMC calculation for
the total gas-phase heat flux for argon, helium and nitrogen gases. For each gas,
the DSMC calculations approach the free molecular and the continuum limits in the
appropriate regime. In the intervening transition regime, the DSMC data are found
to be in acceptable agreement with Sherman/Lees predictions (5.59) and (5.60).
They have also presented the thermophoretic force as a function of pressure using
DSMC/Green’s function for argon, helium and nitrogen. The DSMC/Green’s func-
tion calculation for the thermophoretic force also approach to the free molecular
and the continuum (Waldmann) limits in the appropriate regimes. The closed form
expression of the equations (5.57), (5.58), and (5.60) for the thermophoretic force
in the transition regime is well approximated by their DSMC/Green’s function cal-
culation for the thermophoretic force.

Our present work is to compute the thermophoretic force on the spherical parti-
cle suspended inside infinitely extended parallel plates at different temperatures by
implementing the numerical scheme to compute the force and the torque in DSMC
framework that has been proposed in the chapter 3, and finally validate the results
with the theoretical values given by relations (5.57), (5.58) and (5.60) for the wide
range of Knudsen numbers.

5.4.2 Thermophoretic velocity

When a small particle is suspended in a non-uniform temperature field in the fluid,
the particle experiences a thermophoretic force which pushes it in the direction op-
posite to the temperature gradient, that means, particle moves from the higher to
the lower temperature region. Since the moving particle is also counteracted by the
drag force, and the drag force increases with the increasing particle velocity so the
velocity gained by the particle due to thermophoretic force can not increase without
limit. The balance between the thermophoretic and the drag forces causes the par-
ticle to move with constant velocity. This velocity is known as the thermophoretic
velocity [21, 57]. Knowledge of thermophoretic velocity is equally important in
varieties of applications including aerosol science, biology and combustions. For
example, in a study demonstrated that depositing flame-syntesized TiO2 nanocrys-
tals onto a substrate with the tailored particle sizes and crystal morphology requires
a quantitative knowledge of the thermophoretic velocity. For the case of ordinary-
temperature gases, the thermophoretic velocity has been employed widely in the
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modelling of the thermophoretic deposition onto a cold wall of fine powers sus-
pended in a gas flow [21]. The drag forces on the spherical particle in the continuum
and the free molecular limits are well established results which are equated with the
thermophoretic forces in the continuum and the free molecular limits respectively
to get the thermophoretic velocity in both the limits. In the transition regime, the
drag force is not yet established because of the unavailability of the complete so-
lution of the Boltzmann equation. In the next section we propose the drag force on
the particle in the transition regime by employing the Sherman interpolation of the
drag coefficients in the continuum and the free molecular limits, and it is equated
with the thermophoretic force in the transition regime explained in the last section
to approximate the thermophoretic velocity of the particle.

Equating the drag force (5.31) using the Stoke’s drag coefficient (5.32) with the
thermophoretic force (5.50) yields the thermophoretic velocity Vth,C in the contin-
uum limit, and it is given by

Vth,C =−
1
3

√
2R
πT

RP

dT
dz

. (5.61)

The thermophoretic velocity is proportional to the radius of the particle and the tem-
perature gradient, and inversely proportional to the square root of the temperature
of the gas.

Equating the drag force (5.31) using the drag coefficient (5.34) in the free-
molecular regime with the thermophoretic force (5.55) yields the thermophoretic
velocity Vth,FM in the free molecular limit, and it is given by

Vth,FM =− 9
128

1(
1+ πα

8

)√ 2R
πT

(Th−Tc). (5.62)

Unlike in the continuum regime, the thermophoretic velocity in the free molecular
limit does not depend on the particle size but directly proportional to the tempera-
ture difference, and inversely proportional to the square root of the gas temperature.

The drag coefficient in the transition regime can be obtained by interpolating the
drag coefficients in the continuum and the free molecular limits by applying the
Sherman interpolation formula [37, 82], and it is given by

γSh =
γFM

1+ γFM/γC

. (5.63)

Equating the drag force (5.31) using the drag coefficient (5.63) with the ther-
mophoretic force (5.57) yields the thermophoretic velocity V in the transition
regime, and it is given by

V = ξ

(πR2
p

c̄

)qSh

γSh

, (5.64)
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where the parameter ξ is given by (5.58). The thermophoretic velocity (5.64) ap-
proaches to the velocity (5.61) in the continuum limit for small values of Knudsen
numbers (Kn� 1) and to the velocity (5.62) in the free-molecular limit for large
values of Knudsen numbers (Kn� 1).

5.4.3 Numerical results: Thermophoretic force on a spherical
particle

In this section we present the numerical approximation of the thermophoretic force
exerted on a motionless spherical particle suspended in a gas between infinitely
extended parallel plates by using the DSMC method. The DSMC simulations are
performed for the monoatomic argon gas confined between two parallel plates sep-
arated by a distance L = 2×10−6 m in z-direction. Although the problem is clearly
one dimensional, the problem is solved in three dimensional because of the rigid
spherical particle introduced in the domain. To acquire the desire physics the walls
in x- and y- directions are modeled as the periodic boundary walls thus represent
the infinite parallel plates. The upper wall z = L and the lower wall z = 0 are kept
at the temperatures Th = 283 K and Tc = 263 K respectively, and these walls are
assumed to be diffuse isothermally reflecting walls. The spherical particle of radius
2× 10−7 m is kept in the center of the cubic domain of size [0,L]× [0,L]× [0,L],
where L = 2× 10−6m, surrounded by the argon gas. The computational domain is
divided into 30× 30× 30 regular cubic DSMC cells for the binary collision of the
simulated gas molecules. The density of the gas is chosen in such a way that the
constraint indicated by Bird [9] that cell sizes should be less than the molecular
mean free path. We have used the following parameters for the gas. The gas is argon
which is a monoatomic gas with mass mg = 6.63× 10−26 kg. For the Boltzmann
constant we have kB = 1.38×10−23 J/K, and we obtained the specific gas constant
R = kB/mg = 208 J/(kgK) [89]. The gas model for the binary collision is taken to
be the hard sphere of diameter d = 3.68× 10−10 m. The numerical computation is
performed for different values of Knudsen numbers ranging from larger to smaller.
The Knudsen number is calculated with respect to the particle diameter. The hard
collision is performed between the gas molecules and the spherical particle. The dif-
fuse boundary condition is also applied on the boundary of the rigid particle with its
temperature equal to the average of Th and Tc . The force is computed using (4.27).
The large sample for the force is computed, and averaged to improve the statistical
accuracy. Typically maximum number of simulated gas molecules is used so that
the constraint ν ≥ 1 in the equation (4.24) is satisfied. The simulations are initial-
ized using the constant temperature profile at the arithmetic mean of the Th and Tc.
To obtained the steady results, averaging is performed after the transients have been
decayed.

Figure 5.24 shows the plot of numerically computed values of the thermophoretic
force per unit cross-sectional area of the spherical particle for different values of
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Knudsen numbers ranging from free molecular to transition regimes, and com-
pared with the theoretical values computed by using the equations (5.57), (5.58),
and (5.60). It can be observed from the results that the numerical results match cor-
rectly with the theory in the free molecular limit, that is, for large values of Knudsen
numbers, and fit as well correctly with the interpolated thermophoretic result at tran-
sition regimes but start to deviate below the Knudsen number 1. The thermophoretic
force on the spherical particle at small values of Knudsen number could not be com-
puted with the current set up of the physical domain and the size of particle. It is
numerically difficult to get the situation where KnL << 1 and KnR >> 1, which are
the basic requirements of these two Knudsen numbers to validate the theory in the
continuum regime.

Fig. 5.24: Thermophoretic force on the spherical particle for different values of
Knudsen numbers. Red circular dots are the DSMC simulated numerical values

and the colored solid curves are the theoretical values.

5.4.4 Numerical results :Thermophoretic velocity of a spherical
particle

In this section we present the numerical approximation of the thermophoretic ve-
locity of a spherical particle suspended initially at rest in the monoatomic argon
gas. The physical set up and the parameters are similar to the numerical experiment
presented in subsection 5.4.3, additionally the particle is allowed to translate and
rotate. The equations of motion (4.27) and (4.28) are used to calculate the velocity
and the trajectory of the particle in the DSMC simulation. Figure 5.25 shows the
trajectory of the spherical particle that moves from the warmer to the colder region
because of the thermophoretic force. The DSMC method is stochastically in-built,
and hence the force on the particle using this approach is stochastic in nature. To get
the statistical accuracy the simulation is run over number of times with similar phys-
ical conditions by providing the different initialization seeds to sample the velocity
distribution functions and to evaluate the binary collisions of gas molecules to get
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the ensemble average of the velocity of the particle. In figure 5.25 the green curves
are the different realizations of the trajectory of the particle and the blue curve is
the sample average of the trajectories. Figure 5.26 is the plot of the velocity of the
particle over time where the green curve is one of the realizations, the red curve
is the sample average, and the blue curve is the theoretical value (5.64) of the ther-
mophoretic velocity computed for the Knudsen number Kn = 30. It can be observed
from the red curve in the figure 5.26 that particle initially gains the velocity from its
rest position because of the thermophoretic force acted on it, and later the drag force
balances the thermophoretic force to keep the velocity of the particle constant over
the time. We have also computed the thermophoretic velocity of the particle for dif-
ferent values of Knudsen numbers. Since the particle acquires the constant velocity
due to the balance in the thermophoretic and the drag forces, the time average of the
velocity is calculated after the transients have been decayed for each value of Knud-
sen numbers. The figure 5.27 shows the DSMC simulation for the thermophoretic
velocity for different values of Knudsen numbers ranging from larger to smaller,
and compared with the proposed theoretical values of the thermophoretic velocity
at the free molecular (5.62), and the transition regimes (5.64). The DSMC simulated
data fits well enough in the free molecular regime, and started to deviate slightly in
the transition regime.

Fig. 5.25: Trajectory of the particle between two parallel plates. The green curves
are the independent sample paths and the blue line is the average value.
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Fig. 5.26: Transnational velocity of the spherical particle. The green curve is a
single sample data, the red curve is the sample average and the blue curve is the

theoretical value.

Fig. 5.27: Thermophoretic velocity of the spherical particle for different values of
Knudsen numbers. The red circular dots are the DSMC simulated numerical values

and the colored solid curves are the theoretical values.

5.4.5 Janus particles

Micro/nanostructures have attracted great attention because of their extremely in-
teresting properties and wide range of applications in electronic, magnetic, sensing,
optics, and nanomedicine. Last decades have witnessed rapid development and ap-
plications of micro/nanostructure in different disciplines in science and technology.
Recent demands for increased functionality, however, have shed light on the limita-
tions of conventional micro/nanostructures. For these complex applications, multi-
functional structures are sought to meet the diverse requirements from different dis-
ciplines. One of these structures is the Janus particle. The name ”Janus” is derived
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from the Roman god with two heads placed back to back, and particle has quickly
grown as a new member in the colloidal family. A Janus particle should have two
faces with different chemical or physical properties with roughly equal areas [98]. In
general, Janus particles can be divided into several classes according to their archi-
tecture and dimensionality (see Figure 5.28). Most commonly, spherical (3D) Janus
particles can be imagined. In addition, two types of cylinders (1D) and two types
of disc-like particles (2D) are conceivable [96, 97]. The asymmetry associated with
Janus particles is the key to realizing many commercial applications, including elec-
trophoretic displays, nanosviscometers, and self-propelling micromachines. These
diverse functionalities were accomplished by using an external electric or magnetic
field to control the particle orientation, and in the process, modulate its reflectivity,
hydrodynamic mobility, or direction of motion, respectively. The optical trapping
techniques that are used to control the translational degrees of freedom of a parti-
cle. Optical fields present an effective method for controlling the three translational
degrees of freedom for particles ranging from tens of nanometers to micrometers
in size. Optical fields have been used in combination with magnetic field to four
degrees of freedom of an asymmetric particle or particle aggregate. These optical
field and combination with magnetic field has been reported in the paper [28]. Erb
et al. [28] have introduced a new type of spherical Janus that can be manipulated by
a combination of optical and magnetic fields. They have demonstrated the ability to
directly control five degrees of freedom of the particle’s motion (three translational
and two orientational) while constraining the final sixth degree of freedom.

Fig. 5.28: Overview of possible Janus particle architectures. (a) sphere, (b+c)
cylinders,and (d+e) discs [96]

Here we introduce a new type of spherical Janus particle that can be manipulated
by introducing the thermal field. We demonstrate the ability to control the particle’s
translational and rotational motions. The particle is suspended in the rarefied gas
contained in the micro-scale cuboid/rectangular geometry where two parallel walls
are kept at two different temperatures to induce the thermal field. The two faces
of the particle are given by two different physical properties such as diffuse and
specular reflecting boundary faces. The flow of gas is modeled by the Boltzmann
equation (2.2), and solved numerically by applying DSMC procedures to find the
force and the torque on the particle. The motion of the particle is computed by using
the Newton-Euler equations. We also compute the distribution of the orientation
of the Janus particle when only the rotational motion is applied. In this work we
take two types of Janus particles. In the 2-dimensional domain we simulate a disc



84 5 Numerical Results

like particle as shown in the Figure 5.28(d), and in the 3-dimensional geometry a
spherical particle as shown in the Figure 5.28(a).

5.4.5.1 Thermophoresis on a spherical Janus particle

Consider the rotation of a Janus spherical particle of radius RP fixed at its center of
mass under the influence of a thermal gradient as shown in the schematic diagram
5.29. Baier [6] has recently proposed a theory to calculate the distribution of the
orientation of the rotating Janus microparticles (cylindrical and spherical) in the
thermal gradient.

Hot Wall (Th)

Cold Wall (Tc)

ex

ey

ez

P

C

θ

Fig. 5.29: Schematic diagram of a spherical particle suspended in temperature field.

Let θ be the polar angle between the orientation CP of the particle and the direct
of thermal gradient ez. Then the distribution of the polar angle θ , 0≤ θ ≤ π is given
by [6]

p(θ) = Ñ sinθ exp
(
− V (θ)

kBT

)
, (5.65)

where V (θ) is damped top spinning in a potential.
The normalization

π∫
0

p(θ)dθ = 1

gives the value of the normalized constant Ñ. In the free-molecular regime (Kn�
1), the damped top spinning in a potential V (θ) is given by

V (θ) = K∞
T Vτ(θ), Vτ(θ)≈

1
24

(67cosθ + cos3θ),

where

K∞
T =

ν

2
√

π
(c̄h− c̄l)(a+−a−)R3

P , c̄h,c =

√
2kBTh,c

m
, ν = ρ

√
kBT
2πm

,
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where a± denotes the type of boundary conditions (specular or diffuse) on the sur-
face of the Janus particle and ρ is the density of gas.

In our DSMC simulation, we consider a spherical Janus particle of radius 2.5×
10−8m with the center of mass at the position (6.25×10−8,6.25×10−8,2.5×10−8)
is suspended in a cuboid domain of size [0,1.25×10−7]× [0,1.25×10−7]× [0,5×
10−7] containing the argon gas. The walls in the z-direction are separated by a dis-
tance L = 5×10−7m. The wall z = 0 is kept at the temperature Tc = 295 K and the
wall z = L is kept at the temperature Th = 305 K. These two thermal walls are mod-
eled as the diffuse boundary walls, and the remaining four walls are periodic walls.
The domain is discretized by 6× 6× 24 cells of equal size. In each cell initially
29 DSMC simulated molecules are uniformly distributed with the velocity sampled
from the Maxwellian distribution (2.29) with mean velocity zero and the tempera-
ture is taken to be the average of Tc and Th. In this numerical experiment the spher-
ical particle only rotates about its fixed center of mass C, see figure 5.29, caused
by the themophoresis torque exerted by the massive collision of gas molecules. The
northern hemisphere facing towards the warmer region is modeled by the diffuse
boundary wall (a+ = 1) and, the southern hemisphere facing towards the colder re-
gion is modeled by the specular boundary wall (a− = 0) in the DSMC simulation.
These boundary conditions on the spherical particle remain same throughout the
simulation. The DSMC simulation is performed for the Knudsen number, Kn = 10.
We compute the distribution of the orientation of the Janus particle in DSMC sim-
ulation. The orientation of the particle is given by a reference vector CP initially
aligned with the direction of temperature gradient, that means, CP is parallel to ez.
The polar angle θ between the CP and ez measures the orientation of the Janus
particle. Under the consideration of the Janus particle with two different boundary
conditions in two opposite faces make the particle to align slightly with the tem-
perature gradient. The distribution of the orientation of the particle is numerically
computed. The comparison of the numerical result with the theory given by (5.65)
is shown in the figure in which (a) is the DSMC simulation with binary gas colli-
sion, and (b) is the DSMC simulation without binary gas collision. The numerically
computed distribution of the polar angle agrees quite well with the theory.
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(a) With binary collision (b) Without binary collision

Fig. 5.30: Distribution of polar angle. The histograms represent the
DSMC simulation data and the red solid curves are the theoretical

distribution function.

5.4.5.2 Thermophoresis on a circular Janus particle

A circular particle of radius 0.1× 10−6m with the center of mass at the position
(0.5×10−6,1.0×10−6) is suspended in a rectangular domain of size [0,1×10−6]×
[0,2×10−6] that is filled by the argon gas. The domain is discretized by 50 cells in
x-direction and 100 cells in y-direction so that the each cell has equal area mea-
sure. In each active DSMC cell of full size initially 50 simulated molecules are
uniformly distributed with the velocity sampled from the Maxwellian distribution
(2.29) with mean velocity zero and temperature is taken to be the average of tem-
peratures at the upper and the lower walls. The upper the wall y = L is kept at 500
K and lower wall y = 0 is kept at 300 K. The Knudsen number with respect to the
diameter of the circular particle is 50. The hot and the cold walls are taken to be the
diffuse wall, and other two walls along x-directions are periodic walls. We assign
two different physical properties on the two faces of the particle. We consider the
translational-rotational and, only rotational motion about its center of mass caused
by the thermophoresis.

Orientation of a circular Janus particle

As shown in the Figure 5.31 the circular particle only rotates about its center of mass
C caused by the themophoretic torque exerted by the collision of gas molecules. The
radial vector CP is a reference vector to measure the orientation of the particle with
respect to the fixed vector ez. Initially the reference vector CP is aligned to the
temperature gradient in the domain, that mean, CP is parallel to ey. The polar angle
θ between the CP and ey measures the orientation of the circular Janus particle.
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Fig. 5.31: Schematic diagram of a circular particle suspended between parallel
plates.

In DSMC simulation, initially the half part of the circular particle that faces to-
wards the hot region is model by the diffuse boundary wall, and the remaining half
part is modeled by the specular reflection wall which faces towards the cold region.
The particle is kept fixed so that it rotates only about its center of mass cause by
the thermophoretic torque. The figure 5.32 shows the orientation of the particle at
different instants of time. The particle rotates from its initial orientation, and comes
to the specific alignment where the diffuse part faces to the colder region and spec-
ular part faces to the hotter region. This typical phenomenon is due to the larger
tangential force in the diffuse wall while it is facing towards the hotter region that
causes the particle to rotate until it faces towards the colder region. Once the specu-
lar wall faces towards the hot region, the normal force on the specular wall becomes
dominant and the particle aligns in the specific direction forever. The distribution of
the polar angle made by a reference vector CP is shown in the figure 5.33.

Fig. 5.32: Orientation of the circular Janus particle at time (i) 0 sec (ii)
2.6311×10−8 secs (iii) 5.7892×10−8 secs. from left to right.
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Fig. 5.33: Probability density function of the polar angle: Histograms show the
simulation data and red solid curve is the model normal distribution.

In the second numerical experiment the half part of the circular particle facing
towards the hot region is modeled by the specular boundary and the remaining half
part facing towards the colder region is modeled by the diffuse boundary in the
DSMC simulation. The circular Janus particle is allowed only rotate about its center
of mass because of the torque exerted by the thermophoresis. In this set up particle
does not change its orientation, and it remains in the same orientation forever, that
means, the specular wall keep facing towards the hotter region and diffuse wall keep
facing towards the colder region. The orientation of the particle at different instants
of time are shown in the figure 5.34. The distribution of the polar angle is shown in
the figure 5.35. The polar angle only fluctuate about the initial orientation.

Fig. 5.34: Orientation of the circular Janus particle at time (i) 0 sec (ii)
2.6311×10−8 secs (iii) 5.7892×10−8 secs. from left to right.
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Fig. 5.35: Probability density function of the polar angle: Histograms show the
simulation data and red solid curve is the model normal distribution.

Translation motion and the orientation of a circular Janus particle

For the translation motion together with the rotation of the circular Janus particle, we
take a long channel with size [0,1×10−6]× [0,4×10−6] filled with the argon gas,
and the circular particle is suspended near to the upper wall with the center of mass
at (0.5×10−6,3.5×10−6). The domain is divided into 50×200 regular DMSC cells
of equal area. The upper wall y = L is kept at the temperature of Th = 500 K and
the lower wall y = 0 is kept at the temperature Tc = 300 K. Initially 50 simulated
gas molecules are uniformly distribution in each active DMSC cell with velocity
sampled from the Maxwellian distribution (2.29) with mean velocity zero and the
temperature equal to the average of Th and Tc. The temperature of the particle is
also taken to be the average of Th and Tc throughout the motion of the particle.
The Knudsen number with respect to the diameter of the circular particle is 50.
The upper and the lower walls of the domain are modeled by the diffuse boundary
walls, and other side walls are modeled by the periodic boundary walls. Initially the
half part of the particle facing towards the hotter region is modeled by the diffuse
boundary wall, and the other half part of the particle facing towards the colder region
is modeled as the specular boundary walls. The particle exhibits its translational and
rotational motion due the thermophoresis force and the torque exerted by collision of
gas molecules on it. The particle translates towards the colder region together with
the rotational motion, and the diffuse wall rotates towards the colder region . Once
the diffuse part aligns towards the colder region it does not change its orientation
further and keep facing towards the colder region forever during the motion. The
translation motion and the orientation of the circular particle is shown in the figure
5.36 at different instants of time. When initially the half part of the circular particle
facing towards the hotter region is modeled by the specular boundary wall and the
other half part facing towards the colder region is modeled by the diffuse boundary
wall, the particle does not change it orientation. The particle only translate towards
the colder region keeping its initial orientation. Figure 5.37 show the motion of the
circular Janus particle at different instants of time.
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Fig. 5.36: Motion of the circular Janus particle at time (i) 0 secs (ii) 4.3417×10−8

secs (iii) 7.7631×10−8 secs (iv) 1.9672×10−7 secs from left to right.
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Fig. 5.37: Motion of the circular Janus particle at time (i) 0 secs (ii) 4.3417×10−8

secs (iii) 7.7631×10−8 secs (iv) 1.9672×10−7 secs from left to right.





Chapter 6
Conclusion

We have presented a numerical scheme for a moving rigid body with arbitrary shape
in a rarefied gas. The gas is modeled by the Boltzmann equation, and the motion of
the rigid body is described by the Newton-Euler equations. The Boltzmann equation
is solved by a DSMC type of particle method with hard-sphere collision model. In
the DSCM framework, we have developed a naive scheme to compute the force and
the torque on the rigid body by applying the momentum transfer during the collision
of gas molecules and the rigid body. This scheme in the DSMC framework is named
as the momentum approach. We have performed a number of test examples in 1-, 2-
and 3-dimensional computational domains to validate the proposed momentum ap-
proach in the DSMC framework. In 1-dimensional geometry, we have simulated the
gas flow in a actuator to move the piston by providing the temperature difference at
two sides of the piston. The numerical result obtained by the momentum approach
for computing the equilibrium position of the piston is correctly agreed with the
theory. In 2-dimensional geometry, we have performed the numerical simulations
of a gas flow in a cavity that contains a suspended rigid circular body. In this test
example, we have solve the problem by using DSMC method, and the motion of
the rigid body is computed by applying both momentum and moment approaches.
The results obtained from both the approaches are agreed quite well. We have also
solved the cavity flow problem with the Navier-Stokes equations by using the finite
pointset method (FPM) to find the motion of the body, and compared the results
obtained by using the momentum approach in the DSMC framework for small and
large values of Knudsen number. For a small value of Knudsen number, the solu-
tions obtained from both the models match well enough but for a large value of
Knudsen number the solutions differ significantly because of the breakdown of the
continuum hypothesis in which the Navier-Stokes equations failed to describe the
flow of the gas. To validate the Einstein relation for the Brownian motion in the rar-
efied gas regime, we have presented the diffusion of the spherical particle with the
translational and the rotational motion. The numerical values of the diffusion coef-
ficients are found to converge to the theoretical values as the number of simulated
molecules increased. We have also presented the diffusion of the circular particle
in 2-dimensional domain. In the last experiment we have performed the DSMC
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simulations for the thermophoresis on a spherical particle. The numerical values of
the thermophoretic force using the DSMC method with the momentum approach
agreed quite well with the theoretical values in the transition and the free molec-
ular regimes. We have also proposed the thermophoretic velocity in the transition
regime by applying the Sherman interpolation, and the DSMC simulation is also
performed in this regard. The theory agreed well for the large values of Knudsen
numbers but started deviate for the small values. We have also simulated the mo-
tion of the circular and the spherical Janus particle in the thermophoresis by using
the DSMC method with the momentum approach. We have studied the translational
and the rotational motions of the circular Janus particle in the thermophoresis. We
have presented the distribution of the polar angle of the circular Janus particle when
it is fixed at its center of mass just to exhibit the rotational motion. We have also
computed the distribution of the polar angle of the spherical Janus particle fixed at
its center of mass, and found that the numerical distribution agreed quite well with
the theoretical one.



Appendix A
Binary Elastic Collision

The collision term J( f , f ) in the Boltzmann equation is derived under the consider-
ation of binary collisions involving just two molecules. The collision is considered
to be an elastic in which there is no interchange of translation and internal energy
[9]. Given the pre-collision velocities v and v∗, and the given physical properties of
the molecules and the the orientation of the trajectories of the two collision partners
in a typical binary collision, we can determine the post-collision velocities v′ and v′∗.

The linear momentum and the energy must be conserved in the elastic collision,
which are given by

v+v∗ = v′+v′∗ = 2vc, (A.1)

||v||2 + ||v∗||2 =
∣∣∣∣v′∣∣∣∣2 + ∣∣∣∣v′∗∣∣∣∣2 . (A.2)

where vc is the velocity of center of mass of the pair of molecules. It can be seen
from the equation (A.1) that the velocity of center of mass of the pair of molecules
is unchanged by the collision. The pre-collision and the post-collision values of the
relative velocity between the molecules are defined by

vr = v−v∗, (A.3)
v′r = v′−v′∗. (A.4)

Adding and subtracting the equations (A.1) and (A.3), we get

v = vc +
1
2

vr,

v∗ = vc−
1
2

vr.

 (A.5)

The pre-collision velocities relative to the center of mass are v− vc and v∗− vc.
Equation (A.5) shows that these velocities are anti-parallel in this frame of reference,
and if the molecules are point centers of force, the force between them remains in the
plane containing the two velocities. The collision is therefore planner in the center
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of mass of frame [9]. Similarly the post-collision velocities are obtained by adding
and subtracting the equations (A.1) and (A.4) as

v′ = vc +
1
2

v′r,

v′∗ = vc−
1
2

v′r.

 (A.6)

This shows that the post-collision velocities are also anti-parallel in the center of
mass frame of reference.

Substituting the equations in (A.5) and (A.6) in the energy equation (A.2), we
get the magnitude of the relative velocity is unchanged by the collision, i.e.

||vr||=
∣∣∣∣v′r∣∣∣∣ . (A.7)

Since both vc and vr may be calculated from the pre-collision velocities, the deter-
mination of the post-collision velocities reduces to the calculation of the change in
direction χ of the relative velocity vector. The calculation of direction χ depends on
the choice of the collision model, see [9] for detail.



Appendix B
Random Sampling

If the physical processes are modeled by the probabilistic approach, the process re-
quired the generation of representative value of variables that are distributed in a
prescribed manner. This is done through random number and is a key step in the
direct simulation Monte Carlo methods. Let us assume the availability of a set of
successive random number U that are uniformly distributed between 0 and 1. There
are many computational algorithms to generate the random numbers uniformly dis-
tributed between 0 and 1, for example, the most common is the linear congruential
generator and most widely used is Mersenne Twister. The computational method
that is used to generate the sequence of random numbers are based on the determin-
istic algorithm, so it is called the pseudorandom number generators (PRNG). Using
these uniformly distributed random number, we can generate the sequence of ran-
dom numbers which is described by the given distribution function.

B.1 Monovariate Distribution

Let x ∈ [a,b]⊆R be a random variable with given distribution function fx ≥ 0 such
that

b∫
a

fx(x)dx = 1.

Then the cumulative distribution function is defied as

Fx(x) =
x∫

a

fx(y)dy.

We now generate a random number U uniformly distributed between 0 and 1 and
equate with Fx(x) to get

Fx(x) =U. (B.1)
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If Fx is an invertible function, then the random variable x can be sampled by solving
the equation (B.1) to get

x = F−1(U).

Example B.1. (Exponential distribution)
Consider the probability density function of an exponential distribution for λ > 0

fx(x) =
{

λe−λx for x≥ 0
0 else.

Then

Fx(x) =
x∫

0

λe−λydy = 1− e−λx

and therefore Fx(x) =U gives

x =− 1
λ

ln(1−U),

where U is uniformly distributed random number between 0 and 1 so is 1−U , and
we can also write x =− 1

λ
lnU .

Remark B.1. Sometimes it may be expensive to compute the inverse of the com-
mutative distribution function Fx, since in general a non-linear equation has to be
solved. In this case another widely used method to construct the fx-distributed se-
quence of random variable is the acceptance-rejection method. For the detail of the
method we refer to [61, 70].

B.2 Multivariate Distribution

Suppose we want to sample a n-dimensional random variable x = (x1, · · ·xn), whose
probability density function fx is given.
If the density function can be written as a product of densities of the scalar random
variables xi , i.e. if

fx(x1, · · ·xn) = fx1(x1) fx2(x2) · · · fxn(xn),

then the n scalar random variables x1 · · ·xn are independent, and they can be sam-
pled separately, i.e. the problem is equivalent to sampling n monovariate random
variables.
If this is not the case, then one may look for a transformation T : x→ ξξξ such that in
the new variables the probability density is factorized, i.e.

fx(x1, · · ·xn)dx1dx2 · · ·dxn = fξ1
(ξ1) fξ2

(ξ2) · · · fξn(ξn)dξ1dξ2 · · ·dξn,
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sample the variables ξ1, · · · ,ξn, and then compute x by inverting the map T , i.e.
x = T−1(ξξξ ).

Example B.2. (Maxwellian distribution)
Consider the normalized Maxwellian distribution for velocity vector v

fv =
1

(2πRT )3/2 e−
||v−u||2

2RT . (B.2)

Substitute w = v−u√
2RT

, that is, v =
√

2RT w+ u. Then dv = (2RT )3/2dw and the
distribution function for the velocity vector w is given by

fw =
1

(π)3/2 e−||w||
2
.

Transforming w = (wx,wy,wz) into the spherical coordinates

wx = wsinθ cosφ ; wy = wsinθ sinφ ; wz = wcosθ ,

where w = ||w||2 > 0, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π . Then dw = w2 sinθdwdθdφ

and distribution function for the new transformed variables (w,θ ,φ) is given by the
product of three univariate distributions

fw,θ ,φ = fw fθ fφ ,

where fw = 4√
π

w2e−w2
, fθ = 1

2 sinθ and fφ = 1
2π

.
The cumulative distribution function for fθ is given by

Fθ (θ) =

θ∫
0

1
2

sin tdt =
1
2
(1− cosθ),

and therefore Fθ (θ) =U1 gives

cosθ = 1−2U1, sinθ =
√

4U1(1−U1).

The cumulative distribution function for fφ is given by

Fφ (φ) =

φ∫
0

1
2π

dt =
1

2π
φ ,

and therefore Fφ (φ) =U2 gives

φ = 2πU2.

Finally the cumulative distribution function for fw is given by
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Fw(w) =
w∫

0

4√
π

t2e−t2
dt,

and therefore Fw(w) =U3 gives

w∫
0

t2e−t2
dt =

√
π

4
U3,

which has to be solved numerically to compute tha value of w.
Hence the velocity vector v = (vx,vy,vz) following the Maxwellian distribution
(B.2) is give by

vx =
√

2RT w
√

4U1(1−U1)cos(2πU2)+ux,

vy =
√

2RT w
√

4U1(1−U1)sin(2πU2)+uy,

vz =
√

2RT w(2U1−1)+uz,

where u = (ux,uy,uz), and U1,U2,U3 are the uniformly distributed random numbers
between 0 and 1.

Example B.3. (Diffuse reflection)
In this model the distribution function of the gas molecules which are re-emitted
with the velocity v from the boundary wall at temperature Tw and moving with the
velocity Vw is given by [83]

fv =| (v−Vw) ·n |
1

2π(RTw)2 exp
(
− ||v−Vw||2

2RTw

)
, (v−Vw) ·n > 0, (B.3)

where n is unit is inward normal vector to the wall . Substitute w = v−Vw√
2RT

, that is,

v =
√

2RT w+Vw. Then dv = (2RT )3/2dw, and the distribution function for the
velocity vector w is given by

fw =| w ·n | 2
π

e−||w||
2
, w ·n > 0.

Let {t,τττ,n} be a local orthonormal basis. Then expressing of w in the frame of
reference of {t,τττ,n} is given by

w = wtt+wτ τ +wnn,

where (wt,wτ ,wn) are the coordinates of w w.r.t. {t,τττ,n}. Then fw can be expressed
as the product of two distributions which is given by

fw = fwn fwt fwτ
,



B.2 Multivariate Distribution 101

where fwn = 2wne−w2
n , wn > 0 and fwt ,wτ

= 1
π

e−(w
2
t +w2

τ ), −∞ < wt ,wτ < ∞.
Transforming (wt ,wτ) into polar coordinates

wt = r cosθ ; wτ = r sinθ ,

where r =
√

wt 2 +w2
τ > 0 and 0≤ θ ≤ 2π . Then dwtdwτ = rdrdθ and distribution

function corresponding to fwt ,wτ
with new transformation is give by

fr,θ = fr fθ ,

where fr = 2re−r2
and fθ = 1

2π
.

The cumulative distribution function for fwn is given by

Fwn(wn) =

wn∫
0

2te−t2
dt = 1− e−w2

n ,

and therefore Fwn(wn) =U1 gives

wn =
√
− ln(1−U1) =

√
− lnU1.

The cumulative distribution function for fr is given by

Fr(r) =
r∫

0

2te−t2
dt = 1− e−r2

,

and therefore Fr(r) =U2 gives

r =
√
− ln(1−U2) =

√
− lnU2

Finally the cumulative distribution function for fθ is given by

Fθ (θ) =

2π∫
0

1
2π

dt =
1

2π
,

and therefore Fθ (θ) =U3 gives

θ = 2πU3.

Hence the velocity vector v following the distribution (B.3) is give by

v=
√
−2RTw lnU2cos(2πU3)t+

√
−2RTw lnU2sin(2πU3)τττ+

√
−2RTw lnU1n+Vw,

where U1,U2,U3 are uniformly distributed random numbers between 0 and 1.
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Remark B.2. If the density function fx does not factorized we can also transform
a uniformly distributed sequences into f -distributed ones. References [61, 70] give
the method of construction and also relevant literatures.
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