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Abstract 

The study of sequence spaces was motivated by the classical results of Summability 

theory in Functional Analysis. The results obtained by Cesaro, Borel, Nörlund and 

others at the turn of 20th century stimulated interest in general matrix transformation 

theory which deals with characterization of matrix mappings between sequence 

spaces by giving necessary and sufficient conditions on the entries of the infinite 

matrices. The first application of analysis to the theory of Summability was done by 

Mazur in 1927 when he proved now his famous Mazur’s consistency theorem. An 

outstanding contribution and plenty of work have been done in the field of sequence 

spaces in last 50+ years. 

Kizmaz [41] introduced the concept of difference sequence spaces. The work of 

Kizmaz was further generalized by Et and Cloak [66], Tripathy and Esi [19], Tripathi, 

Esi and Tripathi [20], Esi, Tripathy and Sarma [3] and others. In the meantime in 

constructing new sequence spaces the role of the infinite matrices 

𝐺(𝑢, 𝑣) = (𝑔𝑛𝑘) = {
𝑢𝑛𝑣𝑘, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

called generalized weighted mean; 

∆= (𝛿𝑛𝑘) = {
(−1)𝑛−𝑘, 𝑛 − 1 ≤ 𝑘 ≤ 𝑛

0, 0 ≤ 𝑘 < 𝑛 or 𝑘 > 𝑛
 

called the difference operator matrix; 

𝑆 = (𝑠𝑛𝑘) = {
1, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
  ; 

the operator matrix  ∆𝑗  which can be expressed as a sequential double band matrix 

given by 

∆𝑗 =

1 2 0 0 ...

0 2 3 0 ...

0 0 3 4 ...

 
 

 
 
 
 
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and combination of them has been considered to represent difference operator. In this 

connection we have constructed new matrices 

𝑆𝑛 = 𝜆 = (𝜆𝑛𝑘) = {
𝑛 − 𝑘 + 1, 𝑛 ≥ 𝑘

0, otherwise
 

which is a lower unitriangular matrix and an operator sparse band matrix  𝜆𝑗 which 

can be expressed as a sequential double band matrix given by 

𝜆𝑗 =

1 1

2 2

3 3

4

1 1
0 0 ...

1 1
0 0 ...

1 1
0 0 ...

1
0 0 0 ...

t t

t t

t t

t

 
 

 
 

 
 
 

 
 
 
 
 
 
   

to introduce the new sequence spaces. 

This thesis consists of six chapters. 

Chapter one contains introduction with preliminaries and reviews.  

Chapter two has been divided into two parts. The sequence spaces 𝑤(𝑝), 𝑤0(𝑝) 

and 𝑤∞(𝑝) were introduced and studied by Maddox [45]. In [12], the authors have 

introduced the sequence spaces 𝑐0(𝑢, 𝑣; 𝑝), 𝑐(𝑢, 𝑣; 𝑝), 𝑙∞(𝑢, 𝑣; 𝑝) and in [29] 

𝑙(𝑢, 𝑣; 𝑝) and established some properties. Following this in the first part of chapter 

two, we introduce a set of sequence spaces 𝑤(𝑢, 𝑣; 𝑝), 𝑤0(𝑢, 𝑣; 𝑝), 𝑤∞(𝑢, 𝑣; 𝑝) by the 

application of the generalized weighted mean matrix  𝐺(𝑢, 𝑣) as the operator, study 

some properties and find β- dual of 𝑤(𝑢, 𝑣; 𝑝) . We also characterize the matrix 

classes (𝑤(𝑢, 𝑣; 𝑝), 𝑙∞) , (𝑤(𝑢, 𝑣; 𝑝), 𝑐) and (𝑤(𝑢, 𝑣; 𝑝), 𝑐0) . Recently in [78] , the 

sequence spaces 𝑐0(𝑢, 𝑣; 𝑝, Δ),  𝑐(𝑢, 𝑣; 𝑝, Δ), 𝑙∞(𝑢, 𝑣; 𝑝, Δ) and 𝑙(𝑢, 𝑣; 𝑝, Δ) have been 

introduced. Following this in the second part of chapter two, we introduce the 

sequence spaces 𝑤(𝑢, 𝑣; 𝑝, Δ), 𝑤0(𝑢, 𝑣; 𝑝, Δ) and 𝑤∞(𝑢, 𝑣; 𝑝, Δ) by using the 

combination of the matrix 𝐺(𝑢, 𝑣) and the difference operator matrix 𝛥, study some 
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properties and find β-dual of  𝑤(𝑢, 𝑣; 𝑝, Δ). We also characterize the matrix classes 

(𝑤(𝑢, 𝑣; 𝑝, Δ), 𝑐), (𝑤(𝑢, 𝑣; 𝑝, Δ), 𝑐0) and (𝑤(𝑢, 𝑣; 𝑝, Δ), Ω(𝑡)). 

Chapter three has also been divided into two parts. In [15] Choudhary and Mishra 

have introduced and studied the sequence space 𝑙(𝑝) which is the set of all sequences 

whose S- transforms are in the space 𝑙(𝑝). Following this in the first part we introduce 

a new sequence space 𝑙(𝑝, 𝜆) which is the set of all sequences whose 𝑆𝑛 = 𝜆 

transforms are in l(𝑝) . We compute β- dual of  𝑙(𝑝, 𝜆) and characterize the matrix 

classes (𝑙(𝑝, 𝜆), c), (𝑙(𝑝, 𝜆), 𝑐0) and (𝑙(𝑝, 𝜆), 𝑙∞). Similarly in the second part we 

introduce a set of new paranormed sequence spaces 𝑙∞(𝑝, 𝜆) , 𝑐(𝑝, 𝜆) and 𝑐0(𝑝, 𝜆) 

which are generated by the infinite matrix 𝜆 . We also compute the basis for the 

spaces 𝑐(𝑝, 𝜆) and 𝑐0(𝑝, 𝜆) , obtain β- dual of them and characterize the matrix classes 

(𝑙∞(𝑝, 𝜆), 𝑙∞), (𝑙∞(𝑝, 𝜆), 𝑐) and (𝑙∞(𝑝, 𝜆), 𝑐0) . 

In Chapter four, we introduce a set of new paranormed sequence spaces 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) 

, 𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) and 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) generated by the combination sparse band matrix 𝜆𝑗 

and the generalized weighted mean matrix 𝐺(𝑢, 𝑣) . We establish some topological 

properties, obtain the basis for 𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) and 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) and find β- duals. We 

characterize the matrix classes (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑙∞) , (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐) and 

(𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐0) . Besides we give characterization theorem for the case of 

mapping that guarantees the given rate of convergence from the sequence space 𝑙∞(𝑝) 

to the new sequence space 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗). 

In chapter five, we present a practical application of sequence space. In [26], the 

sequence spaces and function spaces on interval [0, 1] for DNA sequencing have been 

introduced and studied. The authors have introduced new sequence spaces by using 

generalized p- summation method and proved that these spaces of sequences and 

functions are Banach space. Based on the sequence spaces and function spaces on 

[0,1], we examine the behaviors of sequences generated by DNA nucleotides. We 

extend the results of authors [26] by introducing new basis function ∑
𝑥𝑘

𝑘!

𝜈
𝑘=1   , (𝜈 =

1,2,3, … 𝑛) which is the extension of existing basis function  
𝑥𝑛

𝑛!
 , (𝑛 ∈ ℕ) defined in 

the polynomial function on [0,1]. Besides, we introduce a new sequence 𝑏 = (𝑏𝑛) =
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∑ 𝑎𝜈
∞
𝜈=𝑛  which can characterize DNA sequence where 𝑎𝑛 ∈ {𝐴, 𝐶, 𝑇, 𝐺} and A: 

Adenine, C: Cytosine, T: Thymine and G: Guanine are four types of nucleotides. 

We conclude our thesis by providing conclusions and recommendations in chapter 

six. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Preliminaries and Reviews 

The theory of sequence space occupies a very significant position in Analysis. 

Because of its wide applicability in several branches of mathematics, the study of 

sequence space is being subject of great interest and central study in Functional 

analysis. The study of sequence spaces was motivated by the classical results of 

summability theory which is a tremendous area possessing wide range of application 

in Functional Analysis. In most of the cases the common general operator from one 

sequence space into another is, in turn, given by an infinite matrix and therefore the 

study of matrix transformation go side by side in the study of sequence spaces. 

Interest in general matrix transformation theory was, to some extent, stimulated by 

special results in summability theory which were obtained by Cesaro, Borel, Nörlund 

and others at the turn of the 20th century. It was however the celebrated German 

mathematician O. Toeplitz who, in 1911, brought the methods of linear space theory 

to bear on problems connected with matrix transformation on sequence spaces. 

Toeplitz characterized all those infinite matrices 𝐴 = (𝑎𝑛𝑘), n, k ∈ ℕ  which map the 

convergent sequences into itself, leaving the limit of convergent sequence invariant. 

The analysis embraced by Toeplitz was classical. 

The first application of analysis to the theory of summability was done by Mazur in 

1927 when he proved his now famous Mazur’s consistency theorem, which won him 

the prize of university of LWOW [9]. In 1932, Banach, in particular, presented a very 

short proof of Silverman-Steinhaus theorem. Of course functional analysis was not 

available to Silverman and Toeplitz in 1911 and they used the only method opened to 

them, which may be called ‘classical’ or ‘hard’ proof. This can be found in Hardy’s 

(1949) classic book “ Divergent Series”. As mentioned by Maddox [48] with the aid 

of theorem given by Banach much of the theory became accessible to those who 

would normally have neither time nor the energy to follow the usual classical 

approach. The advantage of studying matrix transformation between spaces of 
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sequences over general linear operator is that, in many important cases, the most 

general linear operator acting between the sequence spaces is actually determined by 

an infinite matrix. 

In 1950 Robinson [6] considered the action of infinite matrices of linear operators 

from a Banach space of sequences to that space. The classical results of Toeplitz, 

Kojima- Schur and many more results could be extended to this general setting. A 

fine account of these results can be found in Maddox [50]. A remarkable contribution 

and a lot of work have been done in the theory of sequence spaces during last 50+ 

years. Works of Maddox [44,45,46,47,48,49,50,51,52,54], Lascarides [24,25], Basar 

[32], Basar and Altay [10,11,12,13,14,33,34,35], Dutta and Reddy [40], Boos and 

Leiger [55], Cohen and Dunford [64], Sarigol [65], Mursaleen, Gaur and Saif [67], 

Nanda [80,81], Ahmad and Sarawat [89] can be regarded as milestone in the area of 

sequence spaces and matrix transformations. It will be difficult to discuss all the 

aspects of the theory in the thesis. In this context we refer the books of Taylors [2], 

Wilansky [7,8,9], Limaye [21], Goffman and Pedrick [22], Kreyszig [28] , Zeilder 

[31] , Reisz and Nagi [36], Diestel [56], Diemling [59], Atosic and Swartz [69], 

Ahmad and Mursaleen [88], Choudhary and Nanda [18], Maddox [48] , Yosida [63], 

Kamathan and Gupta [73],  Wojtaszczyk [74] ,Cooke [75], Walter [77],  Ruckle [85] 

and Basar [87] to the reader. 

In 1981 Kizmaz [41] introduced the notion of difference sequence space. He studied 

the difference sequence spaces 𝑙∞(∆), 𝑐(∆) and 𝑐0(∆) which have been mentioned in 

the thesis.The notion was further generalized by Et and Colak [66] by introducing the 

spaces 𝑙∞(∆
𝑠) , 𝑐(∆𝑠) and 𝑐0(∆

𝑠) . Another type of generalization of sequence spaces 

is due to Tripathy and Esi [19] , who studied the spaces 𝑙∞(∆𝑚), 𝑐(∆𝑚) and 𝑐0(∆𝑚). 

Tripathy , Esi and Tripathy [20] generalized the above notions and unified these as 

follows: 

Let 𝑚, 𝑠 be non negative integers , then for 𝑍  a given sequence space we have 

𝑍(∆𝑚
𝑠 ) =  {𝑥 = (𝑥𝑘) ∈ 𝜔: (∆𝑚

𝑠 𝑥𝑘) ∈ 𝑍}, 

where 

(∆𝑚
𝑠 𝑥) = (∆𝑚

𝑠 𝑥𝑘) = (∆𝑚
𝑠−1𝑥𝑘 − ∆𝑚

𝑠−1𝑥𝑘+𝑚) 



 

 

3 

and ∆𝑚
0 𝑥𝑘 = 𝑥𝑘 for all k ∈ ℕ  ; 𝑍 ∈ {𝑙∞, 𝑐, 𝑐0}, 

which is equivalent to the following binomial representation, 

∆𝑚
𝑠 𝑥𝑘 =∑(−1)𝜈 (

𝑠
𝜈
)

𝑠

𝜈=0

𝑥𝑘+𝑚𝜈 

Esi , Tripathy and Sarma [3] showed that 𝑐0(∆𝑚
𝑠 ) , 𝑐(∆𝑚

𝑠 ) and 𝑙∞(∆𝑚
𝑠 ) are Banach 

spaces normed by 

‖𝑥‖ =∑|𝑥𝑘|

𝑚𝑠

𝑘=1

+ sup
k
 |∆𝑚

𝑠 𝑥𝑘| 

Taking  𝑚 = 1 , we get the spaces 𝑙∞(∆
𝑛) , 𝑐(∆𝑛) and 𝑐0(∆

𝑛) studied by Et and 

Colak [66]. Taking  𝑠 = 1 , we get the spaces 𝑙∞(∆𝑚) , 𝑐(∆𝑚) and 𝑐0(∆𝑚) studied by 

Tripathy and Esi [19]. Taking  𝑚 = 𝑠 = 1 , we get the spaces 𝑙∞(∆), 𝑐(∆) and 𝑐0(∆) 

introduced and studied by Kizmaz [41]. 

Dutta [39] used the difference operators ∆𝑟 and ∆(𝑟) to infinite matrices of non-

negative real numbers to construct the sequence spaces (𝐴̂, 𝑝, ∆(𝑟))0 ,(𝐴̂, 𝑝, ∆𝑟)0 , 

(𝐴̂, 𝑝, ∆(𝑟)) , (𝐴̂, 𝑝, ∆𝑟) ,(𝐴̂, 𝑝, ∆(𝑟))∞ and  (𝐴̂, 𝑝, ∆𝑟)∞ respectively. 

During last 50+ years in constructing new sequence spaces the matrices that represent 

difference operators have been considered. The matrices 

𝐺(𝑢, 𝑣) = (𝑔𝑛𝑘) = {
𝑢𝑛𝑣𝑘 , 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

 (1.1.1) 

called the generalized weighted mean ; 

∆= (𝛿𝑛𝑘) = {
(−1)𝑛−𝑘, 𝑛 − 1 ≤ 𝑘 ≤ 𝑛

0, 0 ≤ 𝑘 < 𝑛  or 𝑘 > 𝑛
 

                                                                                                                               (1.1.2) 

called the difference operator matrix; 

𝑆 = (𝑠𝑛𝑘) = {
1, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
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(1.1.3)                                                                               

𝑅𝑡 = (𝑟𝑛𝑘
𝑡 ) = {

𝑡𝑘 ∑𝑡𝑘

𝑛

𝑘=0

⁄ , 0 ≤ 𝑘 ≤ 𝑛

0,  𝑘 > 𝑛

 

(1.1.4)                                                                            

called the Riesz mean ; 

the operator ∆𝑗 which can be expressed as a sequence in a double band matrix given 

by 





























...4300

...0320

...0021

j  

(1.1.5)    

or combination of them have been used to define and construct new sequence spaces. 

In this endeavor we have constructed new matrices 𝜆 = 𝑆𝑛defined by  

𝜆 = 𝑆𝑛 = (𝜆𝑛𝑘) = {
𝑛 − 𝑘 + 1, 𝑛 ≥ 𝑘

0, otherwise
 

(1.1.6)          

which is a lower unitriangular matrix  and an operator sparse band matrix  𝜆𝑗 which 

can be expressed as a sequential double band matrix given by 









































...
1

000

...
11

00

...0
11

0

...00
11

4

33

22

11

t

tt

tt

tt

j  

 (1.1.7) 
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to define the new sequence spaces. 

1.2. Organization of Chapters 

The thesis consists of six chapters. The first chapter, where we are in, is introductory 

in nature. 

The chapter two is divided into two parts. 

In [12] Altay and Basar have introduced and studied the sequence spaces 𝜆(𝑢, 𝑣; 𝑝)  ; 

which are derived by generalized weighted mean; defined by  

𝜆(𝑢, 𝑣; 𝑝) =  {𝑥 = (𝑥𝑘): (∑𝑢𝑘𝑣𝑗𝑥𝑗

𝑘

𝑗=0

) ∈ 𝜆(𝑝)} 

where  𝜆 ∈ {𝑙∞, 𝑐, 𝑐0}.  

If  𝑝𝑘 = 1 for every 𝑘 ∈ ℕ , the sequence spaces 𝜆(𝑢, 𝑣; 𝑝) reduce to 𝜆(𝑢, 𝑣) as 

introduced by Malkowski and Savas [29]. The authors have proved that the spaces 

𝜆(𝑢, 𝑣; 𝑝) and 𝜆(𝑝)  where 𝜆 ∈ {𝑙∞, 𝑐, 𝑐0}  are linearly isomorphic. Besides these they 

have computed  β ,𝛾- duals of the spaces 𝜆(𝑢, 𝑣; 𝑝)  and computed the basis of the 

spaces  𝑐0(𝑢, 𝑣; 𝑝) and 𝑐(𝑢, 𝑣; 𝑝) . Moreover, they have characterized the classes 

(𝜆(𝑢, 𝑣; 𝑝), µ) and (µ, 𝜆(𝑢, 𝑣; 𝑝)) where µ is any given sequence space. 

Further in [13] Altay and Basar have introduced and studied the sequence space  

𝑙(𝑢, 𝑣; 𝑝) ; which is derived by generalized weighted mean ; defined by  

𝑙(𝑢, 𝑣; 𝑝) =  {𝑥 = (𝑥𝑘): (∑𝑢𝑘𝑣𝑗𝑥𝑗

𝑘

𝑗=0

) ∈ 𝑙(𝑝)} 

 

The authors have proved that the spaces 𝑙(𝑢, 𝑣; 𝑝) and 𝑙(𝑝) are linearly isomorphic, 

computed β ,𝛾- duals of the spaces 𝑙(𝑢, 𝑣; 𝑝) and obtained the basis for the spaces 

𝑙(𝑢, 𝑣; 𝑝) . Further they have characterized the classes (𝑙(𝑢, 𝑣; 𝑝), µ) and 

(µ, 𝑙(𝑢, 𝑣; 𝑝)) where µ is any given sequence space. 

Following these works in the first part of the second chapter we have introduced the 

new sequence spaces µ(𝑢, 𝑣; 𝑝) for µ ∈ (𝑤, 𝑤0, 𝑤∞) defined by 
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µ(𝑢, 𝑣; 𝑝) =  {𝑥 = (𝑥𝑘): (∑   𝑢𝑛𝑣𝑘𝑥𝑘

𝑛

𝑘=1

)  ∈ µ(𝑝)} 

(1.2.1) 

We have proved that the sequence spaces µ(𝑢, 𝑣; 𝑝) for µ ∈ (𝑤,𝑤0, 𝑤∞) are complete 

paranormed space and are isomorphic to the corresponding spaces µ(𝑝) . Further we 

have obtained β - dual of 𝑤(𝑢, 𝑣; 𝑝) and characterized the matrix classes 

(𝑤(𝑢, 𝑣; 𝑝), 𝑙∞) , (𝑤(𝑢, 𝑣; 𝑝), 𝑐) and (𝑤(𝑢, 𝑣; 𝑝), 𝑐0) .  

In [78], Demiriz and Cacan have introduced and studied the sequence spaces 

𝜆(𝑢, 𝑣; 𝑝, Δ) for 𝜆 ∈ {𝑐0 ,𝑐, 𝑙∞, 𝑙} derived by generalized weighted mean 𝐺(𝑢, 𝑣) and 

the difference operator matrix  Δ as, 

𝜆(𝑢, 𝑣; 𝑝, Δ) = {𝑥 = (𝑥𝑘): (∑   𝑢𝑛𝑣𝑘∆𝑥𝑘

𝑛

𝑘=1

) ∈ 𝜆} 

They have proved that these sequence spaces are complete paranormed metric linear 

spaces and computed their 𝛼−, 𝛽−, 𝛾 − duals. Moreover they have given the basis for 

the spaces 𝜆(𝑢, 𝑣; 𝑝, Δ)  for   𝜆 ∈ {𝑐0 ,𝑐, 𝑙∞, 𝑙} .  

Following the work of the authors [10, 11, 15, 29, 33, 45, 78] in the second part of 

chapter two we have introduced a set of new sequence spaces µ(𝑢, 𝑣; 𝑝, Δ) for µ ∈

{𝑤,𝑤0 ,𝑤∞} defined by, 

µ(𝑢, 𝑣; 𝑝, Δ) =  {𝑥 = (𝑥𝑘) ∈ 𝜔: (∑   𝑢𝑛𝑣𝑘∆𝑡𝑘

𝑛

𝑘=1

) ∈ µ(𝑝)} 

(1.2.2)  

where 

𝑡𝑘(𝑥) =  
1

𝑘
∑  𝑥𝑖

𝑘

𝑖=1

 

and  ∆𝑡𝑘 = 𝑡𝑘 − 𝑡𝑘−1  for all  𝑘 ∈ ℕ  with  𝑡0 = 0 . 

We have proved that the sequence spaces µ(𝑢, 𝑣; 𝑝, Δ) for µ ∈ {𝑤,𝑤0 ,𝑤∞} are linearly 

isomorphic to µ(𝑝) and that the sequence spaces are complete paranormed sequence 

spaces. Moreover we have constructed basis for the space  𝑤(𝑢, 𝑣; 𝑝, Δ) . Besides we 
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have obtained β-dual of  𝑤(𝑢, 𝑣; 𝑝, Δ ) and characterized the matrix classes  

(𝑤(𝑢, 𝑣; 𝑝, Δ), 𝑐)  , (𝑤(𝑢, 𝑣; 𝑝, Δ), 𝑐0) and (𝑤(𝑢, 𝑣; 𝑝, Δ), Ω(𝑡)). In this chapter our 

attempt is to fill up existing literature gap in connection with spaces 𝑤(𝑝),𝑤0(p) and 

𝑤∞(p) with respect to their generalization by means of the generalized weighted 

mean and the difference operator matrix. 

Chapter three is also divided into two parts. 

In the first part of chapter three we have introduced new sequence space 𝑙(𝑝, 𝜆) 

defined by 

𝑙(𝑝, 𝜆) =  {𝑥 = (𝑥𝑘) ∈ 𝜔: 𝜆𝑥 ∈ 𝑙(𝑝) } 

which is generated by infinite lower unitriangular matrix 𝜆  defined by  

𝜆 =  𝑆𝑛 = (𝜆𝑛𝑘) = {
𝑛 − 𝑘 + 1, 𝑛 ≥ 𝑘

0, otherwise
 

where  

𝑆 = {
1, 0 ≤ 𝑘 ≤ 𝑛
0, 𝑘 > 𝑛

 

as defined in [ 15]. 

We have shown that 𝑙(𝑝) ⊆ 𝑙(𝑝)̅̅ ̅̅ ̅  ⊆ 𝑙(𝑝, 𝜆);   𝑙(𝑝, 𝜆) is linearly isomorphic to 𝑙(𝑝) 

and is a complete paranormed sequence space. We have constructed basis for 𝑙(𝑝, 𝜆). 

Moreover we have found 𝛽 − dual of 𝑙(𝑝, 𝜆) and characterized the matrix classes 

(𝑙(𝑝, 𝜆), c), (𝑙(𝑝, 𝜆), 𝑐0)and (𝑙(𝑝, 𝜆), 𝑙∞) .  

In the second part of chapter three we have defined the sequence spaces 𝑋(𝑝, 𝜆) for 

𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} as  

𝑋(𝑝, 𝜆) =  {𝑥 = (𝑥𝑘) ∈ 𝜔: 𝜆𝑥 ∈ 𝑋(𝑝)} 

(1.2.3) 

where  𝜆 = 𝑆𝑛   and  𝑆 are as given in (1.1.6) and (1.1.3) respectively. 

We have shown that the sequence spaces 𝑋(𝑝, 𝜆) are complete paranormed linear 

metric spacecs and are linearly isomorphic to 𝑋(𝑝) for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. We also have 
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constructed basis for 𝑋(𝑝, 𝜆) when 𝑋 ∈ {𝑐, 𝑐0}. Further we have obtained 𝛽 − dual of 

𝑋(𝑝, 𝜆) for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} and have characterized the matrix classes (𝑙∞(𝑝, 𝜆), 𝑙∞), 

(𝑙∞(𝑝, 𝜆), 𝑐) and (𝑙∞(𝑝, 𝜆), 𝑐0) .  

Recently in 2013 Baliarsingh [70] has defined the sequence spaces 𝑋(∆𝑗, 𝑢, 𝑣; 𝑝)  for 

𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} as, 

𝑋(∆𝑗, 𝑢, 𝑣; 𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔: (∑   𝑢𝑘𝑣𝑗∆𝑗𝑥𝑗

𝑘

𝑗=1

) ∈ 𝑋(𝑝)} 

which is derived by using generalized weighted mean  𝐺(𝑢, 𝑣)  and the operator 

double band matrix  ∆𝑗  as defined in (1.1.5) and  ∆𝑗𝑥𝑗 is defined as  

∆𝑗(𝑥𝑗) =  𝑗𝑥𝑗 − (𝑗 + 1)𝑥𝑗+1    (𝑗 ∈ ℕ). 

The author has proved that the sequence spaces 𝑋(∆𝑗 , 𝑢, 𝑣; 𝑝) are complete linear 

metric spaces and that 𝑋(∆𝑗, 𝑢, 𝑣; 𝑝) for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} are linearly isomorphic to the 

spaces 𝑙∞, 𝑐, 𝑐0 respectively. Also, 𝛼−, 𝛽−, 𝛾 − duals of these spaces have been found 

and the matrix transformation from these classes to the sequence spaces 𝑙∞(𝑞), 𝑐(𝑞) 

and 𝑐0(𝑞) have been characterized. Following the work of Baliarsingh [70] in chapter 

four we have first defined the matrix  𝜆𝑗 and  then we have introduced new sequence 

spaces 𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} as 

𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) = {𝑥 = (𝑥𝑘) ∈ 𝜔: (∑   𝑢𝑘𝑣𝑗𝜆𝑗𝑥𝑗

𝑘

𝑗=1

) ∈ 𝑋(𝑝)} 

(1.2.4)                                   

where 𝜆𝑗𝑥𝑗 =
1

𝑡𝑗
Δ𝑥𝑗;   

1

𝑡𝑗
∈ (0,1) and  Δ𝑥𝑗 = 𝑥𝑗−1 − 𝑥𝑗 with 𝑥0 = 0   ; (𝑗 ∈ ℕ) . 

We have proved that these spaces are complete linear metric spaces and linearly 

isomorphic to the corresponding space 𝑋(𝑝) for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. We have constructed 

the basis for the spaces for  𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) and 𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗). We have found 𝛽 −dual 

of the sequence space 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) and characterized the matrix classes 
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(𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑙∞), (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐), (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐0) and 

(𝑙∞(𝑝), 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)). 

In chapter five we present a practical application of sequence spaces. In [26] Xu and Xu have 

introduced and studied sequence spaces and function spaces on interval [0,1] for DNA 

sequencing . Authors have defined the function spaces ,  

𝐶𝜙,0[0,1] = {𝑓(𝑥) = ∑𝑎𝑛
𝑥𝑛

𝑛!

∞

𝑛=0

: lim
𝑛→∞

𝑎𝑛 = 0} 

𝐶𝜙,𝑝[0,1] = {𝑓(𝑥) = ∑𝑎𝑛
𝑥𝑛

𝑛!

∞

𝑛=0

:∑|𝑎𝑛|
𝑝 < ∞

∞

𝑛=0

} 

and 

𝐶𝜙,∞ [0,1] = {𝑓(𝑥) = ∑𝑎𝑛
𝑥𝑛

𝑛!

∞

𝑛=0

: sup
𝑛≥0

|𝑎𝑛| < ∞}  

where  𝑎 = (𝑎1, 𝑎2, … . . , 𝑎𝑛, … ) is a DNA sequence and 𝑎𝑛 ∈ {𝐴, 𝐶, 𝑇, 𝐺} and 𝐴 , 𝐶, 𝑇 

and 𝐺 are four types of nucleotide which are linked in different orders in extremely 

long DNA molecules. The abbreviations 𝐴 , 𝐶, 𝑇 and 𝐺 stand for A: Adenine, C: 

Cytosine, T: Thymine and G: Guanine.  Based on the sequence spaces and function 

spaces on interval [0,1] , we examine the behaviors of sequence generated by DNA. 

Basically we extend the results of the authors in [26] by introducing a new basis 

function  for  which is the extension of the existing basis function  

𝑥𝑛

𝑛!
  (𝑛 ∈ ℕ) in [26] defined in the polynomial space in [0,1] .Besides, we introduce a 

new sequence 

 

(1.2.5) 

which can characterize DNA sequence where 𝑎𝑛 ∈ {𝐴, 𝐶, 𝑇, 𝐺} . Moreover the authors 

have presented the set inclusion relation as  

,  . 

1 !

k

k

x

k





 1,2,3,...,n 

 ( )n
n

b b a






  

,1 , ,0 ,[0,1] [0,1] [0,1] [0,1] [0,1] [0,1]p MP C C C C C   



     1 p  
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The spaces 𝐶𝜙,0 [0,1] ,𝐶𝜙,𝑝 [0,1] and 𝐶𝜙,∞ [0,1]  are isomorphic to  𝑐0 , 𝑙𝑝 and  𝑙∞ 

respectively. 

We extend this set inclusion relation to  

,  where, 

𝐶𝜓,0 [0,1] = {𝑔(𝑥) = ∑𝑎𝑘

∞

𝑘=1

(∑
𝑥𝜈

𝜈!

𝑘

𝜈=1

) ∶  lim
𝑛→∞

𝑏𝑛 = 0} , 

 

          𝐶𝜓,𝑝 [0,1] = {𝑔(𝑥) = ∑𝑎𝑘

∞

𝑘=1

(∑
𝑥𝜈

𝜈!

𝑘

𝜈=1

) ∶  ∑|𝑏𝑛|
𝑝 < ∞

∞

𝑛=1

} and 

 

𝐶𝜓,∞ [0,1] = {𝑔(𝑥) = ∑𝑎𝑘

∞

𝑘=1

(∑
𝑥𝜈

𝜈!

𝑘

𝜈=1

) ∶  |𝑏𝑛|𝑛≥1
𝑠𝑢𝑝 < ∞} 

 

which fills the literature gap to the previous set inclusion relation. Further we have 

established some isomorphism theorems on newly introduced sequence spaces. 

Finally in chapter six we wrap up the thesis by providing some conclusive remarks 

and recommendations. 

We now collect some known definitions and results which we shall use in our context. 

1.3. Definitions and Useful Results 

1.3.1. Metric space and metric linear space 

Metric space  

Definition: Let 𝑋 be a non empty set. A metric 𝑑 on 𝑋 is a function  

𝑑: 𝑋 × 𝑋 → ℝ  satisfying the following properties for 𝑥, 𝑦, 𝑧 ∈ 𝑋 :  

𝑀1: 0 ≤ 𝑑(𝑥, 𝑦) < ∞ 

, , ,0 ,0 , ,[0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1]p p MP C C C C C C C     



       

1 p  
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𝑀2: 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 

𝑀3: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

𝑀4: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

Any non empty set 𝑋 together with a metric function 𝑑 is regarded as a metric space 

and is denoted by a pair (𝑋, 𝑑). The axioms 𝑀2 −𝑀4 for a metric 𝑑 are sometimes 

referred to as Hausdorff postulates. 𝑀4 is called the triangle inequality. 

Metric linear space 

Definition: A topological linear space (𝑋, 𝜏) is a linear space with a topology  𝜏 on 𝑋 

such that the addition and scalar multiplication are continuous in (𝑋, 𝜏) . If the 

topology 𝜏 on 𝑋 is given by a metric (respectively semi metric), then we regard 𝑋 as a 

metric linear space (respectively semi metric linear space).  

1.3.2. Vector space 

Definition: A vector space over a field  Ϝ(ℝ or ℂ) is a set 𝑉 together with two binary 

operations; called vector addition i.e. for any vectors 𝑢, 𝑣 ∈ 𝑉 their sum 𝑢 + 𝑣 ∈ 𝑉and 

scalar multiplication i.e. for any scalar 𝜆 ∈ 𝐹 and a vector 𝑣 ∈ 𝑉, their 

multiplication𝜆𝑣 ∈ 𝑉; satisfying the eight conditions listed below for 𝑎, 𝑏 ∈ 𝐹  and 

𝑢, 𝑣, 𝑤 ∈ 𝑉: 

V1. Associativity of addition  

𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) + 𝑤 

V2. Commutativity of addition  

𝑢 + 𝑣 = 𝑣 + 𝑢 

V3. Identity element of addition  

There exists an element 0 ∈ 𝑉, called the zero vector, such that 

𝑣 + 0 = 𝑣 for all 𝑣 ∈ 𝑉. 

 

 



 

 

12 

V4. Inverse element of addition 

For every element 𝑣 ∈ 𝑉 there exists an element −𝑣 ∈ 𝑉, called the additive inverse 

of 𝑣 such that 𝑣 + (−𝑣) = 0 ,the zero vector of 𝑉. 

V5. Compatibility of scalar multiplication with field multiplication 

𝑎(𝑏𝑣) = (𝑎𝑏)𝑣 

V6. Identity element of scalar addition 

1. 𝑣 = 𝑣 

where 1 denotes the multiplicative identity in 𝐹. 

V7. Distributivity of scalar multiplication with respect to vector addition  

𝑎(𝑢 + 𝑣) = 𝑎𝑣 + 𝑎𝑣 

V8. Distributivity of scalar multiplication with respect to field addition  

(𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣 

When the scalar field 𝐹 is real numbers ℝ , the vector space is called a real vector 

space. When the scalar field 𝐹 is complex numbers ℂ , the vector space is called a 

comlpex vector space. ℝ1, ℝ2,…,ℝ𝑛 and  ℂ1 , ℂ2,…,ℂ𝑛 are the examples of vector 

spaces. 

1.3.3. Topological Vector Space (TVS) 

Definition: Suppose that 𝜏 is a topology on a vector space 𝑋 such that  

(i) every point of X is a closed set 

(ii) the vector space are continuous with respect to 𝜏. 

Under these two conditions 𝜏 is called vector topology on 𝑋 and 𝑋 is called a 

topological vector space. 

1.3.4.  Paranorm on a linear space 𝑿 and Paranormed (total 

paranormed) space 

Definition: A paranorm𝑔 on a linear space 𝑋 over the real field ℝ is a function 𝑔: 𝑋 →

ℝ having the following properties  
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(i) 𝑔(𝜃) = 0 where θ is the zero vector in 𝑋. 

(ii) 𝑔(𝑥) = 𝑔(−𝑥) for all 𝑥 ∈ 𝑋 

(iii) 𝑔(𝑥 + 𝑦) ≤ 𝑔(𝑥) + 𝑔(𝑦) for all 𝑥, 𝑦 ∈ 𝑋 i.e. 𝑔 is subadditive in 𝑋 

(iv) the scalar multiplication is continuous , that is, |𝛼𝑛 − 𝛼| → 0 and 𝑔(𝑥𝑛 − 𝑥) → 0  

imply 𝑔(𝛼𝑛𝑥𝑛−𝛼𝑥) → 0  for all 𝛼 ∈ ℝ and 𝑥 ∈ 𝑋 , (𝑛 → ∞) . 

A paranormed space is a linear space 𝑋 together with a paranorm 𝑔 . A total paranorm 

is a paranorm such that  

(v) 𝑔(𝑥) = 0 implies 𝑥 = 0 

Every Paranormed (total paranormed) space is a semi-metric (metric) linear space. 

Conversely any semi-metric (metric) linear space can be turned into a paranormed 

(total paranormed) space. So a paranormed (total paranormed) space and semi-metric 

(metric) linear spaces are essentially the same. 

1.3.5. Norm and Normed Linear Spaces 

Norm: 

Definition: A norm on a linear space X is a real function ‖. ‖: 𝑋 → ℝ defined on 𝑋 

such that for every 𝑥, 𝑦 ∈ 𝑋 and for all 𝜆 ∈ ℂ, 

(i) ‖𝑥‖ > 0 

(ii) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ 

(iii) ‖𝜆𝑥‖ =  |𝜆|‖𝑥‖ 

(iv) ‖𝑥‖ = 0 implies 𝑥 = 0 

A seminorm is defined by omitting condition (iv) in the definition of a norm. Every 

seminorm (norm) is a paranorm (total paranorm) but not conversely. 

Normed linear space 

Definition: A normed space (or normed linear space) is a pair (𝑋, ‖. ‖), where 𝑋 is a 

linear space and ‖. ‖ is a norm on 𝑋 . 
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1.3.6.  Banach space 

Definition: A Banach space (𝑋, ‖. ‖) is a complete normed linear space where 

completeness means that for sequence (𝑥𝑛) in X with  ‖𝑥𝑚 − 𝑥𝑛‖ → 0    (𝑚, 𝑛 → ∞), 

there exists 𝑥 ∈ 𝑋 such that ‖𝑥𝑛 − 𝑥‖ → 0     (𝑛 → ∞) . 

Examples of normed linear space 

ℝ𝑛 is a normed linear space with norm 

        (a) 

‖𝑥‖1 = ∑|𝑥𝑖|

𝑛

𝑖=1

 

        (b) 

‖𝑥‖2 = [∑|𝑥𝑖|
2

𝑛

𝑖=1

]

1 2⁄

 

         (c) 

‖𝑥‖𝑛 = [∑|𝑥𝑖|
2

𝑛

𝑖=1

]

1 𝑛⁄

 

          (d) 

‖𝑥‖∞ = max
1≤𝑖≤𝑛

 |𝑥𝑖| 

(ii) 𝐶[𝑎, 𝑏] is a normed linear space with norm  

‖𝑓‖ = sup
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)| 

where 𝐶[𝑎, 𝑏] is the set of continuous functions on [𝑎, 𝑏] . 

(iii)  𝑙∞, 𝑐, 𝑐0 are the normed linear spaces with the norm  

‖𝑥‖ = 𝑠𝑢𝑝|𝑥𝑛| ; but not with  ‖𝑥‖ = lim
𝑛→∞

|𝑥𝑛| 

The word norm is used to denote the function that maps to ‖𝑥‖ . Every normed linear 

space may be regarded as a metric together with a metric 𝑑(𝑥, 𝑦), i.e., distance 

between 𝑥 and 𝑦 is 𝑑(𝑥, 𝑦) . In any metric space the open and closed balls with center 

at 𝑥 and radius 𝑟 are the sets 
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𝐵𝑟(𝑥) = {𝑦: 𝑑(𝑥, 𝑦) < 𝑟} 

and 

𝐵𝑟(𝑥)̅̅ ̅̅ ̅̅ ̅ = {𝑦: 𝑑(𝑥, 𝑦) ≤ 𝑟} 

respectively. 

In particular , if X is a normed linear space, the sets 

𝐵1(0) =  {𝑥: ‖𝑥‖ < 1} 

and 

𝐵1(0)̅̅ ̅̅ ̅̅ ̅ =  {𝑥: ‖𝑥‖ ≤ 1} 

are called the open unit balls and closed unit balls of X respectively. By declaring a 

subset of  a metric space to be open if it is a (possibly empty) union of open balls, a 

topology is obtained . It is quite easy to verify that the vector space operations 

(addition and scalar multiplication) are continuous in this topology if the metric is 

defined in the form of a norm as above. 

1.3.7.  Inequalities 

We list below some well known inequalities . 

(i) Triangle inequality : For any 𝑎, 𝑏 ∈ ℂ , we have |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| . 

(ii) Let 𝑝 > 1 and 𝑞 be that  
1

𝑝
+

1

𝑞
= 1, 𝑎 ≥ 0 , 𝑏 ≥ 0 . Then we have  𝑎𝑏 ≤

𝑎𝑝

𝑝
+
𝑏𝑞

𝑞
 , 

with equality if and only if  𝑎𝑝 = 𝑏𝑞. 

(iii) Holder’s inequality : Let 𝑝 > 1 and 𝑞 be that 
1

𝑝
+

1

𝑞
= 1, 𝑎1, 𝑎2, … , 𝑎𝑛 ≥ 0 and 

𝑏1, 𝑏2, … , 𝑏𝑛 ≥ 0 . Then 

∑𝑎𝑘𝑏𝑘 ≤ (∑𝑎𝑘
𝑝

𝑛

𝑘=1

)

1

𝑝𝑛

𝑘=1

(∑𝑏𝑘
𝑞

𝑛

𝑘=1

)

1

𝑞
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(iv) Minkowski’s inequality:  

Let  𝑝 ≥ 1 , 𝑎1, 𝑎2, … , 𝑎𝑛 ≥ 0  and  𝑏1, 𝑏2, … , 𝑏𝑛 ≥ 0 . Then 

(∑(𝑎𝑘 + 𝑏𝑘)
𝑝

𝑛

𝑘=1

)

1

𝑝

≤ (∑𝑎𝑘
𝑝

𝑛

𝑘=1

)

1

𝑝

+ (∑𝑏𝑘
𝑝

𝑛

𝑘=1

)

1

𝑝

 

This is called Minkowski’s inequality. 

1.3.8.  Sequence spaces 

Definition: Let ω be the family of all complex sequences (𝑥𝑛) with 𝑥𝑛 ∈ ℂ and 𝑛 ∈ ℕ. 

The family ω under usual point wise addition and scalar multiplication becomes a 

linear space over ℂ. Any subspace of ω is called a sequence space. 

We shall list some of the sequence spaces which will be frequently used in our 

context. 

(i) 𝑙∞ 

This is the space of all bounded sequence of  𝑥 = (𝑥𝑛) with natural metric 

𝑑(𝑥, 𝑦) = sup
𝑛
 |𝑥n − yn| 

and is defined as 

𝑙∞ = {𝑥 = (𝑥𝑘) ∈ 𝜔: sup|𝑥𝑘| < ∞}. 

(ii) The spaces 𝑐 and 𝑐0 

These are the subsets of  𝑙∞ , both having 𝑙∞ metric. 𝑐 is the space of convergent 

sequences and 𝑐0 is the space of null sequences (𝑥𝑛 → 0) . In the space 𝑐0  (but not in 

c) one may actually use max|𝑥𝑛 − 𝑦𝑛| instead of sup |𝑥𝑛 − 𝑦𝑛| for the metric. We 

represent spaces 𝑐 and 𝑐0 as  

𝑐 = {𝑥 = (𝑥𝑘) ∈ 𝜔: |𝑥𝑘 − 𝑙| → 0 for some 𝑙 ∈ ℂ} 

                                = {𝑥 = (𝑥𝑘) ∈ 𝜔: |𝑥𝑘| → 𝑙 , 𝑘 → ∞ for some 𝑙 ∈ ℂ} 

and 

𝑐0 = {𝑥 = (𝑥𝑘) ∈ 𝜔: |𝑥𝑘| → 0  𝑎𝑠 𝑘 → ∞  } 
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(iii) The space 𝑐𝑠 

It is the space of all convergent series and is defined as  

𝑐𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝜔: (∑𝑥𝑘

𝑛

𝑘=1

)

𝑛=1

∞

is convergent} 

(iv) The space 𝑙(𝑝) 

Let 𝑝 = (𝑝𝑘) be a bounded sequence of strictly positive real numbers, so that 0 <

𝑝𝑘 ≤ sup 𝑝𝑘 = 𝐻 < ∞. Then we define the sequence space 𝑙(𝑝) as  

𝑙(𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔:∑|𝑥𝑘|
𝑝𝑘 < ∞

𝑛

𝑘=1

} . 

 A natural metric on 𝑙(𝑝) is 

𝑑(𝑥, 𝑦) =  (∑|𝑥𝑘 − 𝑦𝑘|
𝑝𝑘

∞

𝑘=1

)

1

𝑀

 

where 𝑑  is a function  

𝑑: 𝑙(𝑝) × 𝑙(𝑝) → ℝ 

 

As a special case when (𝑝𝑘) is constant i.e. 𝑝𝑘 = 𝑝 , we write 𝑙𝑝 for 𝑙(𝑝). We note 

that 𝑝 = (𝑝𝑘) is a sequence in case of  𝑙(𝑝) whereas p is the number in case of 𝑙𝑝 . 

Explicitly , for 𝑝 > 0 , 𝑙𝑝 is the set of all sequences such that   ∑ |𝑥𝑘|
𝑝 < ∞∞

𝑘=1  . For 

𝑝 ≥ 1, the metric for 𝑙𝑝 is  

𝑑(𝑥, 𝑦) =  (∑|𝑥𝑘 − 𝑦𝑘|
𝑝

∞

𝑘=1

)

1

𝑝

; 

since 𝑀 = 𝑝. 

When 0 < 𝑝 < 1 , since 𝑀 = 1 , the metric for 𝑙𝑝 is  

𝑑(𝑥, 𝑦) = ∑|𝑥𝑘 − 𝑦𝑘|
𝑝

∞

𝑘=1

. 
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For 𝑙𝑝 , the cases 𝑝 = 1 and 𝑝 = 2  are the special case of importance. The metrics for 

𝑙1 and 𝑙2 are respectively given by 

𝑑(𝑥, 𝑦) = ∑|𝑥𝑘 − 𝑦𝑘|

∞

𝑘=1

 

and 

𝑑(𝑥, 𝑦) = (∑|𝑥𝑘 − 𝑦𝑘|
2

∞

𝑘=1

)

1

2

. 

The space 𝑙2 is often called the Hilbert space. 

(iv) The space 𝑙∞(𝑝) 

Let 𝑝 = (𝑝𝑘) be a bounded sequence of strictly positive real numbers, so that 0 <

𝑝𝑘 ≤ sup 𝑝𝑘 = 𝐻 < ∞. Then we define the sequence space 𝑙∞(𝑝) as  

𝑙∞(𝑝) = {𝑥 = (𝑥𝑘): sup
𝑘
 |𝑥𝑘|

𝑝𝑘 < ∞} 

𝑙∞(𝑝) is a metric space with the metric  

𝑑(𝑥, 𝑦) = sup
𝑘
|𝑥𝑘 − 𝑦𝑘|

𝑝𝑘
𝑀  

where (𝑥, 𝑦) ∈ 𝑙∞(𝑝) and  M = max(1, sup 𝑝𝑘 = 𝐻). If (𝑝𝑘) is constant i.e. 𝑝𝑘 = 𝑝 , 

we write 𝑙∞ for  𝑙∞(𝑝). Here 𝑙∞ is the set of all bounded sequences 𝑥 = (𝑥𝑘). 

(vi) The spaces 𝑐(𝑝) and 𝑐0(𝑝) 

If 𝑝 = (𝑝𝑘) be a bounded sequence of strictly positive real numbers, we define  

𝑐(𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔: |𝑥𝑘 − 𝑙|
𝑝𝑘 → 0  as 𝑘 → ∞ for some 𝑙 ∈ ℂ} 

and 

𝑐0(𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔: |𝑥𝑘|
𝑝𝑘 → 0  as 𝑘 → ∞  } 

These spaces are metric spaces with metric 

𝑑(𝑥, 𝑦) = sup
𝑘
 |𝑥𝑘 − 𝑦𝑘|

𝑝𝑘
𝑀  

where 

M = max(1, sup 𝑝𝑘 = 𝐻). 
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If 𝑝 = (𝑝𝑘) is constant i.e. 𝑝𝑘 = 𝑝  for all 𝑘 we write 𝑐 and 𝑐0 for 𝑐(𝑝) and 𝑐0(𝑝) 

respectively. The spaces 𝑐 and 𝑐0 represent the sets of all convergent sequence and 

null sequences respectively. We note that 𝑐 and 𝑐0 are the metric spaces with the 

metric  

𝑑(𝑥, 𝑦) = sup
𝑘
|𝑥𝑘 − 𝑦𝑘| 

 (vii) The difference sequences 𝑙∞(∆), 𝑐(∆) and 𝑐0(∆) 

Kizmaz [41] defined the difference sequences   𝑙∞(∆), 𝑐(∆) and 𝑐0(∆) as, 

𝑙∞(∆) =  {𝑥 = (𝑥𝑘): ∆𝑥 ∈ 𝑙∞} 

𝑐(∆) =  {𝑥 = (𝑥𝑘): ∆𝑥 ∈ 𝑐} 

𝑐0(∆) =  {𝑥 = (𝑥𝑘): ∆𝑥 ∈ 𝑐0} 

where  ∆𝑥 = 𝑥𝑘 − 𝑥𝑘+1. 

These spaces are Banach spaces with norm 

‖𝑥‖∆ = |𝑥1| + ‖∆𝑥‖∞ 

(viii) The spaces ∆𝑙∞(𝑝) and 𝑙∞(∆𝑟𝑝) 

Let 𝑝 = (𝑝𝑘) be a bounded sequence of strictly positive real numbers , then we  

define ∆𝑙∞(𝑝) as  

∆𝑙∞(𝑝) = {𝑥 = (𝑥𝑘): ∆𝑥 ∈ 𝑙∞(𝑝)}. 

The sequence space  ∆𝑙∞(𝑝) is paranormed by  

𝑔(𝑥) = sup
𝑘
|∆𝑥𝑘|

𝑝𝑘
𝑀  

Also if  ∆𝑟(𝑥) =  (𝑘
𝑟∆𝑥𝑘)𝑘=1

∞ , ( r < 1 ) where ∆𝑥 = 𝑥𝑘 − 𝑥𝑘+1 , then we define 

𝑙∞(∆𝑟𝑝) as , 

𝑙∞(∆𝑟𝑝) = {𝑥 = (𝑥𝑘): ∆𝑟𝑥 ∈ 𝑙∞(𝑝), 𝑟 < 1} 
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(ix) The spaces  𝑤(𝑝) , 𝑤0(𝑝) and 𝑤∞(𝑝) 

If 𝑝 = (𝑝𝑘)  be a bounded sequence of strictly positive real numbers, Maddox [45] 

defined the sequence spaces w(𝑝) , 𝑤0(𝑝) and 𝑤∞(𝑝)  as: 

 

and 

𝑤∞(𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔: sup
𝑛∈ℕ

1

𝑛
 ∑|𝑥𝑘|

𝑝𝑘 < ∞

𝑛

𝑘=1

} 

The spaces 𝑤(𝑝) and  are paranormed spaces paranormed by 

𝑔(𝑥) = sup(
1

𝑛
 ∑|𝑥𝑘|

𝑝𝑘

𝑛

𝑘=1

)

1

𝑀

 

or  equivalently 

𝑔(𝑥) = sup
𝑟
(2−𝑟Σ𝑟|𝑥𝑘|

𝑝𝑘  )
1

𝑀 

 (1.3.1) 

where is the sum over the range  and  as in [44,45]. 

Further  is the paranormed space by the paranorm (1.3.1) if and only if 

[44]. 

(x) The space Ω(𝑡) 

The sequence space Ω(𝑡) was introduced by Fricke and Fridy [38]. For each r in the 

interval , 

let 

. 

We define the set of geometrically dominated sequences as  

1

1
( ) ( ) : 0; ,k

n p

k k
k

w p x x x l for some l nC
n




 
       
 

0
1

1
( ) ( ) : 0 ,k

n p

k k
k

w p x x x n
n




 
     
 

0 ( )w p

r


12 2r rk   (1,sup )kM p

( )w p

0 inf supk kp p   

 1,0

      kkk txxxrG  :
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The analytic sequences are defined by  

A =   

Obviously . Various authors studied matrix transformation from A or G into 𝑙1, 

𝑐 or 𝑙∞ , but the question of mapping from 𝑙1, 𝑐 or 𝑙∞  into A or G was not considered. 

To set the stage for general theory, Fricky and Fridy replaced the geometric sequence 

 with a nonnegative sequence and defined the sequence space 

. 

(xi) The sequence space 𝑙(𝑝)̅̅ ̅̅ ̅ 

If  be a bounded sequence of strictly positive real numbers, then Chodhary 

and Mishra [15] introduced and studied the sequence space 𝑙(𝑝)̅̅ ̅̅ ̅ which is defined as 

𝑙(𝑝)̅̅ ̅̅ ̅ = {𝑥 = (𝑥𝑘):∑|𝑡𝑘(𝑥)|
𝑝𝑘

∞

𝑘=1

< ∞} 

where 

𝑡𝑘(𝑥) =∑𝑥𝑖

𝑘

𝑖=1

 . 

If 𝑝 = (𝑝𝑘) is constant i.e. 𝑝𝑘 = 𝑝  for all, then we write 𝑙𝑝̅ for  𝑙(𝑝)̅̅ ̅̅ ̅ . 

1.3.9.  Cauchy sequence 

A sequence (𝑥𝑛) in a normed linear space X for every 𝑛 ∈ ℕ is called a Cauchy 

sequence in 𝑋 if and only if  

‖𝑥𝑛 − 𝑥𝑚‖ < 𝜀 ,  (𝑚, 𝑛 → ∞) 

That is for every  𝜀 > 0 there exists 𝑁0 = 𝑁0(𝜀) such that  ‖𝑥𝑛 − 𝑥𝑚‖ < 𝜀  for all   

𝑚, 𝑛 > 𝑁0 . 

 
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1.3.10.  Complete normed linear space 

Definition:  A normed linear space is said to be complete if every Cauchy sequence in 

𝑋 converges to an element 𝑥 ∈ 𝑋  i.e. for every sequence (𝑥𝑛) in X with             

‖𝑥𝑛 − 𝑥𝑚‖ → 0, (𝑚, 𝑛 → ∞), there exists 𝑥 ∈ 𝑋 such that ‖𝑥𝑛 − 𝑥‖ → 0 ,  

(𝑛 → ∞).  

We note that a complete normed linear space is called a Banach space. The spaces 

ℝ𝑛, ℂ𝑛, 𝑐𝑠, 𝑙(𝑝), 𝑙∞, 𝑐,  𝑐0, 𝑙𝑝(1 ≤ 𝑝 < ∞) are the examples of Banach space. 

In a normed space convergence and absolute convergence of series may be defined in 

a natural way.  A series ∑ 𝑥𝑘
∞
𝑘=1  with 𝑥𝑘 ∈ 𝑋 is called convergent to 𝑠 ∈ 𝑋 if and only 

if 𝑠𝑛 → 𝑠 (𝑛 → ∞) , i.e. ‖𝑠𝑛 − 𝑠‖ → 0 (𝑛 → ∞) where 𝑠𝑛 = ∑ 𝑥𝑘
𝑛
𝑘=1   . A series ∑𝑥𝑘 

is called absolutely convergent if and only if ∑‖𝑥𝑘‖ < ∞ . In ℝ and ℂ it is well 

known that every absolutely convergent series is convergent , and this result depends 

upon completeness. 

Following theorem gives a nice series characterization of a Banach space. 

Theorem: A normed linear space is complete if and only if every absolutely 

convergent series in 𝑋 is also convergent in 𝑋 [48]. 

1.3.11. Homeomorphisms 

Definition: Let 𝑋, 𝑌 be topological spaces. Then 𝑓: 𝑋 → 𝑌 is called a homeomorphism 

if and only if it is bijective and bicontinuous. Bicontinuous means that both 𝑓and 𝑓−1 

are continuous. Equivalently, f is a homeomorphism if and only if it is bijective, 

continuous and open. 

As an example the open interval and the whole real line ℝ are homeomorphic with 

homeomorphism  

𝑓(𝑥) =
2𝑥 − 1

𝑥(𝑥 − 1)
, 𝑥 ∈ (0,1) 

1.3.12. Isomorphism 

Definition: Let 𝑋, 𝑌 be linear spaces over the same scalar field. A map 𝑓: 𝑋 → 𝑌 is 

called linear if 𝑓(𝜆𝑥1 + 𝜇𝑥2) = 𝜆𝑓(𝑥1) + 𝜇𝑓(𝑥2) for all scalars λ, 𝜇 and all       
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𝑥1, 𝑥2 ∈ 𝑋 . An isomorphism 𝑓: 𝑋 → 𝑌 is a bijective linear map. We say that 𝑋 and 𝑌 

are isomorphic if there is an isomorphism 𝑓: 𝑋 → 𝑌. We regard isomorphic linear 

spaces as equivalent from the algebraic linear space point of view, for an isomorphism 

clearly preserves the linear operations. 

For an example, the sequence space 𝑙(𝑝)̅̅ ̅̅ ̅  is isomorphic to the space  𝑙(𝑝) . 

1.3.13. Basis in a paranormed space (𝑿, 𝒈) 

Definition: Let (𝑋, 𝑔) be a paranormed space . A sequence (𝑏𝑘) of elements of 𝑋 is 

called a basis for 𝑋 if and only if, for each 𝑥 ∈ 𝑋 , there exists a unique sequence (𝜆𝑘) 

of scalars such that  

𝑥 = ∑𝜆𝑘

∞

𝑘=1

𝑏𝑘 

that is,  such  that  

𝑔 (𝑥 −∑𝜆𝑘

𝑛

𝑘=1

𝑏𝑘) → 0  (𝑛 → ∞). 

The idea of basis was introduced by Schaulder in 1927 and what we call a basis is 

often termed as a Schauder basis. 

The sequence (𝑒𝑘) = (𝑒1,𝑒2, … . ) of unit vector is a basis for each of the spaces 

𝑙(𝑝) and 𝑐0 under their usual paranorms 

𝑔(𝑥) =  (∑|𝑥𝑘|
𝑝𝑘)

1

𝑀  on  𝑙(𝑝) 

and  

‖𝑥‖ = sup
𝑘
 |𝑥𝑘| 

on  𝑐0 . 

The sequence (𝑒, 𝑒1,𝑒2, … ) is a basis for the space c of convergent sequences under its 

natural norm given by 

‖𝑥‖ = sup
𝑘
 |𝑥𝑘| 

for each  𝑥 = (𝑥𝑘) ∈ 𝑐 . By 𝑒 we denote the sequence (1,1,1, … ) and by 𝑒𝑘 the 𝑘𝑡ℎ 

unit vectors.  
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Not all normed spaces have a basis. For example, 𝑙∞ , the space of all bounded 

sequences, with the natural norm ‖𝑥‖ = sup
𝑘
 |𝑥𝑘|  has no basis. 

1.3.14. Duals of the sequence space 

Definition: For a sequence space 𝑋 we define 

(i) 

𝑋𝛼 = {𝑎 = (𝑎𝑘): ∑|𝑎𝑘𝑥𝑘| < ∞  for every 𝑥 ∈ 𝑋

∞

𝑘=1

} 

(ii) 

𝑋𝛽 = {𝑎 = (𝑎𝑘): ∑𝑎𝑘𝑥𝑘  is convergent for each  𝑥 ∈ 𝑋

∞

𝑘=1

} 

(iii) 

𝑋𝛾 = {𝑎 = (𝑎𝑘): sup
𝑛
|∑𝑎𝑘𝑥𝑘

𝑛

𝑘=1

| < ∞  for each 𝑥 ∈ 𝑋} 

𝑋𝛼 , 𝑋𝛽 and 𝑋𝛾 are called the α- (or Köthe- Toeplitz), β- (or generalized Köthe- 

Toeplitz [1]) and 𝛾 – dual spaces of 𝑋 respectively. These duals were introduced by 

Garling [27]. 

We note that 𝑋𝛼 ⊆ 𝑋𝛽 ⊆ 𝑋𝛾. We state below β- duals of the some of the sequence 

spaces. 

Theorem [1]. 

The 𝛽- dual of the sequence spaces 𝑐 and 𝑐0 is the space 𝑙1 defined by  

𝑙1 = {𝑥 = (𝑥𝑘):∑|𝑥𝑘| < ∞} 

Theorem [2]. 

 (i) For  0 < 𝑝 ≤ 1 , the  𝛽- dual of the sequence space 𝑙𝑝 is the space 𝑙∞ . 

(ii) For 1 < 𝑝 < ∞ , the  𝛽- dual of the sequence space 𝑙𝑝 is the space 𝑙𝑞 where   
1

𝑝
+

1

𝑞
= 1 . 
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Theorem [3]. 

The  𝛽- dual of the sequence space 𝑙∞ is  𝑏𝑎(𝑁)  which is the space of all bounded 

finitely additive set functions 𝜇 defined on the set of all positive integers ℕ. 

We note that the  𝛽- duals of sequence spaces, 𝑐0 and  𝑙𝑝(0 < 𝑝 < ∞) are also 

sequence spaces but that of 𝑙∞ is not a sequence space. This is due to the fact that the 

sequence space 𝑙∞ has no basis. 

Theorem [4].  

 (i) If  0 < 𝑝𝑘 ≤ 1 for every 𝑘 ∈ ℕ , then 

𝑙(𝑝)𝛽 = 𝑙∞(𝑝) [82] 

 

(ii) If 𝑝𝑘 > 1 for every k ∈ ℕ  , then 

𝑙(𝑝)𝛽 =  ℳ(𝑝) 

where 

ℳ(𝑝) =  ⋃ {𝑎 = (𝑎𝑘):∑|𝑎𝑘|
𝑞𝑘𝑁

− 
𝑞𝑘
𝑝𝑘  < ∞

∞

𝑘=1

}

𝑁>1

 

with  

1

𝑝𝑘
+
1

𝑞𝑘
= 1    [47]. 

 

Theorem  [5]. 

Let 𝑝𝑘 > 0 for every  𝑘 ∈ ℕ . Then 

𝑙∞(𝑝)
𝛽 = ℳ∞(𝑝) 

where 

ℳ∞(𝑝) =  ⋂ {𝑎 = (𝑎𝑘):∑|𝑎𝑘|𝑁
1

𝑝𝑘  < ∞

∞

𝑘=1

} [25].

𝑁>1
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Theorem  [6]. 

Let 𝑝𝑘 > 0  for every k ∈ ℕ  . Then 

𝑐0(𝑝)
𝛽 = ℳ0(𝑝) 

where  

ℳ0(𝑝) =  ⋃ {𝑎 = (𝑎𝑘):∑|𝑎𝑘|𝑁 
− 

1

𝑝𝑘  < ∞

∞

𝑘=1

}

𝑁>1

  [47] 

 

Theorem [7]. 

If 0 < 𝑝𝑘 ≤ 1  for every  𝑘 ∈ ℕ , then 

𝑤(𝑝)𝛽 =  ℳ 

where  

ℳ = {𝑎 = (𝑎𝑘):∑maxr [(2
𝑟𝑁−1)

1

𝑝𝑘|𝑞𝑘|] < ∞ for some integer 𝑁 > 1

∞

𝑟=0

} 

and maxr is the maximum taken over 2𝑟 ≤ 𝑘 < 2𝑟+1  [25]. 

 

Theorem [8]. 

Let 𝑝𝑘 > 0  for every k ∈ ℕ  . Then 

𝑐(𝑝)𝛽 = ℳ0(𝑝) ∩ 𝑐𝑠 

where  

ℳ0(𝑝) =  ⋃ {𝑎 = (𝑎𝑘):∑|𝑎𝑘|𝑁
− 

1

𝑝𝑘  < ∞

∞

𝑘=1

}

𝑁>1

 

and 

𝑐𝑠 =  {𝑥 ∈ 𝜔:∑𝑥𝑘
𝑘 

converges} [24]. 

Theorem [9]. 

(i) If 0 < 𝑝𝑘 ≤ 1 for every k ∈ ℕ  , the 𝛽- duals of sequence space  𝑙(𝑝)̅̅ ̅̅ ̅  is the  

sequence space  𝑙∞(𝑝)̅̅ ̅̅ ̅̅ ̅  which is defined as 
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𝑙∞(𝑝) = {𝑎 = (𝑎𝑘) ∶  ∑𝑎𝑘

∞

𝑘=1

(−∑(𝑁−2)
1

𝑝𝜈

𝑘−1 

𝜈=1

+ (𝑁−2)
1

𝑝𝑘 converges}  

and  𝑠𝑢𝑝𝑘 |𝑎𝑘|
𝑝𝑘 < ∞},  𝑁 ≥ 1, ∆𝑎𝑘 = 𝑎𝑘 − 𝑎𝑘+1  [15]. 

(ii) If 1 < 𝑝𝑘 ≤ sup  𝑝𝑘 < ∞  for every k ∈ ℕ  , the 𝛽- duals of sequence space  𝑙(𝑝)̅̅ ̅̅ ̅  

is the sequence space 𝑙∞(𝑝)̅̅ ̅̅ ̅̅ ̅ = 𝑀(𝑝)̅̅ ̅̅ ̅̅ ̅ where 

𝑀(𝑝)̅̅ ̅̅ ̅̅ ̅ =  {𝑎 = (𝑎𝑘) ∶  ∑𝑎𝑘

∞

𝑘=1

(−∑(𝑁)
− 
𝑝𝜈
𝑞𝜈

𝑘−1 

𝜈=1

+ (𝑁)
− 
𝑝𝑘
𝑞𝑘  converges} 

and 

∑|∆𝑎𝑘|
𝑞𝑘

∞

𝑘=1

(𝑁)
− 
𝑝𝑘
𝑞𝑘 < ∞ , 𝑁 >  1 and 

1

𝑝𝑘
+
1

𝑞𝑘
= 1  [15]. 

 

1.3.15 Matrix transformations 

Definition: Let 𝑋 and 𝑌 be any two sequence spaces and let 𝐴 = (𝑎𝑛𝑘) be an infinite 

matrix of complex numbers (𝑛, 𝑘 =  1,2, … ). We write 𝐴𝑥 = (𝐴𝑛(𝑥)) if 

𝐴𝑛(𝑥) =  ∑𝑎𝑛𝑘𝑥𝑘
𝑘 

 

converges for each  𝑛 ∈ ℕ  . If 𝑥 = (𝑥𝑘) ∈ 𝑋 implies that  𝐴𝑥 = (𝐴𝑛(𝑥)) ∈ 𝑌 , then 

we say that 𝐴 defines a matrix transformation from 𝑋 into  𝑌  and we denote it by 

writing A : 𝑋 → 𝑌 . The sequence 𝐴𝑥 is called the 𝐴 transform of  𝑋 . By (𝑋, 𝑌) we 

mean the classes of the matrices 𝐴 such that  𝐴: 𝑋 → 𝑌 . The matrix 𝐴 is also called 

the linear operator. We list below the some of the inclusion theorems on matrix 

transformation of well known sequence spaces. 

Theorem [1] 

𝐴 ∈ (𝑙∞, 𝑙∞) if and only if  

sup
𝑛
∑|𝑎𝑛𝑘| < ∞

𝑘

 

. 
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Theorem [2] : Kojima- Schur 

𝐴 ∈ (𝑐, 𝑐) if and only if  

(i)  

sup
𝑛
∑|𝑎𝑛𝑘| < ∞

𝑘

 

(ii)  

lim
𝑛→∞

𝑎𝑛𝑘 = 𝛼𝑘 

(iii) 

lim
𝑛→∞

∑𝑎𝑛𝑘 = 𝛼

𝑘

 

Theorem [3] 

𝐴 ∈ (𝑙∞(𝑝), 𝑙∞) if and only if  

𝑠𝑢𝑝
𝑛
∑|𝑎𝑛𝑘|𝑁

1 𝑝𝑘⁄ < ∞

𝑘

for every integer 𝑁 > 1 

Theorem [4]: Schur 

𝐴 ∈ (𝑙∞, 𝑐) if and only if   

(i)  

∑|𝑎𝑛𝑘|

∞

𝑘=1

 

converges uniformly in 𝑛 ∈ ℕ . 

(ii) There exists 

lim
𝑛→∞

𝑎𝑛𝑘  = 𝛼𝑘 

for each 𝑛 ∈ ℕ 

The class (𝑙∞, 𝑐) was obtained by Schur in 1921. The characterization of this class is 

known as Schur theorem and the matrices in the class (𝑙∞, 𝑐) are known as Schur 

matrices. 
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Theorem [5]. 

𝐴 ∈ (𝑙1, 𝑙𝑝) if and only if  

 

(i) 

𝑀 = sup
𝑘
∑|𝑎𝑛𝑘|

𝑝

𝑛

< ∞                  (1 ≤ 𝑝 < ∞) 

(ii)  

sup
𝑛,𝑘

 |𝑎𝑛𝑘| < ∞(𝑝 = ∞)  for 𝑘 ∈ ℕ .  

Theorem [6]. 

Let 1 < 𝑝𝑘 < ∞ and let A ∈ (𝑙∞, 𝑙∞) ∩ (𝑙1, 𝑙1) . Then  𝐴 ∈ (𝑙𝑝, 𝑙𝑝)  . 

Theorem [7] 

Let 1 < 𝑝𝑘 ≤ sup 𝑝𝑘 = 𝐻 < ∞ for every 𝑘 ∈ ℕ. Then  𝐴 ∈ (𝑙(𝑝), 𝑙∞)  if and only if  

there is an integer 𝐵 > 1 such that 

sup
𝑛
∑|𝑎𝑛𝑘|

𝑞𝑘𝐵−𝑞𝑘

∞

𝑘=1

< ∞   

where  
1

𝑝𝑘
+

1

𝑞𝑘
= 1. 

 

Theorem [8]  

Let  0 < 𝑝𝑘 ≤ 1 for every k ∈ ℕ . Then  𝐴 ∈ (𝑙(𝑝), 𝑙∞)  if and only if    

sup 
𝑛
|𝑎𝑛𝑘|

𝑝𝑘 < ∞ 

Theorem [9] 

Let 1 < 𝑝𝑘 ≤ sup 𝑝𝑘 = 𝐻 < ∞ for every 𝑘 ∈ ℕ. Then  𝐴 ∈ (𝑙(𝑝), 𝑐)   if and only if  

(i) there exists an integer 𝐵 > 1 such that 

sup
𝑛
∑|𝑎𝑛𝑘|

𝑞𝑘𝐵−𝑞𝑘

∞

𝑘=1

< ∞ 
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where  

1

𝑝𝑘
+
1

𝑞𝑘
= 1 

(ii) 

𝑎𝑛𝑘 → 𝛼𝑘(𝑛 → ∞) 

and 𝑘 is fixed. 

Theorem [10] 

Let  0 < 𝑝𝑘 ≤ 1 for every  𝑘 ∈ ℕ . Then  𝐴 ∈ (𝑙(𝑝), 𝑐)  if and only if    

(i) 

sup
𝑛
 |𝑎𝑛𝑘|

𝑝𝑘 < ∞ 

(ii) 

𝑎𝑛𝑘 → 𝛼𝑘(𝑛 → ∞) 

and 𝑘 is fixed. 

Theorem [11]. 

Let  𝑝𝑘 > 0 for every  𝑘 ∈ ℕ . Then  𝐴 ∈ (𝑙∞(𝑝), 𝑙∞)  if and only if    

sup
𝑛
∑|𝑎𝑛𝑘|

∞

𝑘=1

𝑁
1

𝑝𝑘 < ∞ 

for every integer 𝑁 > 1. 

Theorem [12]. 

Let  𝑝𝑘 > 0 for every  𝑘 ∈ ℕ . Then  𝐴 ∈ (𝑙∞(𝑝), 𝑐)  if and only if    

(i) 

∑|𝑎𝑛𝑘|

∞

𝑘=1

𝑁
1

𝑝𝑘  

converges uniformly in 𝑛 , for all integers 𝑁 > 1. 

(ii) 

𝑎𝑛𝑘 → 𝛼𝑘(𝑛 → ∞) 

and 𝑘 is fixed. 
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Theorem [13]. 

Let (𝑝𝑘) ∈ 𝑙∞ , then 𝐴 ∈ (𝑐(𝑝), 𝑐)  if and only if   

(i) there exists an absolute constant  𝐵 > 1 such that  

sup
𝑛
∑|𝑎𝑛𝑘|

∞

𝑘=1

𝐵
− 

1

𝑝𝑘 < ∞  

(ii) 

lim 𝑎𝑛𝑘 → 𝛼𝑘(𝑛 → ∞) 

and 𝑘 is fixed. 

(iii) 

lim
𝑛→∞

∑𝑎𝑛𝑘

∞

𝑘=1

=  𝛼 

Theorem [14]. 

Let (𝑝𝑘) ∈ 𝑙∞ , then 𝐴 ∈ (𝑐0(𝑝), 𝑐)  if and only if   

(i) there exists an absolute constant  𝐵 > 1 such that  

sup
𝑛
∑|𝑎𝑛𝑘|

∞

𝑘=1

𝐵
− 

1

𝑝𝑘 < ∞ 

(ii) 

lim 𝑎𝑛𝑘 → 𝛼𝑘(𝑛 → ∞) 

exists for every fixed  𝑘. 

Theorem [15] 

Let 0 < 𝑝 < 1. Then 𝐴 ∈ (𝑤𝑝, 𝑐)  if and only if   

(i) 

lim
𝑛→∞

∑𝑎𝑛𝑘

∞

𝑘=1

= 𝛼𝑘  

𝑘 is fixed. 
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(ii) 

𝑀(𝐴) = sup
𝑛
∑2𝑟 𝑝⁄

∞

𝑟=0

𝐴𝑟
1(𝑛) < ∞ 

where  

𝐴𝑟
1(𝑛) =  max

𝑟
 |𝑎𝑛𝑘| 

for each n .The maximum is taken for k such that 

2𝑟 ≤ 𝑘 < 2𝑟+1. 

Theorem [16] . 

Let 𝑝 ≥ 1. Then 𝐴 ∈ (𝑤𝑝, 𝑐)  if and only if   

(i) 

lim
𝑛→∞

∑𝑎𝑛𝑘

∞

𝑘=1

= 𝛼𝑘  

𝑘 is fixed. 

(ii) 

sup
𝑛
∑2𝑟 𝑝⁄

∞

𝑟=0

𝐴𝑟
𝑝(𝑛) < ∞ 

 

Theorem [17] . 

Let 0 < 𝑝𝑘 ≤ 1. Then 𝐴 ∈ (𝑤(𝑝), 𝑐)  if and only if   

(i) there exists an integer  𝐵 > 1 such that 

𝐶 = sup
𝑛
∑𝑚𝑎𝑥𝑟 {(2

𝑟𝐵−1)
1

𝑝𝑘|𝑎𝑛𝑘|}

∞

𝑟=0

< ∞ 

(ii) 

lim
𝑛→∞

∑𝑎𝑛𝑘

∞

𝑘=1

= 𝛼𝑘  

exists for every fixed  𝑘 . 
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(iii) 

lim
𝑛→∞

∑𝑎𝑛𝑘 =  𝛼 

exists . 

1.3.16 Some special types of matrices 

(i) Sparse and dense matrices 

Definition : A sparse matrix is a matrix populated primarily with zeros as element or 

entries. On the contrary , if a large number of element differ from zero , then it is 

common to refer to the matrix as a dense matrix. The fraction of zero elements (or 

non zero elements) in a matrix is called the sparsity (or density). As an example we 

can observe that the matrix given by 

 

is a sparse matrix which contains only 9 non zero elements out of 35 , with 26 of these 

elements as zero. 

(ii) Band matrix 

Definition: A band matrix is a sparse matrix whose non zero entries are confined to a 

diagonal band , comprising the main diagonal and zero or more diagonals on either 

side. We may define a band matrix in terms of matrix bandwidth. Consider an 𝑛 × 𝑛 

matrix A = (𝑎𝑖𝑗) . If all matrix elements are zero outside a diagonally bordered band 

whose range is determined by constants 𝑘1 and 𝑘2 : 

𝑎𝑖𝑗 = 0    if   𝑗 < 𝑖 − 𝑘1 or     𝑗 > 𝑖 + 𝑘2 ;  𝑘1, 𝑘2 ≥ 0 

then the quantities 𝑘1 and  𝑘2 are called the left and right hand bandwidth 

respectively. The bandwidth of the matrix is  𝑘1 + 𝑘2 + 1. In other words , it is the 

smallest number of adjacent diagonals to which the non zero elements are confined. In 

this connection , a matrix is called a band matrix if its bandwidth is reasonably small. 

1 2 0 0 0 0 0

0 3 4 0 0 0 0

0 0 5 6 7 0 0

0 0 0 0 0 8 0

0 0 0 0 0 0 9

 
 
 
 
 
 
  
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A band matrix with 𝑘1= 𝑘2= 0 is a diagonal matrix ; a band matrix with 𝑘1= 𝑘2= 1  is 

a tridiagonal matrix  ; when with 𝑘1= 𝑘2= 2 one has a pentadiagonal matrix and so on. 

If one puts 𝑘1 = 0, 𝑘2 = 𝑛 − 1 , one obtains the definition of an upper triangular 

matrix. Similarly for 𝑘1 = 𝑛 − 1  and 𝑘2 = 0 one obtains a lower triangular matrix. 

As an example the matrix 

 

is a double band matrix. 

(iii) Unitriangular matrix 

Definition: If the entries of  the main diagonal of a (upper or lower) are all 1 , the 

matrix is called (upper or lower) unitriangular. For example the matrix  

𝜆 =  𝑆𝑛 = (𝜆𝑛𝑘) = {
𝑛 − 𝑘 + 1, 𝑛 ≥ 𝑘

0, otherwise
 

that is 

𝜆 =  

is a lower unitriangular matrix. 

1.3.17 Infinite matrices as a difference operator 

We give brief account of the infinite matrices and difference operators that we have 

used and taken as a reference in our context. 

(i) The infinite matrix S 

The matrix 𝑆 = (𝑠𝑛𝑘) introduced in [15] is defined as  

1 2 0 0 ...

0 2 3 0 ...

0 0 3 4 ...
j

 
 

  
 
 
 

1 0 0 0 ...

2 1 0 0 ...

3 2 1 0 ...

4 3 2 1 ...

 
 
 
 
 
 
 
 
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𝑆 = (𝑠𝑛𝑘) = {
1, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

It is an infinite matrix given by  

𝑆 = (𝑠𝑛𝑘) = . 

Chaudhary and Mishra [15] have defined the sequence space 𝑙(𝑝)̅̅ ̅̅ ̅ which consists of 

all sequences whose S- transform are in 𝑙(𝑝) i.e. 

𝑙(𝑝)̅̅ ̅̅ ̅ = [𝑙(𝑝)]𝑆.  

(ii) The matrix  𝑅𝑡 

It is the matrix of Riesz mean (𝑅, 𝑡𝑛) and is given by 

𝑅𝑡 = (𝑟𝑛𝑘
𝑡 ) = {

𝑡𝑘 ∑𝑡𝑘

𝑛

𝑘=0

⁄ , 0 ≤ 𝑘 ≤ 𝑛

0,  𝑘 > 𝑛

 

where (𝑡𝑘) is the sequence of positive real numbers. 

Altay and Basar [11] have defined the spaces 𝑟0
𝑡(𝑝) ,  𝑟𝑐

𝑡(𝑝) , 𝑟∞
𝑡 (𝑝) and 𝑟𝑡(𝑝) which 

consists of all sequences whose 𝑅𝑡 transforms are in 𝑐0(𝑝) , 𝑐(𝑝) , 𝑙∞(𝑝) and 𝑙(𝑝) 

respectively, that is, 

𝑟0
𝑡(𝑝) = [𝑐0(𝑝)]𝑅𝑡,   𝑟𝑐

𝑡(𝑝) = [𝑐(𝑝)]𝑅𝑡 ,  𝑟∞
𝑡 (𝑝) = [𝑙∞(𝑝)]𝑅𝑡  and   𝑟𝑡(𝑝 = [𝑙(𝑝)]𝑅𝑡. 

(iii) Cesaro matrix of order 1 

The matrix defined by 

𝐶 = (𝑐𝑛𝑘) = {
1

𝑛
, 1 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

is  called the Cesaro matrix of order 1 or the matrix of arithmetic mean. 

1 0 0 0 ...

1 1 0 0 ...

1 1 1 0 ...

1 1 1 1 ...

 
 
 
 
 
 
 
 
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The sequence spaces 𝑤(𝑝),𝑤0(𝑝) and  𝑤∞(𝑝) which are defined by Maddox [44,45] 

consists of the sequences whose all C- transforms are in the spaces 𝑙(𝑝), 

𝑐0(𝑝) and  𝑙∞(𝑝) respectively, i.e.  

𝑤(𝑝) = [𝑙(𝑝)]𝐶  ,    𝑤0(𝑝) = [𝑐0(𝑝)]𝐶 and 𝑤∞(𝑝) = [𝑙∞(𝑝)]𝐶. 

(iv) The matrix 𝐺(𝑢, 𝑣) 

We denote by 𝑈 the set of all sequences  𝑢 = (𝑢𝑛)  such that 𝑢𝑛 ≠ 0 for all n ∈ ℕ . 

For u ∈ 𝑈 , let 
1

𝑢
= (

1

𝑢𝑛
) . Then we define the matrix 𝐺(𝑢, 𝑣) which is called the 

generalized weighted mean or factorable matrix as 

𝐺(𝑢, 𝑣) = (𝑔𝑛𝑘) = {
𝑢𝑛𝑣𝑘, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

that is 

𝐺(𝑢, 𝑣) = 

 

Recently in 2006/2007 Altay and Basar [12,13] have defined the sequence spaces 

𝑙(𝑢, 𝑣, 𝑝) and  𝜆(𝑢, 𝑣, 𝑝)  for  𝜆 ∈ {𝑙∞, 𝑐, 𝑐0}  which are derived by using the 

generalized weighted mean G(𝑢, 𝑣) . The space 𝑙(𝑢, 𝑣, 𝑝) consists of all sequences 

whose 𝐺(𝑢, 𝑣) transforms are in 𝑙(𝑝) and 𝜆(𝑢, 𝑣, 𝑝) for 𝜆 ∈ {𝑙∞, 𝑐, 𝑐0} consist of all 

sequences whose 𝐺(𝑢, 𝑣) transforms are in 𝑙(𝑝), that is, 

𝑙(𝑢, 𝑣, 𝑝) = [𝑙(𝑝)]𝐺(𝑢,𝑣) 

and 

𝜆(𝑢, 𝑣, 𝑝) = [𝜆(𝑝)]𝐺(𝑢,𝑣) 

for 𝜆 ∈ {𝑙∞, 𝑐, 𝑐0} .  

Using the matrix  𝐺(𝑢, 𝑣)  as the operator we have introduced and studied new 

sequence spaces  𝑤(𝑢, 𝑣, 𝑝),  𝑤0(𝑢, 𝑣, 𝑝) and 𝑤∞(𝑢, 𝑣, 𝑝). 

 

1 1

2 1 2 2

3 1 3 2 3 3

4 1 4 2 4 3 4 4

0 0 0 ...

0 0 ...

0 ...

...

u v

u v u v

u v u v u v

u v u v u v u v

 
 
 
 
 
 
 
 
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(v) The difference operator matrix Δ 

The difference operator matrix ∆ is defined as  

∆= (𝛿𝑛𝑘) = {
(−1)𝑛−𝑘, 𝑛 − 1 ≤ 𝑘 ≤ 𝑛

0, 0 ≤ 𝑘 < 𝑛  or 𝑘 > 𝑛
 

that is, 

∆=

1 0 0 0 ...

1 1 0 0 ...

0 1 1 0 ...

0 0 1 1 ...

 
 
 
 
 

 
 
 

. 

It is a double band matrix. 

In 2012 Demiriz and Cakan [78 ] have defined new sequence spaces 𝜆(𝑢, 𝑣; 𝑝, ∆) for 

𝜆 ∈ {𝑐0, 𝑐, 𝑙∞, 𝑙} by using the operator matrix 𝐺(𝑢, 𝑣, ∆) defined by  

𝐺(𝑢, 𝑣, ∆) = 𝐺(𝑢, 𝑣)∆=  (𝑔𝑛𝑘
∆ ) = {

𝑢𝑛(𝑣𝑘 − 𝑣𝑘+1), 0 ≤ 𝑘 ≤ 𝑛 − 1
𝑢𝑘𝑣𝑘 , 𝑘 = 𝑛
0, 𝑘 > 𝑛

 

 

that is, 

𝐺(𝑢, 𝑣, ∆) =  

The matrix  𝐺(𝑢, 𝑣, ∆) is the combination (product) of the matrices 𝐺(𝑢, 𝑣) and ∆ . 

The sequence spaces 𝜆(𝑢, 𝑣; 𝑝, ∆) for 𝜆 ∈ {𝑐0, 𝑐, 𝑙∞, 𝑙} consist of all sequences whose 

𝐺(𝑢, 𝑣, ∆) transforms are in 𝜆, that is, 

𝜆(𝑢, 𝑣; 𝑝, ∆) = [𝜆(𝑝)]𝐺(𝑢,𝑣,∆) . 

Using the matrix  𝐺(𝑢, 𝑣, ∆)  as an operator we have introduced and studied new 

sequence spaces (𝑢, 𝑣; 𝑝, ∆) ,  𝑤0(𝑢, 𝑣; 𝑝, ∆)  and 𝑤∞(𝑢, 𝑣; 𝑝, ∆). 

1 1

2 1 2 2 2

3 1 2 3 2 3 3 3

4 1 2 4 2 3 4 3 4 4 4

0 0 0 ...

( ) 0 0 ...

.( ) ( ) 0 ...

( ) ( ) ( ) ...

u v

u v v u v

u v v u v v u v

u v v u v v u v v u v

 
 

 
  
 

   
 
 
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(vi) The matrix 𝜆 

In our context in chapter three we have defined an infinite matrix 𝜆 which is the n’th 

power of  𝑆 = (𝑠𝑛𝑘) .  

Thus  

𝜆 = 𝑆𝑛 = (𝜆𝑛𝑘) = {
𝑛 − 𝑘 + 1,           𝑛 ≥ 𝑘
0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

that is, 

𝜆 =  

It is also a lower unitriangular matrix. Using the matrix  𝜆 as the operator we have 

defined the sequence spaces  𝑙(𝑝, 𝜆), 𝑙∞(𝑝, 𝜆) , 𝑐(𝑝, 𝜆) and 𝑐0(𝑝, 𝜆) . 

(vii) The matrix 𝜆𝑗 

In our context we have defined an operator matrix 𝜆𝑗 which can be expressed as a 

sequential double band matrix given by  

𝜆𝑗 =  . 

To construct the matrix 𝜆𝑗 , we have defined a diagonal matrix 

𝑑𝑖𝑎𝑔 (
1

𝑡𝑖𝑗
) =  {

1

𝑡𝑗
,          𝑖 = 𝑗

0,      otherwise

 

1 0 0 0 ...

2 1 0 0 ...

3 2 1 0 ...

4 3 2 1 ...

 
 
 
 
 
 
 
 

1 1

2 2

3 3

4

1 1
0 0 ...

1 1
0 0 ...

1 1
0 0 ...

1
0 0 0 ...

t t

t t

t t

t

 
 

 
 

 
 
 

 
 
 
 
 
 
 
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that is, 

diag (
1

𝑡𝑖𝑗
) =  

where each entry 𝑡 = (
1

𝑡𝑗
) ∈ (0,1). 

The multiplication of the difference operator  matrix Δ and diag (
1

𝑡𝑖𝑗
) yields a double 

band matrix  

Δ .𝑑𝑖𝑎𝑔 (
1

𝑡𝑖𝑗
) =  

 We have defined the transpose of Δ.diag (
1

𝑡𝑖𝑗
) as  the matrix 𝜆𝑗 , which is a double 

band sparse matrix. Using the matrix 𝜆𝑗 together with generalized weighted mean 

𝐺(𝑢, 𝑣) we have defined the new sequence spaces 𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. 

 

  

1

2

3

4

1
0 0 0 ...

1
0 0 0 ...

1
0 0 0 ...

1
0 0 0 ...

t

t

t

t

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 2

2 3

3 4

1
0 0 0 ...

1 1
0 0 ...

1 1
0 0 ...

1 1
0 0 ...

t

t t

t t

t t

 
 
 
 
 
 
 

 
 
 

 
 
 
 
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CHAPTER TWO 

Part One:  

Paranormed Sequence Spaces  w (𝒖, 𝒗, 𝒑) , 𝒘𝟎(𝒖, 𝒗, 𝒑)  and  

𝒘∞(𝒖, 𝒗, 𝒑) Generated by Generalized Weighted Mean 𝑮(𝒖, 𝒗) 

2.1.  Preliminaries 

By  we mean the spaces of all complex valued sequences. A vector subspace of 

is called a sequence space. The usual notations ,  and  represent for the spaces 

of all bounded, convergent and null sequence respectively. A linear topological space   

𝑋 over the field ℝ is said to be a paramormed space if  

(i) there is a subadditive  function 

𝑔: 𝑋 → ℝ such that  𝑔(𝜃) = 0, where is the zero vector in the linear space 𝑋 . 

(ii) 𝑔(𝑥) = 𝑔(−𝑥) for all 𝑥 ∈ 𝑋 

(iii) scalar multiplication is continuous ,that is, and 𝑔(𝑥𝑛 − 𝑥) → 0 imply 

𝑔(𝛼𝑛𝑥𝑛 − 𝛼𝑥) → 0.  

If  be a bounded sequence of strictly positive real numbers, Maddox [45] 

defined the sequence spaces  and  as: 

𝑤(𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔:
1

𝑛
∑|𝑥𝑘 − 𝑙|

𝑝𝑘 → 0,   for some 𝑙 ∈ ℂ, 𝑛 → ∞

𝑛

𝑘=1

} 

and 

𝑤∞(𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔: sup  
𝑛∈ℕ

1

𝑛
 ∑|𝑥𝑘|

𝑝𝑘 < ∞

𝑛

𝑘=1

} 

It has been shown in [44] that the spaces 𝑤(𝑝) and  are paranormed spaces 

paranormed by 

 

 

l c 0c



0n  

 kp p

0( ) , ( )w p w p ( )w p

0
1

1
( ) ( ) : 0 ,k

n p

k k
k

w p x x x n
n




 
     
 

0 ( )w p
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𝑔(𝑥) = sup(
1

𝑛
 ∑|𝑥𝑘|

𝑝𝑘

𝑛

𝑘=1

)

1

𝑀

 

or equivalently 

𝑔(𝑥) = sup
𝑟
(2−𝑟∑|𝑥𝑘|

𝑝𝑘

𝑟

)

1

𝑀

 

(2.1.1) 

where is the sum over the range  and . Further 

 is the paranorm space paranormed by (2.1.1) if and only if 

[44]. Now we shall prove it. 

Let us suppose that (2.1.1) is the paranorm for the space . Then  is a 

linear space and so  [44,45]. For a real scalar  𝜆  such that 𝜆 → 0 and a 

sequence 𝑥 ∈ 𝑤∞(𝑝) such that  𝑥 is fixed imply  𝜆𝑥 → 𝜃 , a zero vector of  𝑤∞(𝑝). 

This property implies that  inf 𝑝𝑘 > 0 . On the contrary , let us suppose that it is not. 

Then there exists 𝑘1 < 𝑘2 < ⋯  such that 𝑝𝑘𝑖 <
1

𝑖
, (𝑖 = 1,2, … ) . 

Also 𝑘𝑖 must be choosen in such a way that 𝑘1 lies in the interval 2𝑟1 ≤ 𝑘1 <

2𝑟1+1, 𝑘2 lies in the interval  2𝑟2 ≤ 𝑘2 < 2𝑟2+1  …… and so on, where 𝑟1 < 𝑟2 < ⋯ . 

Now define  

𝑥𝑘̅̅ ̅ =  {
2𝑟𝑖 𝑝𝑘⁄ ,         𝑘 = 𝑘𝑖
0, otherwise

 

Then if we write 

ℎ(𝑥) = sup
𝑟 
{(
1

2𝑟
)∑|𝑥𝑘|

𝑝𝑘

𝑟 

}

1 𝑀⁄

 

 for all 𝑥 ∈ 𝑤∞(𝑝) where ∑  is𝑟  the sum over 2𝑟 ≤ 𝑘 < 2𝑟+1 , we have  

1

2
 𝑔(𝑥) ≤ ℎ(𝑥) ≤ 2 𝑔(𝑥) 

(2.1.2) 

where  𝑔(𝑥)  is as defined in (2.1.1). 

r


12 2r rr   (1,sup )kM p H 

( )w p

0 inf supk kp p   

( )w p ( )w p

sup kp  
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Now ℎ(𝑥̅) = 1 , but for 𝑟 = 𝑟𝑖 and 0 < |𝜆| ≤ 1 , 

(
1

2𝑟
)∑|𝜆 𝑥𝑘̅̅ ̅|

𝑝𝑘

𝑟 

= |𝜆|𝑝𝑘𝑖  ≥ |𝜆|1 𝑖⁄ → 1 as 𝑖 → ∞ . 

 Hence for 0 < |𝜆| ≤ 1 , we have ℎ(𝜆𝑥̅) = 1 and so 𝑔(𝜆𝑥̅) ≥
1

2
  by (2.1.2).  

But this contradicts the fact that  𝜆 → 0 , 𝑥̅  ∈ 𝑤∞(𝑝)imply  𝜆𝑥̅ → 𝜃, the zero vector 

of  𝑤∞(𝑝) . Hence the condition 0 < inf 𝑝𝑘 ≤ sup 𝑝𝑘 < ∞  is necessary. 

On the other hand, let us suppose 0 < inf 𝑝𝑘 ≤ sup𝑝𝑘 < ∞ . We need to show (2.1.1) 

is the paranorm for 𝑤∞(𝑝) . By the definition of 𝑔 it immediately follows that 𝑔(𝑥) =

0 ⇔ 𝑥 = 0  and  𝑔(𝑥) = 𝑔(−𝑥) and for  𝑥, 𝑦 ∈ 𝑤∞(𝑝) the subadditivity of 𝑔 follows 

from Minkowski’s inequality. Now it remains to show the continuity of scalar 

multiplication. For it let us take real scalar  𝜆 and 𝑥 ∈ 𝑤∞(𝑝) such that 𝜆 → 0 and 𝑥 is 

fixed. Now, 

𝑔𝑀(𝜆𝑥) ≤ |𝜆|𝑚𝑔𝑀(𝑥) 

(2.1.3) 

It  holds only |𝜆| < 1 , 𝑚 = inf 𝑝𝑘 > 0 . 

From (2.1.3) choosing sufficiently small λ , we have  

𝑔(𝜆𝑥) → 0 as λ → 0 . 

This implies  𝜆𝑥 → 𝜃 , a zero vector of  𝑤∞(𝑝) , thereby showing existence of 

continuity of scalar multiplication in  𝑤∞(𝑝) .  

Hence (2.1.1) is the paranorm for 𝑤∞(𝑝) if and only if 0 < inf 𝑝𝑘 ≤ sup𝑝𝑘 < ∞ . 

Next we shall show that 𝑤(𝑝) is complete with its natural paranorm . Let 𝑦 > 0 and  

𝑁𝑟(𝑦) for the number of 𝑘 in 2𝑟 ≤ 𝑘 < 2𝑟+1 such that  𝑝𝑘 < 𝑦. Two cases are 

possible: 

(i) 

inf𝑦>0 limr→∞ sup 2
−rNr(y) = 0 

(ii) 

inf𝑦>0 limr→∞ sup 2
−rNr(y) > 0 
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In case (i) we first let 𝜀 > 0 . Then there exists 𝑦0 > 0 such that 

lim supr 2
−rNr(y0) < 𝜀 2⁄ , 

whence  2−rNr(y0) < 𝜀 , for all sufficiently large r. Choose 𝑖 so large that  

|𝑙 − 𝑙(𝑖)| < min(1, 𝜀1 𝑦0⁄ ) . 

This is possible by theorem 5 [46], on the assumption of course that (𝑥(𝑖)) is a Cauchy 

sequence in 𝑤(𝑝) with 𝑙(𝑖) the strong Cesaro limit of 𝑥(𝑖)  . Now for all sufficiently 

large  , 

2−𝑟∑|𝑙 − 𝑙(𝑖)|
𝑝𝑘
≤ 2−𝑟 ∑ 1

𝑝𝑘<𝑦0𝑟

+ 2−𝑟 ∑ |𝑙 − 𝑙(𝑖)|
𝑝𝑘

𝑟𝑝𝑘≤𝑦0

 

                  < 2−𝑟Nr(y0) + 2
−𝑟 ∑ 𝜀

𝑟𝑝𝑘≤𝑦0

 

                                                       < 2𝜀 

Hence, 2−𝑟 ∑ |𝑙 − 𝑙(𝑖)|
𝑝𝑘

𝑟 → 0  (𝑟 → ∞), from which it follows that 𝑤(𝑝) is complete. 

Now we deal with case (ii). Denote the positive expression in (ii) by 2𝑐 . Then there 

exists  𝑟1 such that 2−𝑟Nr(1) > 𝑐  for  𝑟 = 𝑟1 . Also, there exists  𝑟2 > 𝑟1 such that  

2−𝑟Nr (
1

2
) > 𝑐  for  𝑟 = 𝑟2 . Generally we have  2−𝑟Nr (

1

s
) > 𝑐 for 𝑟 = 𝑟𝑠, where  

𝑟1 < 𝑟2 < ⋯ .  By the argument of theorem 5 [46] , there exists 𝐼 = 𝐼(𝑐) such that  

𝑖 > 𝐼 implies  

2−𝑟∑|𝑙 − 𝑙(𝑖)|
𝑝𝑘

𝑟

< 𝑐 2⁄  

(2.1.4) 

for all sufficiently large  𝑟. Now we must have 𝑙(𝑖) = 𝑙(𝐼) for every i > 𝐼 . For 

otherwise 

|𝑙(𝑖) = 𝑙(𝐼)| > 0 

for some 𝑖 > 𝐼 and then , with 𝑟 = 𝑟𝑠 , 
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2−𝑟∑|𝑙(𝑖) − 𝑙(𝐼)|
𝑝𝑘
≥ 2−𝑟 ∑ |𝑙(𝑖) − 𝑙(𝐼)|

𝑝𝑘

𝑝𝑘<1 𝑠⁄𝑟

 

 

                                       ≥ 2−𝑟Nr (
1

s
) |𝑙(𝑖) − 𝑙(𝐼)|

1 𝑠⁄
 

                                                                > |𝑙(𝑖) − 𝑙(𝐼)|
1 𝑠⁄

> 𝑐 2⁄  

(2.1.5) 

for sufficiently large 𝑠 . The argument above depends on having  |𝑙(𝑖) − 𝑙(𝐼)| ≤ 1  , 

which obviously holds for sufficiently large 𝑖, 𝐼. Now (2.1.4) and (2.1.5) are 

contradictory, whence (𝑙(𝑖)) is ultimately constant. This proves that  𝑤(𝑝) is 

complete. 

Let  and  be any two sequence spaces and A = (𝑎𝑛𝑘) ;  𝑛, 𝑘 ∈ ℕ  be infinite 

matrix of complex numbers  .Then we say that defines a matrix mapping  

into   ; and it is denoted by writing if for every sequence   , 

the sequence  is in  , where 

(𝐴𝑥)𝑛 = ∑𝑎𝑛𝑘

∞

𝑘=1

𝑥𝑘 ;   (𝑛 ∈ ℕ) 

(2.1.6) 

By (𝑋, 𝑌) we denote the class of all matrices 𝐴 such that  𝐴: 𝑋 → 𝑌. Thus, 𝐴 ∈ (𝑋, 𝑌)  

if and only if the series on right side of (2.1.2) converges for each 𝑛 ∈ ℕ and every 

𝑥 ∈  𝑋; and we write, 

𝐴𝑥 = {(𝐴𝑥)𝑛}𝑛∈ℕ ∈ 𝑌 for all . 

We denote by U for the set of all sequences  such that    for all n ∈ ℕ . 

For U , let . Let us define the matrix  as, 

X Y

nka A X

Y :A X Y ( )kx x X 

 ( )nAx Y

x X

( )nu u 0nu 

u
1 1

nu u

 
 
 

( , ) ( )nkG u v g
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(2.1.7) 

for all 𝑛, 𝑘 ∈ ℕ ,where  depends only on  and  only on . The matrix 

is called generalized weighted mean or factorable matrix. 

2.2. New Sequence Spaces 

In the present part of the chapter we shall introduce the sequence spaces 

and . Before introducing these sequence spaces we 

would like to present some remarks. Malkowsky and Savas [29] have defined the 

sequence spaces  𝑍(𝑢, 𝑣, 𝑋)  which consists of all sequences whose G(u,v)- transforms 

are in where . Chaudhary and Mishra [15] have defined 

the sequence space  which consists of all sequences whose S- transforms are in 

; where the matrix is defined by  

𝑆𝑛𝑘 = {
1; 0 ≤ 𝑘 ≤ 𝑛
0; 𝑘 > 𝑛

 

Moreover Maddox [45] introduced the sequence spaces  𝑤(𝑝) of all strongly 

summable,𝑤0(𝑝) of strongly summable to zero and  𝑤∞(𝑝) of bounded sequences 

which consist of all sequences whose C- transforms are in the spaces and 

 respectively ; where  

 

and is called the Cesaro matrix of order 1 or the matrix of arithmetic mean. 

The matrix domain of an infinite matrix in a sequence space  is defined by                       

 

 

; 0

0;

n k

nk

u v k n
g

k n

 




nu n kv k

( , ) ( )nkG u v g

0( , ; ) , ( , ; )w u v p w u v p ( , ; )w u v p

 0, , , ( )X l c c l p ,u v U

( )l p

( )l p ( )nkS s

0( ) , ( )l p c p

( )l p

1
; 1

( )

0;
nk

k n
C c n

k n


 

 
 

( )nkC c

AX A X
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(2.2.1) 

which is a sequence space. 

With the notation of (2.2.1) , we can have the following representations: 

,    for  

,      [13] 

𝑤(𝑝) = [𝑙(𝑝)]𝐶 , 𝑤0(𝑝) = [𝑐0(𝑝)]𝐶and  𝑤∞(𝑝) = [𝑙∞(𝑝)]𝐶. 

Following the works of the authors [13,15,29,44] , for is a bounded sequence 

of a strictly positive real numbers , we now define the new sequence spaces 

for  0, ,w w w   by  

1

( , ; ) ( ) : ( )k n k k

k

u v p x x u v x p  




  
     

  
  

(2.2.2)   

Using (2.2.1), we may represent these sequence spaces as ,  

( , )( , ; ) [ ( )]G u vu v p p 
 
; for  0, ,w w w 

 

In other words the sequence spaces  𝑤(𝑢, 𝑣; 𝑝)  ,  𝑤0(𝑢, 𝑣; 𝑝)  and  𝑤∞(𝑢, 𝑣; 𝑝)  are 

the sets of all sequences whose 𝐺(𝑢, 𝑣) transforms are in the spaces 𝑤(𝑝)  ,  𝑤0(𝑝)  

and  𝑤∞(𝑝) respectively. 

If  for all  𝑘 ∈ ℕ,  we write instead of  for  𝜇 ∈ {𝑤, 𝑤0,

𝑤∞ }.  

It is easy to verify that the sequence spaces  𝑤(𝑢, 𝑣; 𝑝)  ,  𝑤0(𝑢, 𝑣; 𝑝)  and  

𝑤∞(𝑢, 𝑣; 𝑝)  are linear spaces under usual coordinatewise addition and scalar 

multiplication. 

We shall first establish following some simple properties.  

 ( ) :A kX x x Ax X   

 ( , , )
Z

X u v p X  0, , , ( )X l c c l p

 ( ) ( ) Sl p l p
( , )( , ; ) ( )G u vl u v p l p

 kp p

( , ; )u v p

1kp  ( , )u v ( , ; )u v p
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Proposition 2.1.1: The sequence spaces  for  𝜇 ∈ {𝑤, 𝑤0, 𝑤∞ } are 

complete paranorm space paramormed by  

; 

or equivalently  

 

(2.2.3)
 

where is the sum over r in the range . For the space , 

(2.2.3)  is a paranorm if and only if . 

Proof: The proof of this proposition follows from the similar arguments as in the 

theorems 5,6 in [46] and theorem 2.1 in [13]. If is a Cauchy sequence in 

; then is a Cauchy sequence in . Now it is a routine work to 

show is complete paranormed space under the usual paranorm. 

Proposition 2.1.2: The sequence spaces  are linearly isomorphic to ( )p

where  0, ,w w w  .  

Proof: We define the transformation  

by, 

. 

Linearity of is obvious. Further, if , then . Hence T is injective.  

Next, let . 

( , ; )u v p

1

1

1
( ) sup

kp Mn

n k k
kn

h x u v x
n 

 
  

 

 
1

( ) sup 2 k Mpr

r n k k
r

h x u v x 

r


12 2r rk   ( , ; )w u v p

0 inf supk kp p   

 nx

( , ; )u v p  ( , ) nG u v x 

( , ; )u v p

( , ; )u v p

: ( , ; )T u v p 

( )x y T x

T Tx  x 

 ny y  
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Then 

𝑦𝑛 =∑𝑢𝑛𝑣𝑘𝑥𝑘

𝑛

𝑘=1

 

  gives successively  

𝑦1 = 𝑢1𝑣1𝑥1  or  𝑥1 =
1

𝑣1
(
𝑦1
𝑢1
) 

𝑦2 = 𝑢2𝑣1𝑥1 + 𝑢2𝑣2𝑥2or𝑥2 =
1

𝑣2
(
𝑦2

𝑢2
−

𝑦1

𝑢1
)   ; using value of 𝑥1, 

𝑦3 = 𝑢3𝑣1𝑥1 + 𝑢3𝑣2𝑥2 + 𝑢3𝑣3𝑥3or𝑥3 =
1

𝑣3
(
𝑦3
𝑢3
−
𝑦2
𝑢2
) 

 using value of 𝑥1 and 𝑥2 and so on. Continuing in this way, we have a generalization 

that  

𝑥𝑘 =
1

𝑣𝑘
(
𝑦𝑘
𝑢𝑘
−
𝑦𝑘−1
𝑢𝑘−1

) , 𝑘 ∈ ℕ 

(2.2.4) 

where 𝑦𝑘 = 0 for 𝑘 ≤ 0 . 

 Now from (2.2.3) 

ℎ(𝑥) =  sup
                      𝑛∈ℕ

{
1

𝑛
∑|𝑢𝑛𝑣𝑘𝑥𝑘|

𝑝𝑘

𝑛

𝑘=1

}

1 𝑀⁄

 

                                        =  sup
                                                              𝑛∈ℕ

 {
1

𝑛
∑ |𝑢𝑛𝑣𝑘

1

𝑣𝑘
(
𝑦𝑘
𝑢𝑘
−
𝑦𝑘−1
𝑢𝑘−1

)|
𝑝𝑘

𝑛

𝑘=1

}

1 𝑀⁄

 

                                            = sup
𝑛∈ℕ

{
1

𝑛
(|𝑦1|

𝑝𝑘 + |𝑦1|
𝑝𝑘 + |𝑦1|

𝑝𝑘 +⋯)}
1 𝑀⁄

 

      = sup
𝑛∈ℕ

{
1

𝑛
∑|𝑦𝑘|

𝑝𝑘

𝑛

𝑘=1

}

1 𝑀⁄

 

                                                     =  𝑔(𝑦) ; using (2.1.1) 
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Thus , we deduce that and as a consequence we conclude that is 

surjective and is a paranorm preserving. Hence  is a linear bijection and showing 

that the sequence spaces  are linearly isomorphic to ( )p  . 

2.3. Duals 

In [25] Lascarides and Maddox have determined the β- dual (the generalized Kӧthe- 

Toeplitz the dual) of sequence space  𝑤(𝑝) as the space ℳgiven by 

ℳ = {𝑎 = (𝑎𝑘):∑maxr [(2
𝑟𝑁−1)

1

𝑝𝑘|𝑎𝑘|] < ∞ for some integer 𝑁 > 1

∞

𝑟=0

} 

for 0 < 𝑝𝑘 ≤ 1 and maxr is the maximum taken over 2𝑟 ≤ 𝑘 < 2𝑟+1[25]. 

In this section we obtain the - dual of  𝑤(𝑢, 𝑣; 𝑝) . We recall that if be a sequence 

space , we define dual of as:  

𝑋𝛽 = {𝑎 = (𝑎𝑘): ∑𝑎𝑘𝑥𝑘 is convergent for each 𝑥 ∈ 𝑋

∞

𝑘=1

} 

Theorem 2.3.1 

Let  for every k ∈ ℕ . Then where  

   
 

1

1 1

1
1 1

1

1

2 21
( ) : convergesand lim 2 (1)

k k

m

p p
r r

p
r m

k k
m

r k k k m m

N N a
a a a N O

v u u u v

 






   
   

       
   

   



 

.Proof: We first assume that the conditions hold. Let and .Then 

for , there exists a positive integer  such that  

 

or equivalently 

 

( , ; )x u v p T

T

( , ; )u v p

 X

  X

0 1kp  ( . ; )w u v p 

a ( , ; )x w u v p

( )y w p 1N 

1

1 kpn

k
k

y
n 



1

2

kp

kr
r

y 
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where sum over r runs from .  

It follows that , 

. 

Now using (2.2.4),we have 

 

               

                                               

                                                . 

Hence , it follows that converges for each  .So, ( , ; )w u v p   . 

On the other hand, let . Then, converges for each  .  

Since , 

; 

it follows that   

 

12 2r rk  

 
1

12
pk

r

ky N 

1
1

1 1
1

1m m
k k m m

k k k
k k

k k k m m

y y a y
a x a

v u u u v




 


  
      

   

1
1

1
1

m
k k k m

m
k

k k k m m

a y y a
y

v u u u v







 
    

 

   
 

1 1

1 1
1 1

1

1

2 2
2

p p
k k

p
m

r r

rk m

r
k k k m m

N Na a
N

v u u u v


 





  



1
k k

k

a x




 ( , ; )x w u v p

( , ; )a w u v p
1

k k
k

a x




 ( , ; )x w u v p

   

1 1

1
1 1

1

2 21
( , ; )

p p
k k

r r

k k k

N N
x w u v p

v u u


 



  
  
     

  
    

   

1 1

1
1 1

1
1

2 21

p p
k k

r r

k
k

k k k

N N
a

v u u


 






  
  
  
  
  

  
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converges, which is one of the condition to be proved . Next it remains to show that 

 

For it, on the contrary let, 

, which is immediately against the fact that 

converges for each and converges. 

Hence, we must have, 

 

So, we arrive at the result 𝑤𝛽(𝑢, 𝑣; 𝑝) ⊆ Γ ; thereby proving 𝑤𝛽(𝑢, 𝑣; 𝑝) = Γ . 

2.4.  Matrix Transformation 

In this section we give characterization for the matrix classes ,

and . 

Theorem 2.4.1  

Let for every 𝑘 ∈ ℕ. Then if and only if  

(i) there exists an integer  such that  

 and 

 

 

1

1lim 2 (1)
p

m
r m

m
m m

a
N O

u v






 

1

1lim 2 (1)
p

m
r m

n
m m

a
N O

u v






1
k k

k

a x






( , ; )x w u v p
   
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(ii)                                          

 

Proof: Let the conditions be satisfied. Since,  

 

 

 

             

                  , by using conditions (i) and (ii). 

It follows that and hence converges for each  

and 𝑛 ∈ ℕ. Thus .  

On the other hand , let . Since , 

, 

the condition (i) holds. In order to show that condition (ii) is necessary, we assume 

that for , 
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lim
𝑚→∞

{(2𝑟𝑁−1)
1

𝑝𝑚  
𝑎𝑛𝑚
𝑢𝑚𝑣𝑚

}
𝑛∈ℕ

  ≠ 𝑂(1)  

that is,  

{(2𝑟𝑁−1)
1

𝑝𝑚  
𝑎𝑛𝑚

𝑢𝑚𝑣𝑚
}
𝑛∈ℕ

∉ 𝑙∞. 

Now, therefore, there exists a sequence such that  

sup
𝑛
∑max

𝑟
[𝑎𝑛𝑘 {

1

𝑣𝑘
(
(2𝑟𝑁𝑟

−1)
1

𝑝𝑘

𝑢𝑘
−
(2𝑟𝑁𝑟

−1)
1

𝑝𝑘−1

𝑢𝑘−1
)}] = 𝑜(1)

𝑟

 

and 

lim
𝑚→∞

{(2𝑟𝑁𝑟
−1)

1

𝑝𝑚  
𝑎𝑛𝑚
𝑢𝑚𝑣𝑚

}
𝑛∈ℕ

= 𝑜(1)   

Hence,  but . So, we arrive at the contradiction to 

our assumption . Thus, condition (ii) is necessary; thereby 

completing the proof for the theorem. 

By using the arguments as in theorem (2.4.1) it is straight forward matter to prove the 

following theorems: 

Theorem 2.4.2 

 Let  for every k ∈ ℕ . Then if and only if  

i) there exists an integer  such that  

 and 

ii)  

lim
𝑚→∞

{(2𝑟𝑁−1)
1

𝑝𝑚  
𝑎𝑛𝑚
𝑢𝑚𝑣𝑚

}
𝑛∈ℕ

= 𝑜(1)   
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iii)  

 

exists for every fixed k. 

Theorem 2.4.3 

 Let  for every  𝑘 ∈ ℕ . Then 𝐴 ∈ (𝑤(𝑢, 𝑣; 𝑝), 𝑐0)  if and only if  

i) there exists an integer  such that  
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𝑛∈ℕ
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 (iii)  

 

with  for every fixed k. 
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Part Two: 

Paranormed Sequence Spaces 𝒘(𝒖, 𝒗; 𝒑, ∆) , 𝒘𝟎(𝒖, 𝒗; 𝒑, ∆) and 

𝒘∞(𝒖, 𝒗; 𝒑, ∆) Generated by Combining the Generalized 

Weighted Mean 𝑮(𝒖, 𝒗) and the Difference Operator Matrix ∆ 

2.5.  Preliminaries and Reviews 

We recall that any subspace of the space ω of all complex valued sequences is called a 

sequence space. We shall write 𝑙∞ , 𝑐 and 𝑐0 for the spaces of all bounded, convergent 

and null sequences respectively. By a paranormed space we mean a linear topological 

space over the field R if there is a sub additive function R such that 

,  and scalar multiplication is continuous i.e.  and

 imply , for all α’s in R and all x’s in X; where is 

the zero vector in the linear space X . 

If  be a bounded sequence of strictly positive real numbers, Maddox [45]  

defined the sequence spaces  and which are the spaces of strongly 

summable, strongly  summable to zero and bounded sequences respectively. We have 

shown them in section 2.1. 

Let U denote the set of all sequences  such that  for all N. For 

U, let . Let us define the matrices 𝐺(𝑢, 𝑣) = (𝑔𝑛𝑘) and as: 

𝑔𝑛𝑘 = {
𝑢𝑛𝑣𝑘, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

and 

𝛿𝑛𝑘 = {
(−1)𝑛−𝑘 , 𝑛 − 1 ≤ 𝑘 ≤ 𝑛

0, 0 ≤ 𝑘 < 𝑛  or 𝑘 > 𝑛
 

 

X :g X 

( ) 0g   ( ) ( )g x g x  0n  

( ) 0ng x x  ( ) 0n ng x x   

 kp p

0( ) , ( )w p w p ( )w p

( )nu u 0nu  n u

1 1

nu u

 
 
 

( )nk
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for all ℕ, where depends only on  and  only on . The matrix 

𝐺(𝑢, 𝑣) = (𝑔𝑛𝑘) is called generalized weighted mean or factorable matrix and ∆=

(𝛿𝑛𝑘) is called the difference operator matrix. We denote the combination (product) 

of 𝐺(𝑢, 𝑣) and 𝛥 by 𝐺(𝑢, 𝑣, Δ) and is given by  

𝑔𝑛𝑘
∆ = {

𝑢𝑛(𝑣𝑘 − 𝑣𝑘+1), 0 ≤ 𝑘 ≤ 𝑛 − 1
𝑢𝑘𝑣𝑘 , 𝑘 = 𝑛
0, 𝑘 > 𝑛

 

(2.5.1) 

2.6.  Remarks and New Sequence Spaces ,  and 

 

In the present part of the chapter we shall introduce the sequence spaces 

and ; which are the set of all sequences 

whose 𝐺(𝑢, 𝑣, Δ)- transforms are in the spaces and  respectively, 

where 𝐺(𝑢, 𝑣, Δ) denotes the matrix as defined in (2.5.1).   

Before introducing these sequence spaces we present some remarks. Malkowsky and 

Savas [29] have defined the sequence spaces Z(u,v,X) which consists of all sequences 

whose G(u,v)- transforms are in where . Chaudhary and 

Mishra [15] have defined the sequence space  which consists of all sequences 

whose S- transforms are in ;where is defined by  

𝑠𝑛𝑘 = {
1, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

Basar and Altay [33] have defined the space  as the set of all series whose 

sequence of partial sums are in . In [10,11], the authors also have studied the 

spaces , , and .The space  consists of all the sequences 

whose Riesz  transform are in the space , where the matrix of the 

Riesz mean (𝑅, 𝑡𝑛) = (𝑟𝑛𝑘
𝑡 ) is given by  

,n k  nu n kv k

( , ; , )w u v p  0( , ; , )w u v p 

( , ; , )w u v p 

0( , ; , ) , ( , ; , )w u v p w u v p  ( , ; , )w u v p 

0( ) , ( )w p w p ( )w p

 0, , , ( )X l c c l p ,u v U

( )l p

( )l p ( )nkS s

( )bs p

( )l p

( )tr p ( )tr p ( )t

cr p 0 ( )tr p ( )tr p

( )tR ( )l p  t t

nkR r
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𝑟𝑛𝑘
𝑡 = {

𝑡𝑘 ∑𝑡𝑘

𝑛

𝑘=0

⁄ , 0 ≤ 𝑘 ≤ 𝑛

0,                    𝑘 > 𝑛

 

with the sequence of positive real numbers . 

Moreover the sequence spaces  and introduced by Maddox are the 

set of all sequences whose C- transforms are in the spaces  and 

respectively ; where 𝐶 = (𝑐𝑛𝑘) with 

𝑐𝑛𝑘 = {
1

𝑛
,         1 ≤ 𝑘 ≤ 𝑛

0,                 𝑘 > 𝑛
 

The matrix is called the Cesaro matrix of order 1 or the matrix of arithmetic 

mean. 

Recently in 2012 Demiriz and Caken [78] have introduced and studied the sequence 

spaces , , and which consists of all 

sequences whose -transforms are in , , and 

respectively; where  is as defined in (2.5.1). 

The matrix domain of an infinite matrix in a sequence space  is defined by 

 

 (2.6.1) 

which is a sequence space. 

With the notation of (2.6.1), we have the following representations, 

,   for [29] 

[15],             [33] 

   ,         ,     ,  [10,11] 

for  [78]. 

( )kt

0( ) , ( )w p w p ( )w p

0( ) , ( )l p c p ( )l p

( )nkC c

0 ( , ; , )c u v p  ( , ; , )c u v p  ( , ; , )l u v p  ( , ; , )l u v p 

( , , )G u v  0( )c p ( )c p ( )l p ( )l p

( , , )G u v 

AX A X

 ( ) :A kX x x Ax X   

 ( , , )
Z

X u v p X  0, , , ( )X l c c l p

 ( ) ( ) Sl p l p  ( ) ( ) Sbs p l p

 ( ) ( ) t

t

R
r p l p  ( ) ( ) t

t

R
r p l p   ( ) ( ) t

t

c R
r p c p  0 0( ) ( ) t

t

R
r p c p

 
( , , )

( , ; , )
G u v

u v p 


   0( ), ( ), ( ), ( )c p c p l p l p 
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Following the works of the authors [10,11,15,29,33,45,78] , for  a bounded 

sequence of a strictly positive real numbers , we now define the new sequence spaces

 for  𝜇 ∈ {𝑤,𝑤0, 𝑤∞} by 

𝜇(𝑢, 𝑣; 𝑝, ∆) = {𝑥 = 𝑥𝑘 ∈ 𝜔: (∑𝑢𝑛𝑣𝑘∆𝑡𝑘

𝑛

𝑘=1

) ∈ 𝜇(𝑝)} 

(2.6.2) 

where and for all N with . Now,  is 

the set of all sequences whose -transforms are in  𝜇 ∈ {𝑤,𝑤0, 𝑤∞} , that is , 

( , , )( , ; , ) [ ( )]G u vu v p p    . 

Whenever the matrix is defined to be the unit matrix , 

𝑑𝑛𝑘 = {
𝑢𝑛𝑣𝑘 = 1, 𝑛 = 𝑘

0, otherwise
 

we find that  

 , and  . 

Further if for every N, then  , 

and   [45]. 

The sequence defined as,  

𝑦𝑚 =∑𝑢𝑚𝑣𝑗∆𝑡𝑗

𝑚

𝑗=1

 

                                                           = 𝑢𝑚[𝑣1∆𝑡1 + 𝑣2∆𝑡2 + 𝑣3∆𝑡3 +⋯+ 𝑣𝑚∆𝑡𝑚] 

 kp p

( , ; , )u v p 

1

1
( )

k

k i
i

t x x
k 

  1k k kt t t    k 
0 0t  ( , ; , )u v p 

( , , )G u v 

( , , )G u v 

( , ; , ) ( )w u v p w p  0 0( , ; , ) ( )w u v p w p  ( , ; , ) ( )w u v p w p  

0kp p  k  ( , ; , ) pw u v p w  0 0( , ; , ) pw u v p w 

( , ; , ) pw u v p w  

( )my y
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                                                         = 𝑢𝑚[𝑣1(𝑡1 − 𝑡0) + 𝑣2(𝑡2 − 𝑡1) + 𝑣3(𝑡3 − 𝑡2) +

                                                                              …+ 𝑣𝑚(𝑡𝑚 − 𝑡𝑚−1)] 

                   ∴ 𝑦𝑚 = ∑ 𝑢𝑚 ∆𝑣𝑗  𝑡𝑗

𝑚−1

𝑗=1

+ 𝑢𝑚 𝑣𝑚 𝑡𝑚 

(2.6.3) 

where ; will be frequently used  in our  context as the -

transform of the sequence . 

We shall first establish following some simple properties.  

Proposition 2.6.1. The sequence spaces 𝑤(𝑢, 𝑣; 𝑝, Δ), 𝑤0(𝑢, 𝑣; 𝑝, Δ) and 

 𝑤∞(𝑢, 𝑣; 𝑝, Δ) are linearly isomorphic to ,   and  respectively. 

Proof: We prove the proposition for the space 𝑤(𝑢, 𝑣; 𝑝, ∆).  For each 

, we have . It is easy to verify that  is 

linear and injective. Also the matrix  has an inverse 𝐻(𝑢, 𝑣, ∆) = (ℎ𝑛𝑘) 

given by, 

ℎ𝑛𝑘 = 

{
 
 

 
 
1

𝑢𝑘
(
1

𝑣𝑘
−

1

𝑣𝑘+1
) , 0 ≤ 𝑘 ≤ 𝑛 − 1

1

𝑢𝑘𝑣𝑘
, 𝑛 = 𝑘

0, 𝑘 > 𝑛

 

Thus 𝑤(𝑢, 𝑣; 𝑝, ∆)  is linearly isomorphic to . 

With the similar arguments we can show that   and  are 

linearly isomorphic to   and  respectively . 

Proposition 2.6.2. Let  for all N. We define the sequence 

ℎ(𝑘) = {ℎ𝑛
(𝑘)}

𝑛∈ℕ
 for every ℕ by 

1j j jv v v    ( , , )G u v 

( )kx x

( )w p 0 ( )w p ( )w p

( , ; , )x w u v p  ( , , ) ( )G u v x w p  ( , , )G u v 

( , , )G u v 

( )w p

0( , ; ; )w u v p  ( , ; ; )w u v p 

0 ( )w p ( )w p

 ( , ; )k k
G u v x   k 

,n k 
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Then, the sequence ℎ(𝑘) = {ℎ𝑛
(𝑘)}

𝑛∈ℕ
 is a basis for the space  and any 

has a unique representation in the form 

. 

It can easily be verified. 

Proposition 2.6.3. The sequence spaces for 𝜇 ∈ {𝑤,𝑤0, 𝑤∞} are 

complete paranorm sequence spaces paranormed by, 

 

Where 

 

or equivalently   

. 

 The summation in r runs from the range . For the sequence space 

, is a paranorm if and only if . 

The proof of this proposition follows immediately from the proposition 2.6.1; where 

and is the usual paranorm on . 

  

1
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1 1 1
, 0 1

1
,

0, .

k k k

k

n
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( , ; , )x w u v p 
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k

k
k

x h
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( , ; , )u v p 
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1

1
( ) sup k

n Mp

n
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k k
kn

h x u v t
n 

 
  

 

max(1,sup )kM p

 
1

( ) sup 2 k Mpr
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2.7. Duals 

In this section we find dual of . We recall that if be a sequence 

space , we define dual of as, 

𝑋𝛽 = {𝑎 = (𝑎𝑘): ∑𝑎𝑘𝑥𝑘 is convergent for each 𝑥 ∈ 𝑋

∞

𝑘=1

} 

Theorem 2.7.1 

 Let  for every ℕ . Then where is given by , 

 

and 

lim
𝑚→∞

{(2𝑟𝑁−1)
1

𝑝𝑚  
1

𝑢𝑚𝑣𝑚
 𝑎𝑚} = 𝑂(1) 

for some integer and is the maximum taken over . 

Proof: Let .Then there exists an integer such that, 

 

and  
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𝑚→∞

{(2𝑟𝑁−1)
1

𝑝𝑚  
1
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 𝑎𝑚} = 𝑂(1) 

We take , then for which we shall write 

 in brief. 
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where the summation over runs from . Also, there exists an integer 

such that  . 

We have,  

 

              

So, it follows that, 

               , where is as defined in the proposition 2.6.3. 

Hence, it follows that  converges and . On the other hand , 

let but 

 

and 
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and 

 

Hence, ; but which is contradiction to our 

assumption that . 

This implies that . As a consequence, we get . 

Thus and this completes the proof. The -duals for the spaces 

𝑤0(𝑢, 𝑣; 𝑝, Δ)  and 𝑤∞(𝑢, 𝑣; 𝑝, Δ)  can be obtained in the similar manner. 

2.8.  Matrix Transformation 

In this section we give characterization for the matrix classes (𝑤(𝑢, 𝑣; 𝑝, ∆), 𝑙∞), 

(𝑤(𝑢, 𝑣; 𝑝, ∆), 𝑐), (𝑤(𝑢, 𝑣; 𝑝, ∆), 𝑐0) and . 

Theorem 2.8.1 

Let  for every ℕ. Then if and only if  

i) there exists an integer N>1 such that  
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ii)  

. 

Proof: Let the condition be satisfied. Since  

 

it follows that, 

 

                        

                                     using conditions (i) and ( ii). 

It implies that and hence  converges and belongs to  for 

each and 𝑛 ∈ ℕ. 

On the other hand, let . Hence converges for each 

and 𝑛 ∈ ℕ. We have, 
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and 

lim
𝑚→∞

{(2𝑟𝑁−1)
1

𝑝𝑚  
1

𝑢𝑚𝑣𝑚
 𝑎𝑛𝑚}

𝑛∈ℕ

 ≠ 𝑂(1) 

Now, therefore, there exists a sequence such that  

 

and  

lim
𝑚→∞

{(2𝑟𝑁𝑟 
−1)
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𝑛∈ℕ

= 𝑜(1) 

Hence from (2.8.1) ; but  which is 

contradiction to our assumption that . Thus conditions (i) and (ii) 

must hold. This completes the proof. 

By using this theorem 2.8.1, it is now a straight forward matter to prove the following 

theorem. 

Theorem 2.8.2 

Let  for every ℕ. Then if and only if  

i) there exists an integer N > 1 such that  
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iii)  

 

exists for every fixed .  

Theorem 2.8.3 

Let  for every ℕ. Then if and only if   

i) there exists an integer N>1 such that  

 

where 
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iii)   

 

exists with for  all ℕ. 

Fricke and Fridy [38] introduced a new sequence space .We define here  

and give some results from [15] which will be used in this section. For each r in the 

interval (0, 1), let  
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The analytic sequences are defined by  

A =   

Obviously . In [37,71,76], the various authors studied matrix transformation 

from  A  or G into , but the question of mapping from  into A  or 

G was not considered. To set the stage for general theory, Fricky and Fridy replaced 

the geometric sequence  with a nonnegative sequence and defined , 

. 

For given infinite matrix A the sequence  is defined by .Further, 

Fricky and Fridy made the following remarks: 

Remark 2.8.1.If one wishes to have a matrix A that transforms every null sequence in 

to a sequence that converges at least as rapidly as some , then A must satisfy 

. Similarly, if t is a nonzero constant sequence, then .  

Remark 2.8.2.This remark is about obtaining a “given rate of convergence” by 

mapping into . The work in[ 18,19 ] has shown that regular matrices cannot 

accelerate the rate of convergence of every null sequences. Therefore we say that 

having A map  into  does not say that every sequence in  is accelerated, 

even if  very rapidly ; some sequences that are already in  may map into 

other members of  that converge at the same rate or slower. 

Theorem 2.8.4  

Let  for every ℕ. Then if and only if  
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and  

lim
𝑚→∞

{(2𝑟𝑁 −1)
1

𝑝𝑚  
1

𝑢𝑚𝑣𝑚
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Take any = (𝑥𝑘) ∈ 𝑤(𝑢, 𝑣; 𝑝, Δ) . As , then we have for 

each ℕ. Hence exists and , therefore, we immediately obtain from the equality 
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Taking , we find that  exists and equals to .Hence . 

This completes the proof.  
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CHAPTER THREE 

Part One:  

Paranormed Sequence Space 𝒍(𝒑, 𝝀) Generated by Lower 

Unitriangular Matrix λ 

3.1.  Preliminaries 

By  we mean the spaces of all complex valued sequences. A vector subspace of 

is called a sequence space. We shall write , and for the spaces of all bounded, 

convergent and null sequence respectively. A linear topological space over the 

field R is said to be a paramormed space if there is a subadditive  function  𝑔(𝑥): 𝑋 →

ℝ  such that  𝑔(𝜃) = 0,  𝑔(𝑥) = 𝑔(−𝑥) and scalar multiplication is continuous i.e. 

and  𝑔(𝑥𝑛 − 𝑥) → 0  imply  𝑔(𝛼𝑥𝑛 − 𝛼𝑥) → 0, for all α’s in R  and all  

𝑥’s  in  𝑋 , where is the zero vector in the linear space 𝑋 . Maddox [44,45] has 

introduced the sequence space  

, 

where  is a bounded sequence of strictly positive real numbers. Latter 

Chaudhary and Mishra [15] introduced and studied the sequence space  

 

where 

. 

The sequence space is a complete metric linear space paranormed by, 

𝑔(𝑥) =  (∑|𝑡𝑘(𝑥)|
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where 

. 

Let  and  be any two sequence spaces and ℕ be an infinite 

matrix of complex numbers  . Then we say that  defines a matrix mapping  

into   ; and it is denoted by writing if for every sequence   , 

the sequence  is in  , where 

(𝐴𝑥)𝑛 =∑𝑎𝑛𝑘𝑥𝑘

∞

𝑘=1

 , 𝑛 ∈ ℕ 

 (3.1.1) 

By we denote the class of all matrices  such that  . Thus, 

 if and only if the series on right side of (3.1.1) converges for each ℕ 

and every   ; and we write, 

𝐴𝑥 =  {(𝐴𝑥)𝑛}𝑛∈ℕ  ∈ 𝑌 for all . 

The matrix domain of an infinite matrix in a sequence space  is defined by 

, 

(3.1.2)   

which is a sequence space. 

With the notation as in (3.1.2) , we can have the following representation, 

 

(3.1.3) 

In other words the sequence space which is the set of all sequences whose S- 

transforms are in the sequence space 𝑙(𝑝) [15], where 𝑆 = (𝑠𝑛𝑘)  is an infinite matrix 

given by 

max(1,sup )k kM p
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𝑆 = (𝑠𝑛𝑘) = {
1, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

(3.1.4) 

In expanded form 

𝑆 =

(

 
 

1 0 0 0 …
1 1 0 0 …
1 1 1 0 …
1 1 1 1 …
⋮ ⋮ ⋮ ⋮ ⋱)

 
 

 

The multiplication S with itself to n factors produces an infinite matrix 

, 

which we denote by λ. 

Thus, 

𝜆 = 𝑆𝑛 = (𝜆𝑛𝑘) = {
𝑛 − 𝑘 + 1,   𝑛 ≥ 𝑘

0,                 otherwise
 

 

(3.1.5) 

It is a lower unitriangular matrix.  

Using λ as the operator , we now introduce a new sequence space  as  

 

(3.1.6) 

where λ is as defined in (3.1.5) 

Thus, is now the set of all sequences whose - transforms are in the 

sequence space . Using the notation as in (3.1.2)  𝑙(𝑝, 𝜆) can be represented as  

1 0 0 0 ...

2 1 0 0 ...

3 2 1 0 ...

4 3 2 1 ...

 
 
 
 
 
 
 
 

( , )l p 

 ( , ) ( ) : ( )kl p x x x l p     

( , )l p   ku
nS 

( )l p
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where the sequences, 

 with 
 

and 

= . 

(3.1.7) 

We shall first establish some simple propositions for . 

Proposition 3.1.1.We have, 

. 

Proof : We have   

 

and 

 

where 

. 

It follows immediately by using the definitions of the sequence spaces  and 

 that  

. 

 

 

 

 ( , ) ( )l p l p


 

 1 ( )k k ku u u l p   
0 0u 

 ku  
1

( 1)
k

i
i

k i x


 

( , )l p 

( ) ( ) ( , )l p l p l p  

 
1

( ) ( ) : kp

k k
k

l p x x x




    

 
1

( ) ( ) : ( )
pk

k k
k

l p x x t x




    

1

( )
k

k i
i

t x x




( ) , ( )l p l p

( , )l p 

( ) ( ) ( , )l p l p l p  
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Proposition 3.1.2.The sequence space is linearly isomorphic to .  

Proof: For each , we have where  is as defined in (3.1.5). It is 

easy to verify that is linear and bijective. Also the matrix  has an inverse given 

by 

𝜇 = (𝜇𝑛𝑘) = {
1, 𝑘 = 𝑛, 𝑛 ≥ 3  and  𝑘 ≤ 𝑛 − 2
0, 𝑘 > 𝑛, 𝑛 ≥ 4  and  𝑘 ≤ 𝑛 − 3
−2, 𝑛 ≥ 2  and  𝑘 ≤ 𝑛 − 1

 

(3.1.8) 

that is, 

 

Thus, the sequence space  is linearly isomorphic to  . 

Proposition 3.1.3. The sequence space  is a complete paranormed sequence 

space paranormed by, 

𝑔(𝑥) = {∑|𝑢𝑘|
𝑝𝑘

𝑛

𝑘=1

}

1 𝑀⁄

 

(3.1.9) 

where 

𝑀 = max(1, sup 𝑝𝑘) 

Proof: The proof of this proposition follows immediately from the proposition 3.1.2; 

where 𝑔(𝑥) = 𝑃(𝜆𝑥) and is the usual paranorm on .  

Proposition 3.1.4: Let  for all 𝑘 ∈ ℕ. We define the sequence 

for every 𝑘 ∈ ℕ as in (3.1.8). Then the sequence {𝜇(𝑘)}
𝑘∈ℕ

 is the basis for the 

sequence space  and any and has a unique representation  

. 

It is easy to verify. 

( , )l p  ( )l p

( , )x l p  ( )x l p  

 

1 0 0 0 0 ...

2 1 1 0 0 ...

1 2 1 0 0 ...

0 1 2 1 0 ...

0 0 1 2 1 ...



 
 
 
 

  
 

 
  
 

( , )l p  ( )l p

( , )l p 

P ( )l p

( )k kx   ( )k k

n 

( , )l p  ( , )x l p 

( )

1

k

k
k

x  




 
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3.2. Duals 

In this section we find the -dual of the sequence space  for  0 < 𝑝𝑘 ≤ 1 and  

1 < 𝑝𝑘 ≤ sup𝑝𝑘 < ∞ for every 𝑘 ∈ ℕ.  Recall that if be a sequence space by

dual of , we mean the space 𝑋𝛽 defined as 

𝑋𝛽 = {𝑎 = (𝑎𝑘): ∑𝑎𝑘𝑥𝑘 is convergent for each 𝑥 ∈ 𝑋

∞

𝑘=1

} 

We shall begin the section with the following lemmas [25] to prove the following 

theorems. 

Lemma 3.2.1. If  0 < 𝑝𝑘 ≤ 1for every 𝑘 ∈ ℕ , then 𝑙(𝑝)𝛽 = 𝑙∞(𝑝) where 

𝑙∞(𝑝) = {𝑥 = (𝑥𝑘):
𝑠𝑢𝑝
𝑘
|𝑥𝑘|

𝑝𝑘 < ∞}  [82]. 

 Lemma 3.2.2. If 𝑝𝑘 > 1 for every k ∈ ℕ , then 𝑙(𝑝)𝛽 =  ℳ(𝑝) where 

ℳ(𝑝) =  ⋃ {𝑎 = (𝑎𝑘):∑|𝑎𝑘|
𝑞𝑘𝑁

−
𝑞𝑘
𝑝𝑘 < ∞

∞

𝑘=1

}

𝑁>1

 

with 

1

𝑝𝑘
+
1

𝑞𝑘
= 1 [24,47] . 

Theorem  3.2.1 

Let  for every k ∈ ℕ . Then 

𝑙𝛽(𝑝, 𝜆) = 𝑙∞(𝑝, 𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

where 

𝑙∞(𝑝, 𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = {𝑎 = (𝑎𝑘): 𝑠𝑢𝑝 𝑘|∆
2𝑎𝑘|

𝑝𝑘 < ∞} 

and 

Δ2𝑎𝑘 = Δ𝑎𝑘 − Δ𝑎𝑘+1 

Proof: Let 𝑎 ∈ 𝑙∞(𝑝, 𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Then there exists an integer  such that  

 

 ( , )l p 

X  

X

0 1kp 

1N 

2sup
pk

k
k

a 
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where 

Δ2𝑎𝑘 = Δ 𝑎𝑘 −  Δ𝑎𝑘+1 

Take , then . 

Hence, 

 

So, there exists an integer such that  

 

We have, 

|∑𝑎𝑘𝑥𝑘

𝑚

𝑘=1

| =  |∑𝑎𝑘(𝑢𝑘 − 2𝑢𝑘−1 + 𝑢𝑘−2)

𝑚

𝑘=1

| 

where 

𝑢𝑘 =∑(𝑘 − 𝑖 + 1)𝑥𝑖

𝑘

𝑖=1

 

   with 

𝑢𝑘 = 0 for 𝑘 ≤ 0 

Now, 

|∑𝑎𝑘𝑥𝑘

𝑚

𝑘=1

| = |𝑎1𝑢1 + 𝑎2(𝑢2 − 2𝑢1) + 𝑎3(𝑢3 − 2𝑢2 + 𝑢1) + ⋯

+ 𝑎𝑚(𝑢𝑚 − 2𝑢𝑚−1 + 𝑢𝑚−2)| 

= |(𝑎1 − 2𝑎2 + 𝑎3)𝑢1 + (𝑎2 − 2𝑎3 + 𝑎4)𝑢2 +⋯+ (𝑎𝑚 − 2𝑎𝑚+1 + 𝑎𝑚+2)𝑢𝑚| 

=|(∆𝑎1 − ∆𝑎2)𝑢1 + (∆𝑎2 − ∆𝑎3)𝑢2 +⋯+ (∆𝑎𝑚 − ∆𝑎𝑚+1)𝑢𝑚| ;  

where 

∆𝑎𝑗 = 𝑎𝑗 − 𝑎𝑗+1 

∴ |∑𝑎𝑘𝑥𝑘

𝑚

𝑘=1

| = |∑∆2𝑎𝑘𝑢𝑘

𝑚

𝑘=1

| 

( , )x l p  ( )x l p 

1

.kp

k

x




 

1N 

1

2( ) kp
x N 
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                              ≤  ∑|∆2𝑎𝑘||𝑢𝑘|

𝑚

𝑘=1

 

                                          ≤ |∑∆2𝑎𝑘

𝑚

𝑘=1

| (𝑁−2)1 𝑝𝑘⁄  

Since, is bounded, so that for some M > 0, . 

We remark that the sequence 

{𝑁−2}
1

𝑝𝑘 ∈ 𝑙(𝑝) 

and if 

, 

then 

. 

Therefore,  

. 

Hence it follows that converges for each  and 𝑙∞(𝑝, 𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ⊆ 𝑙𝛽(𝑝, 𝜆). 

On the other hand, let . Then, converges for each . It 

needs to show that  

. 

On the contrary, let  

. 

2 kp

ka 2 kp

ka M 

1 1

2

1

( )
p pk k

k

M N






 

1

( )
pk

M l p
  

 
  

1 1

2

1 1

( )
p pk k

k k
k k

a x M N
 



 

   

1
k k

k

a x




 ( , )x l p 

( , )a l p 
1

k k
k

a x




 ( , )x l p 

2sup
pk

k ka  

2sup
pk

k ka  
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Then, 

. 

Hence, there exists a sequence  such that does not converge. 

Although if we define the sequence by 

 

for , then 

 

and 

. 

It follows that the series does not converge; which is contradiction to our 

assumption that . Hence we must have 

 

which shows 𝑙𝛽(𝑝, 𝜆) ⊆ 𝑙∞(𝑝, 𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and completes the proof. 

Theorem 3.2.2 

Let for every k ∈ ℕ . Then  where   

𝑀(𝑝, 𝜆) = {𝑎 = (𝑎𝑘):∑|Δ2𝑎𝑘|
𝑞𝑘𝑁

− 
𝑞𝑘
𝑝𝑘  converges where 

1

𝑞𝑘
+
1

𝑝𝑘
= 1 and 𝑁 > 1 

∞

𝑘=1

} 

 

Proof: Let  and . From the inequality  

 

we obtain, 

 2 ( ) ( )ka l p l p

  

  ( )ky y l p 
2

1
k k

k

a y






 k 

2 12 ; 0k k k k jy y y y     

0j 

( , )l p 

2

1 1
k k k k

k k

a a y
 

 

  

1
k k

k

a 






( , )a l p 

2sup
pk

k ka  

1 supk kp p    ( , ) ( , )l p p  

( , )a p  ( , )x l p 

k kq p

k k k kb y b y 
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(3.2.1)  

where is the integer associated with  and .  

Now,  

 

It follows that converges and . 

On the other hand, let  . Then, converges for each . As 

a contrary, let . Then, 

 

does not converge.  

Since , 

, then  . 

Now , there exists a sequence ; such that does not converse. 

However , if we define by , 

2 2

q
k

p
kk k

q p

k k k k k ka x a u a N N u



    

N ( , )a p 
1 1

1
k kq p
 

2

1 1

2

1

2

1

2

1

( )

q
k

p
kk k

q
k

p
kk

m m

k k k k
k k

m

k k
k

m q p

k k
k

m q
m

k
k

a x a u

a u

a N N u

a N Ng x





 







  

 

  
    

  

  
    

  

 

1
k k

k

a x




 ( , ) ( , )p l p  

( , )a l p 
1

k k
k

a x




 ( , )x l p 

( , )a p 

2

1

q
k

p
kk

q

k
k

a N








  ( )

q
k

p
k

kx x N l p

  
   

  

 2 ( ) ( )ka p l p  

  ( )ky y l p 
2

1
k k

k

a y






 k 
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with  for , then  

 

and 

. 

It follows that the series does not converge which is contradiction to our 

assumption that . Hence we must have the series 

converges and . This completes the proof. 

3.3.  Matrix Transformation 

In this section we give characterization for the classes ,  and 

. 

Theorem 3.3.1 

Let  for every 𝑘 ∈ ℕ. Then, if and only if  

. 

Proof: Let the conditions hold. Then we have,  

. 

Take Then and hence . 

So, there exists an integer such that  

. 

2 12k k k ky y y    

0jy  0j 

( , )l p 

2

1 1
k k k k

k k

a a y
 

 

  

1
k k

k

a 






( , )a l p  2

1

q
k

p
kk

q

k
k

a N








( , ) ( , )l p p  

( ( , ), )l p l  ( ( , ), )l p c

0( ( , ), )l p c

0 1kp  ( ( , ), )A l p l 

2

,

sup
pk

nk
n k

a  

2

,

sup
pk

nk
n k

a  

( , ).x l p  ( )x l p 
1

kp

k

x




 

1N 

1

2( ) kp
x N 
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We have , 

=  ,where  

                                     =  

                                     

                                   

                                 . 

Hence it follows that 
1

nk k

k

a x




  converges and . 

Conversely, let . Then 
1

nk k

k

a x




 converges for each 

and 𝑛 ∈ ℕ. We need to show that 

sup 
𝑛,𝑘

|Δ2𝑎𝑛𝑘|
𝑝𝑘 < ∞ 

Now , since converges , we have {𝑎𝑛𝑘}𝑘∈ℕ ∈ 𝑙
𝛽(𝑝, 𝜆) for every 𝑛 ∈ ℕ. It 

implies that  

sup 
𝑛,𝑘

|Δ2𝑎𝑛𝑘|
𝑝𝑘 < ∞ 

which is as desired. 

Theorem 3.3.2  

Let for every k ∈ ℕ . Then if and only if  

sup
𝑛
∑|∆2𝑎𝑛𝑘|

𝑞𝑘

∞

𝑘=1

𝑁−𝑞𝑘 𝑝𝑘⁄ < ∞ 

where 

1
nk k

k

a x




 , 1
1

( )nk n k k
k

a a u





 
1

( 1)
k

k i
i

u k i x


  

2

1
nk k

k

a u






2

1
nk k

k

a u




 

1

2 2

1,

sup
p pk k

nk
kn k

a N






 



Ax l

( ( , ), )A l p l  ( ) ( , )kx x l p  

1
nk k

k

a x






1 supk kp p     ( , ),A l p l 
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. 

Proof: Let the conditions hold i.e. . Take Then 

and hence 

𝑔(𝑥) = ∑|𝜆𝑥|𝑝𝑘 < ∞

∞

𝑘=1

 

Then there exists an integer such that  

. 

Now,  

= 
 

                                                                 

(3.3.1)                                                                                                      
 

                                                              

                                                               
Hence it follows that converges and . 

Conversely, let . Then converges for each 

and . We need to show, 

 

where 

1 1
1

k kq p
 

1 supk kp p    ( , ).x l p 

( )x l p 

1N 

1

1( )
p

k

x N 

1
nk k

k

a x





2

1
nk k

k

a u






2

1

q
k

p
kk k

m q p

nk k
k

a N N u





  
    

  

2

1

sup ( )

q
k

p
kk

m q
m

nk
kn

a N Ng x





  
    

  



1

n

nk k
k

a x


 Ax l

 ( , ),A l p l 
1

n

nk k
k

a x


 ( ) ( , )kx x l p  

 nA x l

2

1

sup

k
q

k
k

q

p

nk
kn

a N




 
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. 

Since, converges for each , then  

{𝑎𝑛𝑘}𝑘∈ℕ ∈ 𝑙
𝛽(𝑝, 𝜆) 

for every 𝑛 ∈ ℕ . 

Hence, ; where .  

Further, since , for 𝑛 ∈ ℕ , it follows immediately from 

(3.1.1) that  

 

where 

. 

Hence it completes the proof. 

Theorem 3.3.3 

 Let  for every k ∈ ℕ . Then, if and only if  

i)  

and 

ii)  

 

for every fixed . 

Proof: Let the conditions (i) and (ii) hold. Take any . Then . 

1 1
1

k kp q
 

1
nk k

k

a x




 ( , )x l p 

2

1

k
q

k
k
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Hence,  

. 

Again, there exists an integer , such that 

 

We have,  

 

as in theorem 3.3.1. 

 

Also, by using condition (ii) , 

. 

Therefore,  and since the sequence  {𝑎𝑛𝑘}𝑘∈ℕ ∈ 𝑙
𝛽(𝑝, 𝜆) ;the series 

and converge for every 𝑛 ∈ ℕ and every . Hence 

. 

Conversely, let . Then for  and 𝑛 ∈ ℕ. We 

need to show that the conditions (i) and (ii) hold. 

Moreover , for  and for some fixed . Then, 

. 

So, , where for some fixed . Further it remains to 

show that  

1
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. 

Since, converges , we have  

{𝑎𝑛𝑘}𝑘∈ℕ ∈ 𝑙
𝛽(𝑝, 𝜆) 

and hence  ; which is as desired. 

Theorem 3.3.4.  

Let for every k ∈ ℕ . Then  if and only if  

i) 

 

where 

 and 

ii)  

 

for every fixed . 

Proof: Let the conditions (i) and (ii) hold. Take any . Then . We 

have, 

𝑔(𝑥) = ∑|𝜆𝑥|𝑝𝑘 < ∞

∞

𝑘=1

 

Again, there exists an integer , such that 

. 

We have,   

2

,

sup
k

p

nk
n k

a 

1
nk k

k

a x






2

,

sup
k

p

nk
n k

a 

1 supk kp p     ( , ),A l p c

2

1

sup

q
k

p
kk

q

nk
kn

a N






  

1 1
1

k kq p
 

2 2lim nk k
n

a 


 

k

( , )x l p  ( )x l p 

1N 

1

1( ) kp
x N 



 

 

85 

 

as in theorem 3.3.2. 

Also by using condition (ii) 

. 

Now, using the same argument as in theorem (3.3.3), we arrive at the result . 

Conversely, let ; then converges for each . 

We need to show that conditions (i) and (ii) hold. 

Moreover , for  and for some fixed . Then, 

. 

So,  

 for some fixed , which is condition (ii). Now it remains to show that 

condition (i) holds. 

Since, converges for each , then we have 

{𝑎𝑛𝑘}𝑘∈ℕ ∈ 𝑙
𝛽(𝑝, 𝜆)

 

for every 𝑛 ∈ ℕ . 

Hence , 
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. 
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It follows from the same arguments given in the proof for theorem 3.3.2 that  

. 

It completes the proof.  

By using the arguments as in  the theorems (3.3.3) and (3.3.4), it is straight forward 

matter to prove the following theorems: 

Theorem 3.3.5 : 

Let  for every k ∈ ℕ . Then, if and only if  

i)  

 and 

ii)  

 

with  for all 𝑘 ∈ ℕ .  

Theorem 3.3.6 : 

Let for every k ∈ ℕ . Then  if and only if 

i)  

 

where 

 and 

ii)  
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with for all 𝑘 ∈ ℕ.  

Finally we remark that the sequence, 𝜆 =

{(1,0,0, … ), (−2,1,0,0,… ), (1, −2,1,0,0, … ),… } is not 𝑙(𝑝)  convergent but it is 𝜆-

 𝑙(𝑝) , that is, 𝑙(𝑝, 𝜆) convergent. 

  

0k 
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Part Two: 

Paranormed Sequence Spaces  𝑿(𝒑, 𝝀)  for 𝑿 ∈ {𝒍∞, 𝒄, 𝒄𝟎)}  

Generated by Lower Unitriangular Matrix 

3.4. Preliminaries 

By  we mean the space of all complex valued sequences and any vector subspace 

of  is referred as a sequence space. The symbols , and stand for the spaces of 

all bounded, convergent and null sequence respectively. By a paranormed space we 

mean a linear topological space over the field ℝ if there is a subadditive function

ℝ such that ,  and scalar multiplication is continuous 

i.e.  and  imply , for all α’s in ℝ  and all 

𝑥’s in X, where is the zero vector in the linear space X . If be a bounded 

sequence of strictly positive real numbers, Maddox [44,45] defined the sequence 

spaces , and as follows:
 

, 

𝑐(𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔: lim
𝑘→∞

|𝑥𝑘 − 𝑙|
𝑝𝑘 = 0 for some 𝑙 ∈ ℂ} 

. 

The space is a complete paranormed space paranormed by  

 

and the spaces  and   are complete paranorm spaces paranormed by  if 

and only if [44,45,46]. 

Let  and  be any two sequence spaces and  ℕ be infinite matrix 

of complex numbers . Then we say that  defines a matrix mapping into  ; 

and it is denoted by writing , 



 l c 0c

X

:g X  ( ) 0g   ( ) ( )g x g x 

0n   ( ) 0ng x x  ( ) 0n ng x x  

 ( )kp p

( )l p ( )c p 0( )c p

 ( ) ( ) :sup kp
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l p x x x     
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c p x x x
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0( )c p

( ) sup
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h x x

( )l p ( )c p ( )h x

inf 0kp 

X Y ( ); ,nkA a n k 

nka A X Y
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if for every sequence   , the sequence  is in  , where  

(𝐴𝑥)𝑛 =∑𝑎𝑛𝑘𝑥𝑘 ,    𝑛 ∈ ℕ

∞

𝑘=1

 

(3.4.1) 

By we denote the class of all matrices  such that  . Thus, 

 if and only if the series on right side of (3.4.1) converges for each 𝑛 ∈ ℕ 

and every   ; and we write, 

𝐴𝑥 =  {(𝐴𝑥)𝑛}𝑛∈ℕ ∈ 𝑌 

(3.4.2) 

for all .  

We now introduce new sequence spaces for as, 

 

(3.4.3) 

where  

𝜆 =  (𝜆𝑛𝑘) = 𝑆
𝑛 = {

𝑛 − 𝑘 + 1, 𝑛 ≥ 𝑘

0, otherwise
 

as defined in (3.1.5) in section 3.1 

and  

𝑆 = (𝑠𝑛𝑘) = {
1, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

as defined in (3.1.4) in section 3.1. 

We recall that the matrix domain  of an infinite matrix A in a sequence space X is 

defined by 

:A X Y

( )kx x X   ( )nAx Y

( , )X Y A :A X Y

( , )A X Y

x X

x X

( , )X p  0{ , , }X l c c

 ( , ) ( ) : ( )kX p x x x X p   

AX
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(3.4.4)   

which is a sequence space. 

Using the notation (3.4.4) ,  we can represent  as 

. 

𝑋(𝑝, 𝜆) can also be defined as the set of all sequences {𝑢𝑘} whose  𝜆 = 𝑆𝑛 transforms 

are in the sequence space 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} where the sequence {𝑢𝑘} is given by 

{𝑢𝑘} = {∑(𝑘 − 𝑖 + 1)𝑥𝑖

𝑘

𝑖=1

} 

(3.4.5) 

We shall now establish some propositions. 

Proposition 3.4 1 :Sequence space  is linear metric space paranormed by g, 

defined by 

, where  

                                          = . 

(3.4.6) 

Proof: From the definition of g it is clear that and for 

all . To show linearity of with respect to coordinate-wise addition 

and scalar multiplication, let us take any two sequences  and scalars 

, 𝛽 ∈ ℝ . Since λ is linear operator by [48] ,we note that  

 

 

 ( ) :A kX x x Ax X   
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( ) 0 0g x x   ( ) ( )g x g x 

0 ( , )x c p  0 ( , )c p 

0, ( , )x y c p 
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                                                               =  

This follows the subadditivity of g , i.e. 

 

(3.4.7) 

Now it remains to show the continuity of scalar multiplication in  . For it, let 

be any sequence of the points in  such that 

 

and be sequence of real scalars such that . Now by using (3.4.7), we 

have 

 

Further, 

 

                                                                  

(3.4.8) 

for all n. 

Since is bounded, we find from (3.4.8)  that 

 

for all 𝑛 ∈ ℕ .  

( ) sup ( )
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( ) 0ng x x 
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n n M
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M M

n ng x g x x         

{ ( )}ng x

( )n

ng x x  
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That is, the scalar multiplication for g is continuous and therefore g is a  paranorm on 

the sequence space .  

It can easily be verified that g is the paranorm for the spaces   and   if 

and only if  . 

Proposition 3.4.2 :The sequence spaces  for  are complete 

metric spaces paranormed by g , defined as in proposition 3.4.1. 

Proof: We prove this proposition for . Take a Cauchy sequence in the 

space , where  

. 

Now for given , there exists a positive integer such that, 

 for all . 

Also, from the definition of g for each fixed 𝑘 ∈ ℕ, we have 

 

      

                                                    

for all  . 

Now , this implies that, is a Cauchy sequence in ℝ for 

each fixed 𝑘 ∈ ℕ. Since ℝ is complete, the sequence  converges and let  

 as  . 

For each fixed 𝑘 ∈ ℕ, and , it is clear that  

 

0 ( , )c p 

),( pl ),( pc

inf 0kp 

( , )X p  0{ , , }X l c c
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0 1 2{ , , ,...}n n n nx x x x
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( )n mg x x   , ( )om n n 
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kp

n m M
k kx x 

sup { } { }
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n m M
k k
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0 1 2{( ) ,( ) , ( ) ,...}k k kx x x  

{ }n

kx
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k kx x  n

m ( )on n 
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(3.4.9) 

Since , 

 

we have, 

 

(3.4.10)                                                                                                                   

for each fixed 𝑘 ∈ ℕ . 

Combining (3.4.9) and (3.4.10), we obtain that 

 

                                 

                                                             

for all . 

Hence , the sequence . Since  was an arbitrary Cauchy sequence in 

, we conclude that the space  is complete. It completes the proof. 

Proposition 3.4.3: The sequence spaces  for  are linearly 

isomorphic to the respective spaces X. 

Proof: For each , we have ,  where λ is as defined in 

section 3.1.5 . It is easy to verify that λ is linear and bijective. Also the matrix λ has an 

inverse given by, 

 

{ } { }
2

kp
n M

k kx x
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  
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0{ } ( , )n n

kx x c p  
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n M
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 
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M
kx
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k kp p

n nM M
k k kx x x    



( )on n 

0{ } ( )x c p  { }nx

0 ( , )c p  0 ( , )c p 

( , )X p  0{ , , }X l c c

( , )x X p  ( )x X p 
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𝜇 = (𝜇𝑛𝑘) = {
1, 𝑘 = 𝑛, 𝑛 ≥ 3  and  𝑘 ≤ 𝑛 − 2
0, 𝑘 > 𝑛, 𝑛 ≥ 4  and  𝑘 ≤ 𝑛 − 3
−2, 𝑛 ≥ 2  and  𝑘 ≤ 𝑛 − 1

 

(3.1.11) 

Thus, the sequence spaces is linearly isomorphic to the corresponding  spaces

for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} . 

Proposition 3.4.4: Let  and for all 𝑘 ∈ ℕ. We define 

the sequence 𝜇𝑘 = {𝜇𝑛
(𝑘)
}
𝑛∈ℕ

 for every fixed 𝑘 ∈ ℕ as in proposition 3.4.3. Then, 

(i)  the sequence 

{𝜇𝑛
(𝑘)
}
𝑛∈ℕ

 

is the basis for the sequence space  and any has a unique 

representation and 

(ii) the set  

 

is a basis for the space and any has a unique representation in the 

form 

 

where  and  

It is easy to verify this proposition. 

3.5.  Duals 

In this section we find the generalized Kӧthe-Toeplitz dual i.e. -dual of the 

sequence spaces 𝑙∞(𝑝, 𝜆) , 𝑐0(𝑝, 𝜆)  and  𝑐(𝑝, 𝜆). If be a sequence space , we 

define dual of as 

( , )X p 

( )X p

( )k kx  0 supk k
k

p p   

0 ( , )c p  0 ( , )x c p 

( )

1

k

k
k
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

 

( ){ , }k 
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lim ( )k
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l x
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 (1,3,0,0,...)T 



X

  X
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𝑋𝛽 = {𝑎 = (𝑎𝑘): ∑𝑎𝑘𝑥𝑘 is convergent for each 𝑥 ∈ 𝑋

∞

𝑘=1

} 

Theorem 3.5.1 

Let  for every k ∈ ℕ . Then where 

 

and 

. 

Proof: Let  and .We choose an integer 

. Then we have, 

; where  

                                                                            

                                     

                                   . 

Hence,  

. 

On the other hand , let  but . Then there exists an 

integer N >1 such that  

. 
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Then, , where 

𝑀∞(𝑝) =  ⋂ {𝑎 = (𝑎𝑘):∑|𝑎𝑘|𝑁
1

𝑝𝑘  < ∞

∞

𝑘=1

}

𝑁>1

 [25] 

Hence , there exists a sequence such that does not 

converge. Although if we define the sequence by  

 

with for ,then and ,therefore ,  

. 

Hence it follows that the series does not converge; which is contradiction to 

our assumption that . Hence we must have, 

 

This shows that . It completes the proof. 

Theorem 3.5.2 

Let for every k ∈ ℕ . Then where 

. 

Proof: Let and . Then 

 

for some N >1 and  

 

2{ } ( ) ( )ka l p M p

   

{ } ( )ky y l p  2

1
k k

k

a y






{ }k 

1 12k k k ky y y    
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2

1 1
k k k k

k k

a a y
 

 
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1
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k

a 






( , )a l p 

1

2

1

kp

k
k

a N




 

( , ) ( , )l p M p   

0kp ),(),( 00 


pMpc 

1

2

0
11

( , ) { ( ): }kp

k k
kN

M p a a a N
 



    

),(0 pMa ),(0 pcx
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2

1
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k
k
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



  

N
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for all sufficiently large k ; whence for such k , 

 

                 

                       < ∞ 

Hence, 

. 

On the other hand, let but . Then the convergence of 

for all  implies that . For otherwise, as in the proof 

of theorem 3.5.1, we can easily construct a sequence such that  

does not converge; which becomes contradiction. 

Hence,  

. 

This completes the proof. 

Corollary 3.5.1. Let  for every 𝑘 ∈ ℕ. Then  , where 

𝑐𝑠 is the set of convergent series. The proof of this corollary is the direct consequence 

of the theorem 3.5.2.
 

3.6. Matrix transformation 

In this section we characterize the classes ,  and 

. 
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 
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
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k k
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a x

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 ),(0 pcx ),(0 pMa

),(0  pc
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k

a 






),(),( 00 

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0kp cspMpc  ),(),( 0 

)),,((  lpl  )),,(( cpl 

)),,(( 0cpl 
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Theorem 3.6.1  

Let  for every 𝑘 ∈ ℕ. Then if and only if  

 

 

for every integer N > 1. 

Proof: Let the condition holds. Then we have, 

. 

Take . Then and hence . So there exists an 

integer such that  

. 

Then,  

 where  

                                              

                                             

                                              < ∞. 

Hence it follows that converges for each 𝑛 ∈ ℕ and . 

On the other hand , let . As a contrary let us assume that there exists 

an integer  such that  

. 
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Then the matrix , as in theorem 3 [25] and so there exists a 

with such that  

 

Although if we define the sequence by  

 

with  for , then and therefore  

. 

It follows that the sequence ; which is contradiction to our 

assumption. Thus, 

 

and it completes the proof. 

Theorem 3.6.2 : 

 Let for every k ∈ ℕ . Then if and only if  

(i)  

 

converges uniformly in n for all integer  𝑁 > 1. 

(ii) 

 

for some fixed k. 

)),(()( 2

 lplank

( ) ( )ky y l p  1sup k
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 
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 
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Proof: Let the conditions (i) and (ii) hold. We first state a lemma due to Lascarides 

and Maddox [25]. 

Lemma 3.6.1: Let  𝑝𝑘 > 0 for every k . Then  𝐴 ∈ (𝑙∞(𝑝), 𝑐) if and only if  

(i) 

∑|𝑎𝑛𝑘|𝑁
1 𝑝𝑘⁄  

converges uniformly in 𝑛 , for all integers  𝑁 > 1 . 

(ii) 

𝑎𝑛𝑘 → 𝛼𝑘 

(𝑛 → ∞ , 𝑘 fixed) . 

Now, since the conditions (i) and (ii) hold , using lemma 3.6.1 we have the matrix 

. 

By using, 

 

 (3.6.1) 

we have , 

 

for every 𝑛 ∈ ℕ. 

Hence, . 

On the other hand let . Then from (3.6.1) it follows that 

 

Hence from the lemma 3.6.1 , we arrive at the result that the conditions (i) and (ii) 

hold. This proves the theorem. 

Using the same arguments as in the theorems (3.6.1) and (3.6.2), it is straight forward 

matter to prove the theorem: 

2( ) ( ( ), )nka l p c 

2

1 1
nk k nk k

k k

a x a u
 

 

  

( ( ) ) ( ( , ), )nA x l p c

( ( , ), )A l p c

( ( , ), )A l p c

2( ) ( ( ), )nka l p c 



 

 

101 

Theorem  3.6.3 :  

Let for every 𝑘 ∈ ℕ. Then if and only if  

(i)  

 

converges uniformly in 𝑛 for all integers  𝑁 > 1 and  

(ii)  

with for all 𝑘 ∈ ℕ  . 

Finally we remark that the sequence, 

𝑏 = (𝑏𝑘) = {(1,0,0, … ), (−2,1,0,0, … ), (1, −2,1,0,0,… )} ∉ 𝑙∞(𝑝) but ∈  𝑙∞(𝑝, 𝜆) .  
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CHAPTER FOUR 

SOME PARANORMED SEQUENCE SPACES GENERATED BY 

COMBINING SPARSE MATRIX 𝝀𝒋 AND GENERALIZED WEIGHTED 

MEAN 𝑮(𝒖, 𝒗) THAT GUARANTEES THE GIVEN RATE OF 

CONVERGENCE 

4.1.  Preliminaries 

By ω we denote the space of all complex valued sequences. Any vector subspace of ω 

is regarded as a sequence space. We shall write 𝑙∞, 𝑐, 𝑐0 and 𝑐𝑠 for the spaces of all 

bounded, convergent, null and convergent series respectively. 

A linear topological space 𝑋 over the real field ℝ is said to be a paranormed space if 

there is a subadditive function 𝑔: 𝑋 → ℝ such that 𝑔(𝜃) = 0 , 𝑔(𝑥) = 𝑔(−𝑥) and 

scalar multiplication is continuous , that is, |𝛼𝑛 − 𝛼| → 0 and 𝑔(𝑥𝑛 − 𝑥) → 0  imply 

𝑔(𝛼𝑛𝑥𝑛−𝛼𝑥) → 0  for all 𝛼 ∈ ℝ and 𝑥 ∈ 𝑋 ; where θ is the zero vector in the linear 

space 𝑋. 

Let 𝑋, 𝑌 be any two sequence spaces, and let 𝐴 = (𝑎𝑛𝑘) be any infinite matrix of real 

number 𝑎𝑛𝑘 where , 𝑛, 𝑘 ∈ ℕ . Then we say that 𝐴 defines a matrix mapping from 𝑋 

into 𝑌 by writing 𝐴: 𝑋 → 𝑌,  if for every sequence 𝑥 = (𝑥𝑘) ∈ 𝑋 , the sequence 𝐴𝑥 =

(𝐴𝑛(𝑥)),  called the 𝐴- transform of 𝑥, is in 𝑌, where 

𝐴𝑛(𝑥) =  ∑𝑎𝑛𝑘
𝑘

𝑥𝑘        (𝑛 ∈ ℕ) 

                                        (4.1.1) 

By (𝑋, 𝑌) , we denote the class of all matrices 𝐴 such that 𝐴: 𝑋 → 𝑌. Thus, 𝐴 ∈ (𝑋, 𝑌) 

if and only if the series on the right hand sided of (4.1.1) converges for each 𝑛 ∈ ℕ 

and every x ∈ 𝑋 , and we have 𝐴𝑥 ∈ 𝑌 for all 𝑥 ∈ 𝑋. 

We shall assume here and after that {𝑝𝑘} is a bounded sequence of strictly positive 

real numbers with sup𝑝𝑘 = 𝐻 and 𝑀 = max [1, 𝐻]. Then, I.J. Maddox [44,45] have 

defined the following sequence spaces 𝑐(𝑝), 𝑐0(𝑝)  and  𝑙∞(𝑝)as , 
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𝑐(𝑝) = {𝑥 = (𝑥𝑘): lim
𝑘→∞

|𝑥𝑘 − 𝑙|
𝑝𝑘 = 0  for some  𝑙 ∈ ℂ} 

𝑐0(𝑝) = {𝑥 = (𝑥𝑘): lim
𝑘→∞

|𝑥𝑘|
𝑝𝑘 = 0} 

and 

𝑙∞(𝑝) = {𝑥 = (𝑥𝑘): sup
𝑘∈ℕ

|𝑥𝑘|
𝑝𝑘 < ∞} 

The space 𝑐0(𝑝) is a complete paranorm space paranormed by 

𝑔(𝑥) =  |𝑥𝑘|
𝑝𝑘
𝑀  

 (4.1.2) 

The spaces 𝑙∞(𝑝) and 𝑐(𝑝) are complete paranormed space paranormed by 𝑔(𝑥) if 

and only if  inf 𝑝𝑘 > 0. 

For simplicity in notation, here and in what follows, the summation without limit runs 

from 1 to ∞. Let (𝑋, 𝑔) be a paranormed space. A sequence (𝑏𝑘) of elements of 𝑋 is 

called a basis for 𝑋 if and only if , for each 𝑥 ∈ 𝑋, there exists a unique sequence (𝛼𝑘) 

of scalars such that  

𝑔 (𝑥 − ) → 0 

as 𝑛 → ∞.  

The series ∑ 𝛼𝑘𝑏𝑘
∞
𝑘=1  which has the sum 𝑥 is then called the expansion of 𝑥 with 

respect to (𝑏𝑛) and is written as 

𝑥 = ∑𝛼𝑘𝑏𝑘

∞

𝑘=1

 

In this chapter we introduce a set of new paranormed sequence spaces 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 

𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) and 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) generated by the combination of sparse matrix 𝜆𝑗 and 

the generalized weighted mean matrix 𝐺(𝑢, 𝑣) . We establish some topological 

properties, obtain bases for 𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) and 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) and find β- duals. 

Furthermore, we characterize the matrix classes (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑙∞), (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐) 

and (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐0). Besides, we give characterization theorem for the case of 

sup
kN

1

n

k k
k

b



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mapping from the sequence space 𝑙∞(𝑝) to new sequence space 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)  that 

guarantees the given rate of convergence. 

4.2.  Remarks 

Several authors have defined many new sequence spaces by using a generalized 

weighted mean (or a factorable) matrix 𝐺(𝑢, 𝑣) and the difference operator matrix ∆ 

or by combining them. The difference sequence spaces were first studied by Kizmaz 

in 1981 [41]. Since then many authors have defined and studied new difference 

sequence spaces by considering the matrices that represent the difference operator. 

Some of the example, are as follows:  

Malkowsky and Savas [29] have defined the sequence spaces 𝑍(𝑢, 𝑣, 𝑋) which 

consists of all sequences such that 𝐺(𝑢, 𝑣) − transform are in ∈ {𝑙∞,𝑐, 𝑐0, 𝑙𝑝}. 

Choudhary and Mishra [15] have defined the sequence space 𝑙(𝑝)̅̅ ̅̅ ̅ whose S – 

transform are in 𝑙(𝑝). Altay and Basar [10] have studied the space 𝑟𝑡(𝑝) which 

consists of all sequences whose Riesz transforms (𝑅𝑡) are in the space 𝑙(𝑝). Recently, 

Demiriz and Caken [78] have defined the sequence spaces 𝜆(𝑢, 𝑣; 𝑝, ∆) for 𝜆 ∈

{𝑐0, 𝑐, 𝑙∞, 𝑙} by combining the matrix 

𝐺(𝑢, 𝑣) = (𝑔𝑛𝑘) = {
𝑢𝑛𝑣𝑘,              0 ≤ 𝑘 ≤ 𝑛

0 ,                𝑘 > 𝑛
 

(4.2.1) 

and the difference operator matrix 

∆= (𝛿𝑛𝑘) = {
(−1)𝑛−𝑘, 𝑛 − 1 ≤ 𝑘 ≤ 𝑛

0, 0 ≤ 𝑘 < 𝑛  or 𝑘 > 𝑛
 

  (4.2.2) 

Most recently Baliarsingh [70] has introduced the spaces 𝑋(∆𝑗 , 𝑢, 𝑣, 𝑝) for 𝑋 ∈

{𝑙∞, 𝑐, 𝑐0} by combining the matrix 𝐺 = (𝑔𝑛𝑘) as given in (4.2.1) and a double band 

matrix 
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∆𝑗= 

 

(4.2.3) 

For a sequence space 𝑋, the matrix domain 𝑋𝐴 of infinite matrix 𝐴 is defined by 

𝑋𝐴 = {𝑥 = (𝑥𝑘) ∶ 𝐴𝑥 ∈ 𝑋} 

  (4.2.4) 

Using the notation (4.2.4), the sequence spaces introduced by the authors stated above 

can be represented as  

𝑍(𝑢, 𝑣, 𝑝) = [𝑋]𝐺(𝑢,𝑣), 𝑙(𝑝)̅̅ ̅̅ ̅ = [𝑙(𝑝)]𝑆, 𝑟
𝑡(𝑝) = [𝑙(𝑝)]𝑅𝑡, 

𝜆(𝑢, 𝑣; 𝑝, ∆) = [𝜆]𝐺(𝑢,𝑣,∆) and  𝑋(∆𝑗 , 𝑢, 𝑣, 𝑝) =  [𝑋]𝐺(𝑢,𝑣,∆𝑗) 

Can now we make generalization in constructing new sequence spaces by introducing 

the operator matrix which guarantees the fast rate of convergence? The answer, we 

claim, is yes. Before introducing the new sequence spaces, we construct a new double 

band sparse matrix𝜆𝑗 . For this we begin with a diagonal matrix , 

𝑑𝑖𝑎𝑔 (
1

𝑡𝑖𝑗
) =  {

1

𝑡𝑗
,          𝑖 = 𝑗

0,      otherwise

 

In expanded form ,     𝑑𝑖𝑎𝑔 (
1

𝑡𝑖𝑗
) = 

 

(4.2.5) 

1 2 0 0

0 2 3 0

0 0 3 4
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 

 
 
 
 
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 
 
 
 
 
 
 
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 
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 
 
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where 

𝑡 = (
1

𝑡𝑗
) ∈ (0,1). 

The multiplication of this matrix with the difference operator matrix ∆ yields a double 

band matrix , 

∆. 𝑑𝑖𝑎𝑔 (
1

𝑡𝑖𝑗
) =

(

 
 
 
 
 
 
 

1

𝑡1
0 0 0 ⋯

−
1

𝑡1

1

𝑡2
0 0 ⋯

0 −
1

𝑡2

1

𝑡3
0 ⋯

0 0 −
1

𝑡3

1

𝑡4
⋯

⋮ ⋮ ⋮ ⋮ ⋱)

 
 
 
 
 
 
 

 

 

We denote the transpose of ∆. 𝑑𝑖𝑎𝑔 (
1

𝑡𝑖𝑗
) by 𝜆𝑗. Thus, 

𝜆𝑗 =

(

 
 
 
 
 
 
 

1

𝑡1
−
1

𝑡1
0 0 ⋯

0
1

𝑡2
−
1

𝑡2
0 ⋯

0 0
1

𝑡3
−
1

𝑡3
⋯

0 0 0
1

𝑡4
⋯

⋮ ⋮ ⋮ ⋮ ⋱)

 
 
 
 
 
 
 

 

(4.2.6)                            

We use 𝜆𝑗 together with 𝐺(𝑢, 𝑣) to define our new sequence spaces. 

We write by 𝑈 the set of all sequences 𝑢 = (𝑢𝑛) such that 𝑢𝑛 ≠ 0 for n ∈ ℕ . For 𝑢 ∈

𝑈, let  

1

𝑢
= (

1

𝑢𝑛
) 
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Let 𝑢, 𝑣 ∈ 𝑈 and let us take the matrix 𝐺(𝑢, 𝑣) as defined in (4.2.1) for all  𝑛, 𝑘 ∈ ℕ ; 

where 𝑢𝑛 depends only on 𝑛 and 𝑣𝑘 only on 𝑘. The matrix 𝐺(𝑢, 𝑣) is called 

generalized weighted mean or factorable matrix. We shall now define the matrix 

𝐺(𝑢, 𝑣, 𝜆𝑗) as, 

𝐺(𝑢, 𝑣, 𝜆𝑗)= 𝐺(𝑢, 𝑣)𝜆𝑗 = (𝑔𝑛𝑘
𝜆𝑗 ) =

{
 
 

 
 𝑢𝑛 (

𝑣𝑘

𝑡𝑘
−
𝑣𝑘−1

𝑡𝑘−1
) ,  𝑘 ≤ 𝑛

−
1

𝑡𝑛
𝑢𝑛𝑣𝑛, 𝑘 = 𝑛 + 1

0, otherwise

 

 (4.2.7)  

We use the matrix  𝐺(𝑢, 𝑣, 𝜆𝑗) to define new sequence spaces. 

4.3. The Paranormed Sequence Spaces 𝑿(𝒖, 𝒗; 𝒑, 𝝀𝒋) for 𝑿 ∈

{𝒍∞, 𝒄, 𝒄𝟎} 

Following [10,11,12,13,15,29,42,70,78],we define the sequence spaces  𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) 

for 𝑋 ∈ (𝑙∞, 𝑐, 𝑐0) by  

𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗)= {𝑥 = (𝑥𝑘): ( ) ∈ 𝑋(𝑝)} 

(4.3.1) 

where 𝜆𝑗𝑥𝑗 is defined as follows 

𝜆𝑗𝑥𝑗 = 
1

𝑡𝑗
∆𝑥𝑗  , (𝑗 ∈ ℕ) 

and ∆𝑥𝑗 = 𝑥𝑗−1 − 𝑥𝑗  with 𝑥0 = 0  , (𝑗 ∈ ℕ). 𝜆𝑗is a sequential double band matrix as 

defined in (4.2.6). Using the notation as in (4.2.4), we may represent the sequence 

spaces 𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) in (4.3.1) as  

𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) =  [𝑋(𝑝)]𝐺(𝑢,𝑣,𝜆𝑗) 

for ∈ (𝑙∞, 𝑐, 𝑐0) .  

In other words 𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) are the sequence spaces which consist of all sequences 

whose𝐺(𝑢, 𝑣, 𝜆𝑗)- transforms are in 𝑋(𝑝). 

1

k

k j j j
j

u v x



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Here and after we use the convention that any term with negative and zero subscript is 

equal to zero. In the following propositions we prove that these spaces are complete 

paranormed linear metric spaces and isomorphic to the spaces 𝑙∞(𝑝), 𝑐(𝑝) and 𝑐0(𝑝) 

respectively. Moreover, we establish basis for the spaces 𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) and 

𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗). Since the proof may also be obtained in the similar way for the other 

spaces, we give the proof only for one of these spaces in order to avoid the repetitions 

of the similar statements.  

Proposition 4.3.1 : Sequence space 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗)  is a linear metric space 

paranormed by 𝑔, defined by , 

𝑔(𝑥) = sup
𝑘
|∑𝑢𝑘𝑣𝑗𝜆𝑗𝑥𝑗

𝑘

𝑗=1

|

𝑝𝑘
𝑀

 

 (4.3.2) 

Proof: We shall check the properties that 𝑔 should satisfy. From the definition it is 

clear that 𝑔(𝑥) = 0 ⇔ 𝑥 = 0 and 𝑔(𝑥) = 𝑔(−𝑥) for all 𝑥 ∈ 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) . To show 

the linearity of 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) with respect to coordinatewise addition and scalar 

multiplication,  let us take any two elements 𝑥, 𝑦 ∈ 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) and scalar 𝛼, 𝛽 ∈ ℝ 

. Since 𝜆𝑗 is a linear operator from Maddox [25] , we note that 

𝑔(𝛼𝑥 + 𝛽𝑦) = sup
𝑘
|∑𝑢𝑘𝑣𝑗𝜆𝑗(𝛼𝑥𝑗 + 𝛽𝑦𝑗

𝑘

𝑗=1

|

𝑝𝑘
𝑀

 

                             ≤ 𝑚𝑎𝑥{1, |𝛼|} +  𝑚𝑎𝑥{1, |𝛽|}

= 𝑚𝑎𝑥{1, |𝛼|}𝑔(𝑥) +  𝑚𝑎𝑥{1, |𝛽|}𝑔(𝑦) 

 

 This follows the subaddivity of 𝑔, that is, 

𝑔(𝑥 + 𝑦) ≤ 𝑔(𝑥) + 𝑔(𝑦) 

 (4.3.3) 

1

sup

kp

k M

k j j j
jk

u v x



1

sup

kp

k M

k j j j
jk

u v y



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Now, it remains to show the continuity of scalar multiplication in 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) . For 

it, let {𝑥𝑛} be any sequence of points in 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) such that𝑔(𝑥𝑛 − 𝑥) → 0  and 

{𝛼𝑛} be sequence of real numbers such that 𝛼𝑛 → 𝛼 . Now by using (4.3.3), we have 

𝑔(𝑥𝑛) ≤ 𝑔(𝑥) + 𝑔(𝑥𝑛 − 𝑥) 

Further, 

𝑔(𝛼𝑛𝑥
𝑛 − 𝛼𝑥) = sup

𝑘
|∑𝑢𝑘𝑣𝑗𝜆𝑗(𝛼𝑛𝑥𝑗

𝑛 − 𝛼𝑥𝑗

𝑘

𝑗=1

|

𝑝𝑘
𝑀

 

                                                        ≤ (|𝛼𝑛 − 𝛼|
𝑝𝑘
𝑀𝑔(𝑥𝑛) + |𝛼|

𝑝𝑘
𝑀𝑔(𝑥𝑛 − 𝑥)) < ∞ 

(4.3.4) 

for all 𝑛 ∈ ℕ 

Since {𝑔(𝑥𝑛)} is bounded , we find from (4.3.4)that  

𝑔(𝛼𝑛𝑥
𝑛 − 𝛼𝑥) < ∞ 

for all 𝑛 ∈ ℕ . 

That is, the scalar multiplication for 𝑔 is continuous and therefore 𝑔 is paranorm on 

the sequence space 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) .  

It can easily be verified that 𝑔 is the paranorm for the spaces 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)  and 

𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) if and only if  inf 𝑝𝑘 >0. 

Proposition 4.3.2: The sequence spaces  𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗)  for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} are 

complete metric spaces paranormed  by 𝑔, defined as in proposition 4.3.1. 

Proof: We prove the proposition for the sequence space 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗). Take a 

Cauchy sequence {𝑥𝑛} in the sequence space 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗)  , where  

𝑥𝑛 = {𝑥0
(𝑛)
, 𝑥1
(𝑛)
, 𝑥2
(𝑛)
, … } 

Now, since {𝑥𝑛} is a Cauchy sequence, for given  𝜀 > 0 , there exists a positive 

integer 𝑛0(𝜀) such that, 
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𝑔(𝑥𝑛 − 𝑥𝑚) < 𝜀 

for all 𝑚, 𝑛 ≥ 𝑛0(𝜀) .  

Also from the definition of 𝑔 for each fixed n ∈ ℕ , we have 

|{𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥
𝑛}
𝑘
− {𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥

𝑚}
𝑘
|

𝑝𝑘
𝑀

 

                                    ≤ sup𝑘 |{𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥
𝑛}
𝑘
− {𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥

𝑚}
𝑘
|

𝑝𝑘
𝑀
< 𝜀 

for all  𝑚, 𝑛 ≥ 𝑛0(𝜀). 

This implies that 

{(𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥
0)
𝑘
, (𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥

1)
𝑘
, … } 

is a Cauchy sequence in ℝ for each fixed 𝑘 ∈ ℕ. Since ℝ is complete the sequence 

{𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥
𝑛}
𝑘
 converges and let 

{𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥
𝑛}
𝑘
→ {𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥}𝑘 

as n → ∞ .  

For each fixed 𝑘 ∈ ℕ, 𝑚 → ∞ and n ≥ 𝑛0(𝜀) , it is clear that  

|{𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥
𝑛}
𝑘
− {𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥}𝑘|

𝑝𝑘
𝑀
≤
∈

2
 

(4.3.5)                                                         

Since 𝑥𝑛 = {𝑥𝑘
(𝑛)
}  is a Cauchy sequence in 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) we have  

|{𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥
𝑛}
𝑘
|

𝑝𝑘
𝑀
≤
∈

2
 

 (4.3.6)                                                                             

for each fixed 𝑘 ∈ ℕ. 

Therefore by combining (4.3.5) and (4.3.6) we obtain that  
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|{𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥}𝑘|

𝑝𝑘
𝑀

 

≤ |{𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥
𝑛}
𝑘
− {𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥}𝑘|

𝑝𝑘
𝑀
+ |{𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥

𝑛}
𝑘
|

𝑝𝑘
𝑀
≤ 𝜀 

for all 𝑛 ≥ 𝑛0(𝜀). 

Hence, we have the sequence {𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥} ∈ 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) . Since {𝑥𝑛} was taken 

as an arbitrary Cauchy sequence, the space 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) is complete. This completes 

the proof. 

Proposition 4.3.3: The sequence spaces  𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) for 𝑋 ∈ (𝑙∞, 𝑐, 𝑐0) are linearly 

isomorphic to the spaces 𝑋(𝑝). 

Proof: For each 𝑥 ∈ 𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) we have 𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥 ∈ 𝑋(𝑝) where 𝜆𝑗 as defined 

in (4.2.6). It is easy to verify that 𝜆𝑗 is linear and bijective. Also the matrix 𝜆𝑗 has an 

inverse given by, 

𝜂 = (𝜂𝑛𝑘) =

{
 
 
 
 
 
 

 
 
 
 
 
 ∑(

𝑡𝑗+1

𝑣𝑗+1
−
𝑡𝑗

𝑣𝑗
)
1

𝑢𝑗

𝑛−1

𝑗=𝑘

, 1 ≤ 𝑘 ≤ 𝑛 − 1

−∑
𝑡𝑗

𝑢𝑗𝑣𝑗

𝑛

𝑗=𝑘

, 𝑘 = 𝑛

0, otherwise

 

for all 𝑛, 𝑘 ∈ ℕ . Thus, the sequence spaces 𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) for 𝑋 ∈ (𝑙∞, 𝑐, 𝑐0) are 

linearly isomorphic to the spaces 𝑋(𝑝). 

Proposition 4.3.4: Let 𝜇𝑘 = (𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥)𝑘 for all k ∈ ℕ . Now for fixed 𝑛 ∈ ℕ we 

define the sequence 𝛼(𝑘) = {𝛼𝑛
(𝑘)
}
𝑛∈ℕ

 by  
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𝛼𝑛
(𝑘)
=

{
 
 
 
 
 
 

 
 
 
 
 
 ∑(

𝑡𝑗+1

𝑣𝑗+1
−
𝑡𝑗

𝑣𝑗
)
1

𝑢𝑗

𝑛−1

𝑗=𝑘

, 1 ≤ 𝑘 ≤ 𝑛 − 1

−∑
𝑡𝑗

𝑢𝑗𝑣𝑗

𝑛

𝑗=𝑘

, 𝑘 = 𝑛

0, otherwise

 

 

for all 𝑛, 𝑘 ∈ ℕ . Then, 

(i) The sequence {𝛼(𝑘)}
𝑘∈ℕ

  is the basis for the sequence space 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) and any  

𝑥 ∈ 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) can uniquely be represented as  

𝑥 =∑𝜇𝑘𝛼
(𝑘)

𝑘

 

 (ii) The set {𝑧, 𝛼(𝑘)}
𝑘∈ℕ

  is the basis for the sequence space 𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) and any  𝑥 ∈

𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) can uniquely be represented as  

𝑥 = ℓ𝑧 + ∑(𝜇𝑘 − ℓ

𝑘

)𝛼(𝑘) 

where 

ℓ = lim
𝑘→∞

(𝐺(𝑢, 𝑣, 𝜆𝑗)𝑥)
𝑘
 

𝑧 = (𝑧𝑘) 

and   

𝑧𝑘 = 
1

𝑣𝑘
∑(

𝑡𝑗−1

𝑢𝑗−1
−
𝑡𝑗

𝑢𝑗
)

𝑘

𝑗=1

 

The proof of the proposition is straight forward.  
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4.4.  Duals 

In this section we determine β- dual of the spaces 𝑋(𝑢, 𝑣; 𝑝, 𝜆𝑗) for X ∈ {𝑙∞, 𝑐, 𝑐0} . We 

recall that if 𝑋 be a sequence space , we define β- dual of 𝑋 as, 

𝑋𝛽 = {𝑎 = (𝑎𝑘): ∑  𝑎𝑘𝑥𝑘is convergent for each  𝑥 ∈ 𝑋

∞

𝑘=1

} 

Theorem 4.4.1  

Define the sets 𝑑1(𝑝) , 𝑑2(𝑝) , 𝑑3(𝑝) and 𝑑4(𝑝) as follows: 

𝑑1(𝑝) =  ⋂{𝑎 = (𝑎𝑘): sup
𝑛
∑|∑[∑(

𝑡𝑖+1
𝑣𝑖+1

−
𝑡𝑖
𝑣𝑖
)
1

𝑢𝑖

𝑗−1

𝑖=1

−
𝑡𝑗

𝑢𝑗𝑣𝑗
]

𝑛−1

𝑗=𝑘

𝑎𝑗|

𝑘

𝑁
1

𝑝𝑘 < ∞}

𝑁>1

 

 

𝑑2(𝑝) =  ⋃{𝑎 = (𝑎𝑘): sup
𝑛
∑|∑[∑(

𝑡𝑖+1
𝑣𝑖+1

−
𝑡𝑖
𝑣𝑖
)
1

𝑢𝑖

𝑗−1

𝑖=1

−
𝑡𝑗

𝑢𝑗𝑣𝑗
]

𝑛−1

𝑗=𝑘

𝑎𝑗|

𝑘

𝑁
−
1

𝑝𝑘 < ∞}

𝑁>1

 

𝑑3(𝑝) = ⋃ {𝑎 = (𝑎𝑘): (∑ [∑ (
𝑡𝑖+1

𝑣𝑖+1
−

𝑡𝑖

𝑣𝑖
)
1

𝑢𝑖
−

𝑡𝑗

𝑢𝑗𝑣𝑗

𝑗−1
𝑖=1 ] 𝑎𝑗

𝑛−1
𝑗=𝑘 𝑁

−
1

𝑝𝑘) ∈ 𝑙∞}𝑁>1  and 

𝑑4(𝑝) =  {𝑎 = (𝑎𝑘): lim
𝑛→∞

(∑[∑(
𝑡𝑖+1
𝑣𝑖+1

−
𝑡𝑖
𝑣𝑖
)
1

𝑢𝑖
−

𝑡𝑗

𝑢𝑗𝑣𝑗

𝑗−1

𝑖=1

] 𝑎𝑗

𝑛−1

𝑗=𝑘

)exists} 

Then,  

{𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)}
𝛽
= 𝑑1(𝑝) ∩ 𝑐𝑠 

{𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗)}
𝛽
= 𝑑2(𝑝) ∩ 𝑑3(𝑝) and 

{𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗)}
𝛽
= 𝑑2(𝑝) ∩ 𝑑3(𝑝) ∩ 𝑑4(𝑝) 

Proof: We find the β-dual of the sequence space 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) only. Before giving 

proof we state the following lemma which we will use latter. 
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Lemma 4.4.1 [61,70]: Let 𝑝𝑘 > 0 for every 𝑘 ∈ ℕ. Then 𝐴 ∈ (𝑙∞(𝑝), 𝑐(𝑞)) if and 

only if sup
𝑛
∑ |𝑎𝑛𝑘|𝑘 𝑁

1

𝑝𝑘 < ∞ for all integers 𝑁 > 1 and there exists 𝛼𝑘 ∈ 𝜔 such that 

lim
𝑛→∞

(∑|𝑎𝑛𝑘 − 𝑎𝑘|

𝑘

𝑁
1

𝑝𝑘)

𝑞𝑛

= 0 

for all integers 𝑁 > 1 . 

Now for the sequence a = (𝑎𝑛) ∈ 𝜔 , we define the infinite matrix,  

𝐷 = (𝑑𝑛𝑘) =

{
 
 
 

 
 
 ∑(

𝑡𝑗+1

𝑣𝑗+1
−
𝑡𝑗

𝑣𝑗
)
𝑎𝑗

𝑢𝑗

𝑛−1

𝑗=𝑘

 , 1 ≤ 𝑘 ≤ 𝑛 − 1

−∑
𝑡𝑗

𝑢𝑗𝑣𝑗

𝑛

𝑗=𝑘

𝑎𝑗 , 𝑘 = 𝑛

0,  otherwise

 

for all 𝑛, 𝑘 ∈ ℕ . 

For any 𝑥 = (𝑥𝑘) ∈ 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) ; we have 

 

             =   = (𝐷𝑦)𝑛          (𝑛 ∈ ℕ) . 

Thus we observe that the sequence (𝑎𝑛𝑥𝑛) ∈ 𝑐𝑠 whenever (𝑥𝑛) ∈ 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) if 

and only if 𝐷𝑦 ∈ 𝑐 and y ∈ 𝑙∞(𝑝) . This implies that 𝑎 = (𝑎𝑛) ∈ 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)
𝛽 if and 

only if 𝐷 ∈ (𝑙∞(𝑝), 𝑐). Hence from the lemma 4.4.1 we conclude that  

{𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)}
𝛽
= 𝑑1(𝑝) ∩ 𝑐𝑠 

4.5.  Matrix transformation 

In first part of this section, we give the characterization of the classes 

(𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑙∞), (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐) and (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐0) . Define a matrix 𝐶 =

 (𝑐𝑛𝑘) by 

1

1 1 1
1

n n k
i i i

k k k
k k i

i i i

t y y
a x a

v u u



  


  
      

  

11
1

1
1

jn
ji i i

j j
j k i

i i i j j

tt t y
y a

v v u u v




 


  
    

   
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𝑐𝑛𝑘 =∑[∑(
𝑡𝑖+1
𝑣𝑖+1

−
𝑡𝑖
𝑣𝑖
)
1

𝑢𝑖

𝑗−1

𝑖=1

−
𝑡𝑗

𝑢𝑗𝑣𝑗
] 𝑎𝑛𝑗

∞

𝑗=𝑘

 

(4.5.1) 

Then we have the  following characterization theorems. 

Theorem 4.5.1 

𝐴 ∈ (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑙∞) if and only if  

 sup
𝑛
( ) < ∞ 

for all integers 𝑁 > 1. 

Theorem 4.5.2 

𝐴 ∈ (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐)if and only if  

(i) 

 sup
𝑛
( ) < ∞ 

for all integers 𝑁 > 1 and  

(ii) 

= 0,  𝛼 = (𝛼𝑘) ∈ 𝜔 and 𝑁 > 1. 

Theorem 4.5.3: 𝐴 ∈ (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐0) if and only if  

(i) 

 sup
𝑛
( ) < ∞ 

for all integers 𝑁 > 1 and  

 

 

1

kp

nk
k

c N

1

kp

nk
k

c N

1

lim kp

nk k
n k

c N


 
 

 
 

1

kp

nk
k

c N
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(ii) 

= 0 ,  𝛼 = (𝛼𝑘) ∈ 𝜔 and 𝑁 > 1 and 

(iii) 

exists with 𝛼𝑘 = 0 for all 𝑘 ∈ ℕ. 

In the second part, we give some remarks before characterization of new class. 

Various authors, including us, have studied matrix transformation from new sequence 

spaces ,for example, 𝑋(𝑢, 𝑣; 𝑝, ∆) to 𝑋 or  𝑋(𝑝). However, the cases of mapping 

from 𝑋 or  𝑋(𝑝)to the new sequence space 𝑋(𝑢, 𝑣; 𝑝, ∆) have not been considered. In 

this connection we give the following characterization theorem. 

Theorem 4.5.4 

𝐴 ∈ (𝑙∞(𝑝), 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)) if and only if  

(𝑒𝑛𝑘)𝑛=1
∞    = ∈ 𝑙∞

𝛽
(𝑢, 𝑣; 𝑝, 𝜆𝑗). 

Proof: First suppose that 𝐴 ∈ (𝑙∞(𝑝), 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)) but (𝑒𝑛𝑘) ∉ 𝑙∞
𝛽
(𝑢, 𝑣; 𝑝, 𝜆𝑗) for 

every 𝑛 ∈ ℕ. So there exists an 𝑥 ∈ 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) such that  

≠ 𝑂(1) 

for each 𝑛 ∈ ℕ. 

However if we define a sequence 𝑦 = (𝑦𝑘) by  

𝑦𝑘 =, ,

 

(4.5.2) 

then it is clear that 𝑦 ∈ 𝑙∞(𝑝) and that  

= ≠ 𝑂(1). 

1

lim kp

nk k
n k

c N


 
 

 
 

lim nk k
n

c 




1
1

1
1

1

k
j ji i

j nj
j k i

i i j
n

u vv v
u a

t t t



 


 




    
          


k

knk xe






















 


1

1 1

1
k

i k

kk
i

i

i

i

i
k

t

xv
x

t

v

t

v
u


k

knk ya 
k

knk xe
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This contradicts the fact that 

𝐴 ∈ (𝑙∞(𝑝), 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)) 

Hence, we must have  

(𝑒𝑛𝑘) ∈ 𝑙∞
𝛽
(𝑢, 𝑣; 𝑝, 𝜆𝑗) 

for each 𝑛 ∈ ℕ.  

Next, suppose that the given condition is satisfied. Then it follows immediately from 

the fact  

=  

 

that, 𝐴𝑦 ∈ 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) for arbitrary 𝑦 ∈ 𝑙∞(𝑝).Thus 𝐴 ∈ (𝑙∞(𝑝), 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗)). 

This completes the proof. 

  


k

knk ya 
k

knk xe
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CHAPTER FIVE 

ON EXPLORATION OF SEQUENCE SPACES AND FUNCTION SPACES 

ON INTERVAL [0,1] FOR DNA SEQUENCING 

5.1.  Preliminaries 

John Maynard Smith in 1970 first introduced the notion of sequence space for protein 

evolution. He proposed a “sequence space” where all possible proteins are arranged in 

a protein space in which neighbors can be interconnected by single mutation [23]. 

These problems are not only unique to protein structures but relevant to many other 

areas such as DNA sequence, brain imaging, climate data, financial data and others.  

In these area of interest the data have common features that: data are enormous, 

information is multi dimensional and complex, the sample size is relevantly small, 

they posses finitely many non zero elements in the sequence and some elements in the 

sequence repeat many times. For instance, four types of nucleotide A, T, G and C are 

linked in different orders in extremely long DNA molecules. It now becomes a 

continuing challenge for scientists, engineers, mathematicians and others to record 

and preserve data in these endeavors.  

When the data received from the reservoir to obtain some information have lower 

dimension and samples have larger size, the statistical methods such as that the 

covariance matrix [4, 68], dot matrix [57] and position weight matrix [83,86] can deal 

with the cases promptly in a simplified way. However, when data have 

multidimensional character and the sample size is smaller, the statistical methods may 

lead to errors [26].  

In this connection authors [26] have pointed out the necessity of the new definition of 

norm to fit a given data ‘𝑎’ in a of set some class samples 𝑆 as follws: 

Let us consider a simple example from a classification problem. Set 𝑆 as a set of some 

class samples and 𝑎 as a given data. Is 𝑎 close to someone of 𝑆 or a new class?A 

simpler approach is to consider problem inf 𝑠∈𝑆‖𝑎 − 𝑠‖𝑝, where 𝑝 denotes the norm in 

ℓ𝑝 space. In most cases, there is at least one 𝑠0∈𝑆 such that  
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‖𝑎 − 𝑠0‖𝑝 = inf𝑠∈𝑆‖𝑎 − 𝑠‖𝑝. 

We denote by (𝑎) the feasible set. Can we say that 𝑎 is close to some 𝑠0∈F(𝑎)? To see 

disadvantage, we divide sequence 𝑠∈𝑆 into three segments (𝑠1, 𝑠2, 𝑠3); the first 

segment 𝑠1 is composed of the first 𝑛1 elements, the second segment 𝑠2 is made of the 

next 𝑛2 elements, and the third is composed of the others. Similarly, we also divide 𝑎 

into corresponding three parts (𝑎1, 𝑎2, 𝑎3). Now, we reconsider 

inf
𝑆1
‖𝑎1 − 𝑠1‖𝑝 ,         inf

𝑆2
‖𝑎2 − 𝑠21‖𝑝 ,   inf

𝑆3
‖𝑎3 − 𝑠3‖𝑝 

Perhaps we would find that F(𝑎1) ∩ F(𝑎2) ∩ F(𝑎3) = 0. Can one say that 𝑎 is a new 

class? From this example, we see that we need a new definition of the norm to fit 

application. Motivated by these questions, we revisit the sequence spaces and function 

spaces defined on [0, 1] .Here, the sequence spaces we work on are different from the 

existing spaces. In the present chapter, we shall introduce our idea and the resulted 

sequence space and function spaces on [0,1]. 

Based on the sequence spaces and function spaces on interval [0,1], in the present 

chapter we examine the behaviors of sequences generated by DNA nucleotides. It has 

been aimed to extend the results of authors [26] by: introducing new function space in 

[0,1], extending the basis function  
𝑥𝑛

𝑛!
 , introducing a new sequence 𝑏 = (𝑏𝑛) =

(∑ 𝑎𝜈 )
∞
𝜈=𝑛  which can characterize DNA sequence , obtaining some new completion 

results among the existing spaces in [0,1] and formulating strongly p- summation 

method.  

Definitions and Notations 

The following definitions and notations will be useful in further discussion. 

(i) DNA 

Definition: DNA stands for Deoxyribonucleic acid which is the chemical stuff it is 

made of. Structurally DNA is polymer – a larger structure that is made up of repeating 

parts of smaller structure – like a brick wall  is made up not just one brick but of many 

similar bricks all closely joined.  
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(ii) DNA Nucleotides 

Definition: In the DNA polymer, the tiny repeating structure are called Nucleotides. 

In other words, nucleotides are organic molecules that serve as the monomers or 

subunits of  DNA . The millions of tiny unit nucleotides together form the entire DNA 

polymer which is called a DNA strand having double helix structure. There are four 

types of nucleotides. They are: 

A = Adenine , C = Cytosine,  G = Guanine,  T = Thymine 

(iii) Sequence alignment 

Definition: Sequence alignment is the procedure of comparing two (pair‐wise 

alignment) or more multiple sequences by searching for a series of individual 

characters or patterns that are in the same order in the sequences. There are two types 

of alignment: local and global. In global alignment, an attempt is made to align the 

entire sequence. If two sequences have approximately the same length and are quite 

similar, they are suitable for the global alignment. Local alignment concentrates on 

finding stretches of sequences with high level of matches. 

(iv) DNA sequence 

Definition: A DNA sequence is a specific sequence of all little bases each base is 

either Adenine (A), Cytosine (C), Thymine (T) or Guanine (G). 

(v) DNA sequencing 

Definition:  DNA sequencing is the process of determining the precise order of 

nucleotides within a DNA molecule. It includes any method or technology  that is 

used to determine the order of the four bases – adenine, cytosine, thymine and 

guanine – in a strand of DNA. 

5.2.  Sequence Spaces and Function Spaces on [0,1] for DNA 

Sequencing 

We discuss the existing function space on [0,1], basis function representation theorem 

and the set inclusion relation as in [26]. 

Let 𝑎 = (𝑎1,𝑎2,𝑎3,… , 𝑎𝑛,…) be a DNA sequence where 𝑎𝑛 ∈ {𝐴, 𝐶, 𝑇, 𝐺}  and  

http://en.wikipedia.org/wiki/Organic_molecule
http://en.wikipedia.org/wiki/Monomer
http://en.wikipedia.org/wiki/DNA
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𝑎(𝑥) = 𝐴𝑝1(𝑥) + 𝐶𝑝2(𝑥) + 𝑇𝑝3(𝑥) + 𝐺𝑝4(𝑥) 

(5.2.1) 

Clearly, for different DNA sequence, we have different polynomials  𝑝𝑗(𝑥) .It is a 

simpler reserve form. To extend it into a sequence of infinitely many non zero terms, 

we take  𝑥 ∈ [0,1] . Here,𝑎(𝑥) is called the generation function in the classical 

queuing theory. We remark that the generation function is not continuous function 

defined in [0, 1] . Hence in order to find out a feasible form of 𝑎(𝑥) we integrate first 

and then differentiate. 

Denoting by 𝐿 the integral operation and performing it for constant 1 leads to, 

𝐿1(1)(𝑥) = ∫ 1
𝑥

0

𝑑𝑥 = 𝑥 

𝐿2(1)(𝑥) = ∫ 𝐿1(1)
𝑥

0

𝑥𝑑𝑥 =
𝑥2

2
 

. 

. 

. 

Generalizing we get, 

𝐿𝑛(1)(𝑥) =
𝑥𝑛

𝑛!
 

(5.2.2) 

for all 𝑛 ∈ ℕ .  

For any polynomial 𝑝𝑛(𝑥) of order n, it can be written as 

                𝑝𝑛(𝑥) = 𝑎0. 1 + 𝑎1𝑥 + 𝑎2
𝑥2

2!
+ ⋯+ 𝑎𝑛

𝑥𝑛

𝑛!
 

= [∑𝑎𝑘𝐿
𝑘

𝑛

𝑘=0

] (1)(𝑥) 

 (5.2.3) 
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Next , we consider the differential operator 𝐷 for the for the function 
𝑥𝑛

𝑛!
  which yields 

𝐷1 (
𝑥𝑛

𝑛!
) =

𝑥𝑛−1

(𝑛−1)!
  , 𝐷2 (

𝑥𝑛

𝑛!
) =

𝑥𝑛−2

(𝑛−2)!
 , … 

In general for 1 ≤ 𝑘 ≤ 𝑛 , it holds that 

𝐷𝑘 (
𝑥𝑛

𝑛!
) =

𝑥𝑛−𝑘

(𝑛 − 𝑘)!
 

(5.2.4) 

Therefore the coefficient sequence is given by 

(𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛) =  (𝐷
0, 𝐷1, 𝐷2, … , 𝐷𝑛)𝑝𝑛|𝑥=0 

(5.2.5) 

and  
𝑥𝑛

𝑛!
  is defined to be the basis function. 

Moreover, the polynomial space over [0, 1] , denoted by P[0,1], is a  normed space 

with the norm  

 

(5.2.6) 

where 

‖𝑓‖∞ = max
0≤𝑥≤1

|𝑓(𝑥)| 

In this space, the integral and differential operations are bounded linear operators. To 

extend to an infinite sequence, we take a subset 𝐶𝑀
∞[0,1] of  𝐶∞[0,1] defined by 

𝐶𝑀
∞ = {𝑓 ∈ 𝐶∞[0,1]: } 

  (5.2.7) 

𝐶𝑀
∞[0,1] is a Banach space. Now for the function space on interval [0,1], there exist 

the following set inclusion relations 

𝑃[0,1] ⊂ 𝐶𝑀
∞[0,1] ⊂ 𝐶∞[0,1] ⊂ 𝐶𝑘[0,1] ⊂ 𝐶[0,1] ⊂ 𝐿∞[0,1] ⊂ 𝐿𝑝[0,1] ⊂ 𝐿1[0,1] 

  (5.2.8) 

 
0

sup n

n

p D p
 





0

sup n

n

D f




 
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But the completion of (𝑃[0,1], ‖. ‖∅) is not the space (𝐶𝑀
∞[0,1], ‖. ‖∅) . For the 

completion of the space (𝑃[0,1], ‖. ‖∅)  authors have defined the following spaces on 

[0,1] : 

, 

for 𝑝 ≥ 1 and 

 

These spaces are isomorphic  to , and respectively [26].  

Obviously 𝑃[0,1] ⊂ 𝐶∅,0[0,1] ⊂ 𝐶𝑀
∞[0,1]  and authors have shown the following set 

inclusion relations: 

 

 (5.2.9)                                        

5.3.  New Function Space and Sequence Space on [0,1] for DNA 

Sequencing and New Set Inclusion Relations 

We define for any , a polynomial function of order 𝑛 

, a0=0. 

                                                    =

 

(5.3.1)   

 
where 𝐿 is integral operator and   

for  

(5.3.2) 
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is new basis function defined in the polynomial function P[0,1] which illustrates 

better approximation to the problem. Further by using differential operator for the 

basis function  

 for  

we find that , 

,  

Obviously , 

 

 

. 

. 

 

Therefore the coefficient sequence 𝑏 =  (𝑏𝑛) is given by  

 

(5.3.3) 

Thus we obtained new coefficient sequence to characterize DNA sequence. With the 

coefficient sequence 𝑏 = (𝑏𝑘) defined by  ,  for all k ; we can characterize 

DNA sequence and the result is helpful to explore for the possible application in DNA 

sequencing. The following table shows the distribution of the coefficient sequence 

𝑏 = (𝑏𝑘) with all possible alignments of DNA nucleotides.  
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Table 1. Distribution of the coefficient sequence 𝑏 = (𝑏𝑘) 

𝑏1   = 𝑎1𝑎2𝑎3𝑎4𝑎5𝑎6𝑎7𝑎8𝑎9…𝑎𝑛 

𝑏2   =      𝑎2𝑎3𝑎4𝑎5𝑎6𝑎7𝑎8𝑎9…𝑎𝑛  

𝑏3   =             𝑎3𝑎4𝑎5𝑎6𝑎7𝑎8𝑎9…𝑎𝑛 

𝑏4   =                   𝑎4𝑎5𝑎6𝑎7𝑎8𝑎9…𝑎𝑛  

……….     ………     ……..    ……..         

……….     ………     ……..    ……..         

……….     ………     ……..    ……..  

𝑏𝑛=                                                         𝑎𝑛  

 

 

where 𝑎𝑛 ∈ {𝐴, 𝐶, 𝑇, 𝐺} . In computational process, if we input a DNA sequence , 

BLAST (Basic Local Alignment Search Tool) will display all possible gene matches 

with closure similarities between the existing DNA sequence in Gene Bank and the 

input sequence. The most likely matches will be displayed from top to bottom 

sequence alignments.  

The polynomial space P[0,1] is now a normed space normed by, 

‖𝑝‖𝜓 = sup
𝑛≥1

‖∑(𝐷𝑘𝑝 − 𝐷𝑘−1𝑝)

𝑛

𝑘=1

‖

∞

 

To extend the case to an infinite dimension, consider a subset of function space 

defined by 

 

which is a linear space.  

The authors [26]  have shown the sets inclusion relations as 

, . 
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 
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Let the completion of the space be . Then we have the following 

representation theorem. 

Theorem 5.3.1 

The space 

 

is isomorphic to the space , where  

. 

Proof: We define an operator 

 

by 

 

The linearity of T is obvious. Now, 

                                          

                         = =  

                                             =  

                                    =  

                                                     =  

Hence T is bijective. Thus T is isomorphism mapping and is isomorphic to

. 
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Now for we define new norm on the space P[0,1] by 

‖𝑔‖𝜓,𝑝 = {∑‖∑(𝐷𝜈𝑝 − 𝐷𝜈−1𝑝)

𝑘

𝜈=1

‖

∞

𝑝∞

𝑘=1

}

1

𝑝

 

Let  be the completion of the space . Then we have the following 

representation theorem. 

Theorem 5.3.2 

 The space   

 

is isomorphic to the space . 

The proof of the theorem follows immediately by using isomorphism operator defined 

as in the proof of theorem 5.3.1. 

Further, letting  we define new norm on the space P[0,1] by  

‖𝑔‖𝜓,∞ = sup
𝑛≥1

‖∑(𝐷𝑘𝑓 − 𝐷𝑘−1𝑓)

𝑛

𝑘=1

‖

∞

 

 

Then we have the following theorem. 

Theorem 5.3.3 

The space  

 

is isomorphic to the space . 

The proof is similar to the proof of theorem 5.3.1 . 

We, therefore, observe the following sets inclusion relations: 

1p 

, [0,1]pC , [0,1]pC

,
1 1 0

[0,1] ( ) ( ) :
!

k p

p k n
k n

x
C g x a b




 

 

  

 
      
 

, [0,1]pC

p 

,
1 1 0

[0,1] ( ) ( ) :sup
!

k

k n
k n

x
C g x a b




 




  

 
     
 

, [0,1]C 



 

 

128 

, 1 ≤ 𝑝 < ∞ 

  (5.3.4) 

Moreover the spaces ,  and  are respectively equivalent 

to ,  and . Hence ,  and  are 

Banach spaces with their natural norms. 

5.4. Strongly Summation Method 

Let (𝑏𝑛) be a sequence of real or complex numbers and satisfy . We define 

a new strongly p- summation method for the sequence (𝑏𝑛) as 

 

 

 

. 

. 

. 

 

We , therefore, obtained a new non negative sequence ; where  

and and
 

are the values in decreasing and increasing queuing.  

Then it is a normed space normed by 
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(5.4.1) 

where H is the generalized strongly summation and p is the p-norm in finite 

dimensional space . 

In particular when , , as ,hence 

. 

Finally, we define the sequence spaces by 

, 

 

These spaces are evidently Banach spaces with their norm as defined in (5.4.1). 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENTATIONS 

6.1. Conclusions 

We have presented our results in chapter two to chapter five. The results in each 

chapter posses their own significance, specific characteristics and applications. In 

chapters two, three and four the role of infinite matrices has been considered as 

operators to construct new sequence spaces. In chapter five we have presented a 

practical application of sequence - function space on [0,1] to characterize DNA 

sequencing. 

In chapter two, we have considered the role of infinite matrices 𝐺(𝑢, 𝑣), called 

generalized weighted mean and the difference operator matrix 𝛥 to introduce the new 

sequence spaces. In the first part of chapter two, generalized weighted mean 𝐺(𝑢, 𝑣) 

has been introduced to construct the new sequence spaces  𝑤(𝑢, 𝑣, 𝑝) , 𝑤0(𝑢, 𝑣, 𝑝)  

and 𝑤∞(𝑢, 𝑣, 𝑝) , which are the set of all sequences whose 𝐺(𝑢, 𝑣) transforms are in  

𝑤(𝑝)  , 𝑤0(𝑝)  and 𝑤∞(𝑝) respectively. Any generalization of the sequence spaces of 

Maddox i.e.  𝑤(𝑝) , 𝑤0(𝑝)  and 𝑤∞(𝑝)  by the application of generalized weighted 

mean 𝐺(𝑢, 𝑣) have not been considered yet. In this regard our work leads to the 

extension of the work of Maddox [44,45]. In order to provide comprehensiveness to 

the work, we have established some properties and characterized the matrix classes 

(𝑤(𝑢, 𝑣, 𝑝), 𝑙∞) , (𝑤0(𝑢, 𝑣, 𝑝), 𝑐),  and  (𝑤∞(𝑢, 𝑣, 𝑝), 𝑐0). 

In the second part of chapter two, the role of the matrix  𝐺(𝑢, 𝑣, ∆) which is the 

combination of generalized weighted mean 𝐺(𝑢, 𝑣) and the difference operator matrix 

𝛥 has been applied to introduce the new sequence spaces 𝑤(𝑢, 𝑣; 𝑝, ∆) , 𝑤0(𝑢, 𝑣; 𝑝, ∆)  

and 𝑤∞(𝑢, 𝑣; 𝑝, ∆) , which are the set of all sequences whose 𝐺(𝑢, 𝑣, ∆) transforms are 

in 𝑤(𝑝) , 𝑤0(𝑝)  and  𝑤∞(𝑝) respectively. This work is the continuation of our work 

in the first part of chapter two. It focuses on the extension of the work of Maddox by 

the application of the matrix G(𝑢, 𝑣, ∆) . To complete the work in concrete form we 

have discussed essential properties along with characterization of the matrix classes 

(𝑤(𝑢, 𝑣; 𝑝, ∆), 𝑐) , (𝑤0(𝑢, 𝑣; 𝑝, ∆), 𝑐)  ,  (𝑤∞(𝑢, 𝑣; 𝑝, ∆), 𝑐0) and (𝑤(𝑢, 𝑣; 𝑝, ∆), Ω(𝑡)) .  
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In chapter three, we have constructed a new matrix  𝑆𝑛 = 𝜆;  

where 

𝑆 = {
1, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
 

and   

𝜆 =  {
𝑛 − 𝑘 + 1, 𝑛 ≥ 𝑘

0, otherwise
 

 

 as in (3.1.4) to define the new sequence spaces 𝑙(𝑝, 𝜆) in the first part and 𝑙∞(𝑝, 𝜆) , 

𝑐(𝑝, 𝜆) and 𝑐0(𝑝, 𝜆) in the second part. The sequence space  𝑙(𝑝, 𝜆) is the set of all 

sequences whose 𝜆- transform are in the sequence space 𝑙(𝑝). Similarly the sequence 

spaces 𝑙∞(𝑝, 𝜆) , 𝑐(𝑝, 𝜆) and 𝑐0(𝑝, 𝜆) are the set of all sequences whose 𝜆- transform 

are in the sequence space 𝑙∞(𝑝), 𝑐(𝑝) and 𝑐0(𝑝) respectively. Our work is expected to 

lead a remarkable contribution in constructing new sequence spaces by generalizing 

the spaces 𝑙(𝑝), 𝑙∞(𝑝) , 𝑐(𝑝) and 𝑐0(𝑝) using a lower unitriangular matrix 𝜆 . 

Moreover along with the establishment of some properties , we have characterized the 

matrix classes (𝑙(𝑝, 𝜆), 𝑐), (𝑙(𝑝, 𝜆), 𝑐0) and (𝑙(𝑝, 𝜆), 𝑙∞) in the first part and 

(𝑙∞(𝑝, 𝜆), 𝑙∞) , (𝑙∞(𝑝, 𝜆), 𝑐) and (𝑙∞(𝑝, 𝜆), 𝑐0) in the second part of chapter three. 

In chapter four, we have constructed a new operator sparse band matrix  𝜆𝑗 which we 

combined with 𝐺(𝑢, 𝑣) to define the new sequence spaces 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) , 

𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) and 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) . By the nature of construction, the sequence spaces 

𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) , 𝑐(𝑢, 𝑣; 𝑝, 𝜆𝑗) and 𝑐0(𝑢, 𝑣; 𝑝, 𝜆𝑗) are the set of all sequences whose 𝜆𝑗 

transforms are in the sequence spaces 𝑙∞(𝑝) , 𝑐(𝑝) and 𝑐0(𝑝) respectively. 

Furthermore we have characterized the matrix classes (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑙∞) , 

(𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐) and (𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗), 𝑐0). Besides, we have given the 

characterization theorem for the case of mapping from the sequence space 𝑙∞(𝑝) to 

the newly defined sequence space 𝑙∞(𝑢, 𝑣; 𝑝, 𝜆𝑗) that guarantees the given rate of 

convergence. 
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We remark that the matrices  𝐺(𝑢, 𝑣), 𝐺(𝑢, 𝑣, ∆) , 𝜆 and 𝜆𝑗 that have been used as 

operators in different chapters to construct the new sequence spaces are all distinct 

and posses different characteristics. We expect that the rate of convergence improves 

by the application of these matrices in comparison to the earlier generalizations in the 

corresponding spaces. 

In chapter five, we have presented a practical application of sequence spaces for DNA 

sequencing in the field of bioinformatics. Based on the function spaces and sequence 

spaces on interval [0,1], in chapter five we have examined the behaviors  of sequence 

spaces generated by DNA nucleotides. We have extended the results of authors [7] by 

introducing a new coefficient sequence 𝑏 = (𝑏𝑛) = (∑ 𝑎𝜈
∞
𝜈=𝑛 ) where  𝑎𝑛 ∈

{𝐴, 𝐶, 𝑇, 𝐺} on [0,1] and extending the basis function (𝑛 ∈ ℕ) in [26] into  

(𝑛 ∈ ℕ) as a new basis function. 

We have also established some isomorphism theorems on newly introduced function 

spaces and obtained some new completion results between the existing spaces in [26]. 

6.2. Recommendations 

Summability theory has very wide applications in functional analysis. It is not 

possible to discuss all the properties and aspects of newly introduced sequence spaces 

in the present thesis. Regarding the results found in this thesis, further generalizations 

can be done to fill the gap in existing literature. We list below some of the future 

works which one may carry out: 

1. Finding 𝛼 and 𝛾 duals of the spaces. 

2. Finding further characterization classes of the spaces. 

3. Studying further properties of the spaces. 

4. Finding dual spaces for function spaces in chapter five. 

!
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