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Abstract

The study of sequence spaces was motivated by the classical results of Summability
theory in Functional Analysis. The results obtained by Cesaro, Borel, Noérlund and
others at the turn of 20th century stimulated interest in general matrix transformation
theory which deals with characterization of matrix mappings between sequence
spaces by giving necessary and sufficient conditions on the entries of the infinite
matrices. The first application of analysis to the theory of Summability was done by
Mazur in 1927 when he proved now his famous Mazur’s consistency theorem. An
outstanding contribution and plenty of work have been done in the field of sequence
spaces in last 50+ years.

Kizmaz [41] introduced the concept of difference sequence spaces. The work of
Kizmaz was further generalized by Et and Cloak [66], Tripathy and Esi [19], Tripathi,
Esi and Tripathi [20], Esi, Tripathy and Sarma [3] and others. In the meantime in

constructing new sequence spaces the role of the infinite matrices

Up Vg, 0<k<n
G(w,v) = (gn) = {
0, k>n
called generalized weighted mean;
(=1D)"k, n—1<k<n
A= (6nk) =
0, O0<k<nork>n
called the difference operator matrix;
1, 0<k<n
S = (Snk) = { ;
0, k>n
the operator matrix A; which can be expressed as a sequential double band matrix
given by
1 -2 0 O
|02 3 0

A=
0 0 3 4



and combination of them has been considered to represent difference operator. In this

connection we have constructed new matrices

n—k+1, n=k
St=21= (Ank) =
0, otherwise

which is a lower unitriangular matrix and an operator sparse band matrix A; which

can be expressed as a sequential double band matrix given by

1 - 0 0
L4
o 1 1 o
L, t,
1=
A
t, t;
0 O 0 tl
4

to introduce the new sequence spaces.
This thesis consists of six chapters.
Chapter one contains introduction with preliminaries and reviews.

Chapter two has been divided into two parts. The sequence spaces w(p), wy(p)
and w,, (p) were introduced and studied by Maddox [45]. In [12], the authors have
introduced the sequence spaces cq(u,v;p), c(u,v;p), lo(u,v;p) and in [29]
l(u, v;p) and established some properties. Following this in the first part of chapter
two, we introduce a set of sequence spaces w(u, v; p), wy(u, v; p), We (1, v; p) by the
application of the generalized weighted mean matrix G(u,v) as the operator, study
some properties and find - dual of w(u,v;p) . We also characterize the matrix
classes (w(u, v;p),le) , (W(w,v;p),c) and (w(u,v;p),cy) . Recently in [78] , the
sequence spaces cy(u, v; p, ), c(u,v;p, D), lo(u,v;p,A) and l(u, v; p, A) have been
introduced. Following this in the second part of chapter two, we introduce the
sequence spaces w(u,v;p,A), wo(u,v;p,A) and we(u,v;p,A) by using the

combination of the matrix G (u, v) and the difference operator matrix 4, study some

Vi



properties and find B-dual of w(u,v;p,A). We also characterize the matrix classes
(w(u,v;p,A),c), wlu,v;p,A),cy) and (w(u, v; p, 4), Q(t)).

Chapter three has also been divided into two parts. In [15] Choudhary and Mishra
have introduced and studied the sequence space I(p) which is the set of all sequences
whose S- transforms are in the space [(p). Following this in the first part we introduce
a new sequence space l(p,A) which is the set of all sequences whose S™ = A
transforms are in I(p) . We compute B- dual of [(p,A) and characterize the matrix
classes (I(p,A),c), (I(p,A),co) and (I(p,A),ls). Similarly in the second part we
introduce a set of new paranormed sequence spaces I, (p,4) , c(p,4) and cy(p, 4)
which are generated by the infinite matrix A . We also compute the basis for the

spaces c(p, 1) and cy(p, 1) , obtain - dual of them and characterize the matrix classes
(les (P, 1), 1), (lo (p, ), ©) and (s (p, 1), €o) -

In Chapter four, we introduce a set of new paranormed sequence spaces [, (u, v;p, /1]-)
, c(u,v;p,4;) and ¢ (u, v; p, 4;) generated by the combination sparse band matrix 4,
and the generalized weighted mean matrix G(u,v) . We establish some topological
properties, obtain the basis for c(u, v; p,4;) and ¢o(u, v; p, 4;) and find B- duals. We
characterize the matrix classes (loo(w,v;p,4),l0) , (lo(w,v;p,4;),c) and
(loo(u, v; p,Aj),co) . Besides we give characterization theorem for the case of
mapping that guarantees the given rate of convergence from the sequence space [, (p)

to the new sequence space [y, (u, v;p, /1]-).

In chapter five, we present a practical application of sequence space. In [26], the
sequence spaces and function spaces on interval [0, 1] for DNA sequencing have been
introduced and studied. The authors have introduced new sequence spaces by using
generalized p- summation method and proved that these spaces of sequences and
functions are Banach space. Based on the sequence spaces and function spaces on

[0,1], we examine the behaviors of sequences generated by DNA nucleotides. We

k
extend the results of authors [26] by introducing new basis function Z};zl% , (v=

n

1,2,3, ...n) which is the extension of existing basis function % , (n € N) defined in

the polynomial function on [0,1]. Besides, we introduce a new sequence b = (b,) =

vii



Yv=na, Which can characterize DNA sequence where a, € {4,C,T,G} and A:

Adenine, C: Cytosine, T: Thymine and G: Guanine are four types of nucleotides.

We conclude our thesis by providing conclusions and recommendations in chapter

SiX.
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CHAPTER ONE

INTRODUCTION

1.1. Preliminaries and Reviews

The theory of sequence space occupies a very significant position in Analysis.
Because of its wide applicability in several branches of mathematics, the study of
sequence space is being subject of great interest and central study in Functional
analysis. The study of sequence spaces was motivated by the classical results of
summability theory which is a tremendous area possessing wide range of application
in Functional Analysis. In most of the cases the common general operator from one
sequence space into another is, in turn, given by an infinite matrix and therefore the

study of matrix transformation go side by side in the study of sequence spaces.

Interest in general matrix transformation theory was, to some extent, stimulated by
special results in summability theory which were obtained by Cesaro, Borel, Norlund
and others at the turn of the 20th century. It was however the celebrated German
mathematician O. Toeplitz who, in 1911, brought the methods of linear space theory
to bear on problems connected with matrix transformation on sequence spaces.
Toeplitz characterized all those infinite matrices A = (a,,x), n,k € N which map the
convergent sequences into itself, leaving the limit of convergent sequence invariant.

The analysis embraced by Toeplitz was classical.

The first application of analysis to the theory of summability was done by Mazur in
1927 when he proved his now famous Mazur’s consistency theorem, which won him
the prize of university of LWOW [9]. In 1932, Banach, in particular, presented a very
short proof of Silverman-Steinhaus theorem. Of course functional analysis was not
available to Silverman and Toeplitz in 1911 and they used the only method opened to
them, which may be called ‘classical’ or ‘hard’ proof. This can be found in Hardy’s
(1949) classic book “ Divergent Series”. As mentioned by Maddox [48] with the aid
of theorem given by Banach much of the theory became accessible to those who
would normally have neither time nor the energy to follow the usual classical

approach. The advantage of studying matrix transformation between spaces of



sequences over general linear operator is that, in many important cases, the most
general linear operator acting between the sequence spaces is actually determined by

an infinite matrix.

In 1950 Robinson [6] considered the action of infinite matrices of linear operators
from a Banach space of sequences to that space. The classical results of Toeplitz,
Kojima- Schur and many more results could be extended to this general setting. A
fine account of these results can be found in Maddox [50]. A remarkable contribution
and a lot of work have been done in the theory of sequence spaces during last 50+
years. Works of Maddox [44,45,46,47,48,49,50,51,52,54], Lascarides [24,25], Basar
[32], Basar and Altay [10,11,12,13,14,33,34,35], Dutta and Reddy [40], Boos and
Leiger [55], Cohen and Dunford [64], Sarigol [65], Mursaleen, Gaur and Saif [67],
Nanda [80,81], Ahmad and Sarawat [89] can be regarded as milestone in the area of
sequence spaces and matrix transformations. It will be difficult to discuss all the
aspects of the theory in the thesis. In this context we refer the books of Taylors [2],
Wilansky [7,8,9], Limaye [21], Goffman and Pedrick [22], Kreyszig [28] , Zeilder
[31] , Reisz and Nagi [36], Diestel [56], Diemling [59], Atosic and Swartz [69],
Ahmad and Mursaleen [88], Choudhary and Nanda [18], Maddox [48] , Yosida [63],
Kamathan and Gupta [73], Wojtaszczyk [74] ,Cooke [75], Walter [77], Ruckle [85]
and Basar [87] to the reader.

In 1981 Kizmaz [41] introduced the notion of difference sequence space. He studied
the difference sequence spaces [, (A), c(A) and ¢, (A) which have been mentioned in
the thesis.The notion was further generalized by Et and Colak [66] by introducing the
spaces [, (A%) , c(A®) and ¢y (A%) . Another type of generalization of sequence spaces
is due to Tripathy and Esi [19] , who studied the spaces [, (A,,), c(A,,) and co(A,,).
Tripathy , Esi and Tripathy [20] generalized the above notions and unified these as

follows:
Let m, s be non negative integers , then for Z a given sequence space we have

Z(An) = {x = (%) € w: (Apxi) € Z3,
where

(Agx) = (Asxy) = (A Mo — Afy  Xpepm)



and A% x, = x, forallk €N ; Z € {l,c,co},

which is equivalent to the following binomial representation,

s
S
Afnxk = Z(_l)v (V) Xk+mv
v=0

Esi , Tripathy and Sarma [3] showed that ¢, (A3,) , c(As,) and [, (As,) are Banach

spaces normed by

ms
Iell = ) il + sup 1853
k=1

Taking m =1, we get the spaces [, (A") , c(A™) and cy(A™) studied by Et and
Colak [66]. Taking s = 1, we get the spaces [, (A,,) , c(A,,) and ¢, (4,,) studied by
Tripathy and Esi [19]. Taking m =s = 1, we get the spaces [, (A),c(A) and ¢, (A)
introduced and studied by Kizmaz [41].

Dutta [39] used the difference operators A, and A to infinite matrices of non-
negative real numbers to construct the sequence spaces (4, D, Ax))o (4,p,0,) ,
(Ap,A¢) (A p,A) (A D, Mgy and (A, p,A;) respectively.

During last 50+ years in constructing new sequence spaces the matrices that represent

difference operators have been considered. The matrices

_ _ (upvg, 0<k<n
6(u,v) = (gw) = {7 )SE
(1.1.2)
called the generalized weighted mean ;
(=", n-1<k<n
A= (6nk) =
0, 0<k<nork>n
(1.1.2)
called the difference operator matrix;
1, 0<k<n
S = (Snk) = {
0, k>n



(1.1.3)

(1.1.4)
called the Riesz mean ;

the operator A; which can be expressed as a sequence in a double band matrix given

by
1 -2 0 0
0 2 -3 0
A. =

(1.1.5)

or combination of them have been used to define and construct new sequence spaces.

In this endeavor we have constructed new matrices A = S™defined by

n—k+1, n=>k
A=8"= ) =
0, otherwise

(1.1.6)

which is a lower unitriangular matrix and an operator sparse band matrix 4; which

can be expressed as a sequential double band matrix given by

e
tl tl
o L 1
tZ tZ
Aj= 0 0 11
t3 t3
o o o *
b

(1.1.7)



to define the new sequence spaces.

1.2. Organization of Chapters

The thesis consists of six chapters. The first chapter, where we are in, is introductory

in nature.
The chapter two is divided into two parts.

In [12] Altay and Basar have introduced and studied the sequence spaces A(u, v;p) ;

which are derived by generalized weighted mean; defined by

K
A, v;p) = $x = (x): Eukvjxj € A(p)

j=0

where A € {l, ¢, cp}-

If p, =1 for everyk € N , the sequence spaces A(u,v;p) reduce to A(u,v) as
introduced by Malkowski and Savas [29]. The authors have proved that the spaces
A(u,v;p) and A(p) where A € {l,,c,co} are linearly isomorphic. Besides these they
have computed [ ,y- duals of the spaces A(u,v;p) and computed the basis of the
spaces cy(u,v;p) and c(u,v;p) . Moreover, they have characterized the classes

(A(u,v;p), ) and (u, A(u, v; p)) where W is any given sequence space.

Further in [13] Altay and Basar have introduced and studied the sequence space

[(u,v; p) ; which is derived by generalized weighted mean ; defined by

k

l(u,v;p) = <x = (xp): Zukvjxj € l(p)

j=0

The authors have proved that the spaces [(u, v;p) and [(p) are linearly isomorphic,
computed B ,y- duals of the spaces I(u, v; p) and obtained the basis for the spaces
l(u,v;p) . Further they have characterized the classes (I(u,v;p),n) and

(w, L(u, v; p)) where L is any given sequence space.

Following these works in the first part of the second chapter we have introduced the

new sequence spaces p(u, v; p) for p € (w, wy, wy,) defined by



w(u,v;p) = {x = (xx): (Z unvkxk> € H(P)}
k=1

(1.2.1)

We have proved that the sequence spaces p(u, v; p) for p € (w, wy, wy,) are complete
paranormed space and are isomorphic to the corresponding spaces u(p) . Further we
have obtained B - dual of w(u,v;p) and characterized the matrix classes
wu,v;p), le) , Wy, v;p),c) and (w(u, v; p),co)

In [78], Demiriz and Cacan have introduced and studied the sequence spaces
A(w,v;p,A) for 2 € {cq ¢, 1, I} derived by generalized weighted mean G (u,v) and

the difference operator matrix A as,

Alw,v;p,A) = {x = (x3): (2 unvaxk) € /1}

k=1
They have proved that these sequence spaces are complete paranormed metric linear

spaces and computed their a—, f—,y — duals. Moreover they have given the basis for
the spaces A(u, v; p,A) for 1 € {cq ¢, 1o, 1} .
Following the work of the authors [10, 11, 15, 29, 33, 45, 78] in the second part of

chapter two we have introduced a set of new sequence spaces u(u,v;p,A) for p €

{w,wy wo,} defined by,

w(u,v;p,A) = {x = (x) € w: <Z unvatk) € u(p)}

k=1
(1.2.2)

where

k
1
() = 7 ) i

i=1
and At, = ty, —ty_, forall k e N with t, =0.
We have proved that the sequence spaces u(u, v; p,A) for p € {w, wo,woo} are linearly

isomorphic to p(p) and that the sequence spaces are complete paranormed sequence

spaces. Moreover we have constructed basis for the space w(u,v;p,A) . Besides we



have obtained B-dual of w(u,v;p,A) and characterized the matrix classes
w(u,v;p,A),¢c) , wW(u,v;p,A),co) and (w(u, v;p,A),Q(t)). In this chapter our
attempt is to fill up existing literature gap in connection with spaces w(p), w,(p) and
W (p) With respect to their generalization by means of the generalized weighted

mean and the difference operator matrix.
Chapter three is also divided into two parts.

In the first part of chapter three we have introduced new sequence space l(p, 1)
defined by

I(p,A) = {x=(x) Ew: Ax € l(p) }
which is generated by infinite lower unitriangular matrix A defined by

n—k+1, n=k

A=S"=(znk)={ )
0, otherwise

where

as defined in [ 15].

We have shown that I(p) S I(p) S I(p,A); I(p,A) is linearly isomorphic to I(p)
and is a complete paranormed sequence space. We have constructed basis for I(p, 1).

Moreover we have found g — dual of I(p,A) and characterized the matrix classes
(l(p: A)r C), (l(p» A), CO)and (l(p» A), lOO) .

In the second part of chapter three we have defined the sequence spaces X(p, 1) for
X €{le,c co}as

X(p,A) = {x = (%) € w: Ax € X(p)}
(1.2.3)
where 1 =S™ and S are as given in (1.1.6) and (1.1.3) respectively.

We have shown that the sequence spaces X(p,A) are complete paranormed linear

metric spacecs and are linearly isomorphic to X(p) for X € {l., c,cy}. We also have



constructed basis for X(p, A1) when X € {c, co}. Further we have obtained g — dual of

X(p,A) for X € {l,,, c,co} and have characterized the matrix classes (I (p, 1), ),
(loo(pJ A); C) and (loo(p; A)PCO) '

Recently in 2013 Baliarsingh [70] has defined the sequence spaces X (A;,u, v;p) for
X € {ly,c,cp}as,

k
X(A], u, v, p) =4X = (xk) € w: Z ukUjij]' (S X(p)
j=1
which is derived by using generalized weighted mean G(u,v) and the operator

double band matrix 4A; as defined in (1.1.5) and A;x; is defined as

Aj(xj) = jxi— (G + x4y (G EN).
The author has proved that the sequence spaces X (Aj,u, v; p) are complete linear
metric spaces and that X(Aj,u, v; p) for X € {l,,c,cy} are linearly isomorphic to the
spaces [, ¢, ¢, respectively. Also, a—, B—, y — duals of these spaces have been found
and the matrix transformation from these classes to the sequence spaces [, (q),c(q)
and ¢y (q) have been characterized. Following the work of Baliarsingh [70] in chapter
four we have first defined the matrix A; and then we have introduced new sequence

spaces X (u, v; p, 4;) for X € {lo,, ¢, co} as

k

X(u, v;p, /1]-) =<x = (x) € w: z wevidix; | € X(p)
j=1

(1.2.4)
where 4;x; = tlexj; tije (0,1)and Ax; = xj_4 —x;Withx, =0 ; (G EN).

We have proved that these spaces are complete linear metric spaces and linearly
isomorphic to the corresponding space X (p) for X € {l., ¢, c,}. We have constructed

the basis for the spaces for ¢, (u, v;p, 4;) and c(u, v; p, 4;). We have found g —dual

of the sequence space lo,(u,v;p,4;) and characterized the matrix classes



(lm(u, v;p, Aj),loo), (loo(u, v;p, /1]-), C), (loo(u, v;p, /1]-), co) and

(loo(p), loo(u, v;p, Aj)).

In chapter five we present a practical application of sequence spaces. In [26] Xu and Xu have
introduced and studied sequence spaces and function spaces on interval [0,1] for DNA
sequencing . Authors have defined the function spaces ,

C¢,0[0:1] = {f(x) = Z anjl_r!l:%i_)rn an = O}

n=0

and

n=0

Cpo [0,1] = {f(x =) an sup|an|<oo}

n=0
where a = (aq,ay, .....,ay,, ...) iIsa DNA sequence and a,, € {A,C,T,G}and A,C,T
and G are four types of nucleotide which are linked in different orders in extremely
long DNA molecules. The abbreviations A,C,T and G stand for A: Adenine, C:
Cytosine, T: Thymine and G: Guanine. Based on the sequence spaces and function
spaces on interval [0,1] , we examine the behaviors of sequence generated by DNA.

Basically we extend the results of the authors in [26] by introducing a new basis

v k
function Y % for v=1,2,3,...,n which is the extension of the existing basis function

’% (n € N) in [26] defined in the polynomial space in [0,1] .Besides, we introduce a

new sequence

(1.2.5)

which can characterize DNA sequence where a,, € {4,C, T, G} . Moreover the authors

have presented the set inclusion relation as

P[0, =C,,[0]=C,,[0]cC,,[01=C,, [01=Cy [0,1], 1< p<co .



The spaces Cy 4 [0,1] ,Cy, [0,1] and Cy o [0,1] are isomorphic to ¢, , I, and Iy,

respectively.

We extend this set inclusion relation to

P[0,1]=C, ,[0,1]<=C, ,[01]=C,,[01]=C,,[01]=C,_[01]=C, [0,1]=Cy [0,1]
, 1< p<oo where,

kx .
o 2255 ¢ fm b =of.
v

=1

s

CI[),O [0’1] = {g(x) =

&
1l
Juy

(2

[N

Cyp [0,1] = {g (x) =

<|><

) Zlbnlp < OO}and
n=1

&
1l
=

o) k
Cyo [0,1] = {g(x)=2a (Z’;—) ;?;’ilbn|<oo}

k=1 v=1

which fills the literature gap to the previous set inclusion relation. Further we have

established some isomorphism theorems on newly introduced sequence spaces.

Finally in chapter six we wrap up the thesis by providing some conclusive remarks
and recommendations.

We now collect some known definitions and results which we shall use in our context.

1.3. Definitions and Useful Results

1.3.1. Metric space and metric linear space

Metric space
Definition: Let X be a non empty set. A metric d on X is a function
d: X x X = R satisfying the following properties for x,y,z € X :

M1:0<d(x,y) < »

10



M2:d(x,y) =0ifandonlyifx =y
M3: d(x,y) = d(y, x)
M4:d(x,z) <d(x,y) +d(y,z)

Any non empty set X together with a metric function d is regarded as a metric space
and is denoted by a pair (X, d). The axioms M2 — M4 for a metric d are sometimes

referred to as Hausdorff postulates. M4 is called the triangle inequality.
Metric linear space

Definition: A topological linear space (X, t) is a linear space with a topology 7 on X
such that the addition and scalar multiplication are continuous in (X,t) . If the
topology 7 on X is given by a metric (respectively semi metric), then we regard X as a

metric linear space (respectively semi metric linear space).

1.3.2.  Vector space

Definition: A vector space over a field F(R or C) is a set V together with two binary
operations; called vector addition i.e. for any vectors u, v € V their sum u + v € Vand
scalar multiplication i.e. for any scalar A€ F and a vector v eV, their
multiplicationAv € V; satisfying the eight conditions listed below for a,b € F and

u,v,wevl:
V1. Associativity of addition
u+(v+w)=w+v)+w
V2. Commutativity of addition
u+v=v+u
V3. Identity element of addition
There exists an element 0 € V, called the zero vector, such that

v+0=vforallveV.

11



V4. Inverse element of addition

For every element v € V there exists an element —v € V, called the additive inverse

of v such that v + (—v) = 0 ,the zero vector of V.

V5. Compatibility of scalar multiplication with field multiplication
a(bv) = (ab)v

V6. Identity element of scalar addition

l.v=vw

where 1 denotes the multiplicative identity in F.

V7. Distributivity of scalar multiplication with respect to vector addition
alu+v)=av+av

V8. Distributivity of scalar multiplication with respect to field addition
(a+b)v=av+bv

When the scalar field F is real numbers R , the vector space is called a real vector
space. When the scalar field F is complex numbers C , the vector space is called a
comlpex vector space. R, R?,...,R® and C!, C?,...,C" are the examples of vector

spaces.

1.3.3. Topological Vector Space (TVS)

Definition: Suppose that 7 is a topology on a vector space X such that
(i) every point of X is a closed set
(i) the vector space are continuous with respect to .

Under these two conditions 7 is called vector topology on X and X is called a

topological vector space.

1.3.4. Paranorm on a linear space X and Paranormed (total
paranormed) space

Definition: A paranormg on a linear space X over the real field R is a function g: X —

R having the following properties

12



(i) g(8) = 0 where 0 is the zero vector in X.
(ii) g(x) = g(—x) forall x € X
(i) g(x +y) < g(x) + g(y) forall x,y € X i.e. g is subadditive in X

(iv) the scalar multiplication is continuous , that is, |a,, —a| - 0 and g(x,, —x) = 0

imply g(a,x,_ax) - 0 foralla e Randx € X, (n = ).

A paranormed space is a linear space X together with a paranorm g . A total paranorm

IS a paranorm such that
(V) g(x) = 0 impliesx = 0

Every Paranormed (total paranormed) space is a semi-metric (metric) linear space.
Conversely any semi-metric (metric) linear space can be turned into a paranormed
(total paranormed) space. So a paranormed (total paranormed) space and semi-metric

(metric) linear spaces are essentially the same.

1.3.5. Norm and Normed Linear Spaces

Norm:

Definition: A norm on a linear space X is a real function |.|: X - R defined on X

such that for every x,y € X and for all 1 € C,
() llx| >0

(i) llx + Il < llxIl + NIyl

(iii) [|Ax[[ = 1A[[lx|l

(@iv) |lx]] = 0 impliesx =0

A seminorm is defined by omitting condition (iv) in the definition of a norm. Every

seminorm (norm) is a paranorm (total paranorm) but not conversely.
Normed linear space

Definition: A normed space (or normed linear space) is a pair (X, ||.|]), where X is a

linear space and ||. || isanormon X .

13



1.3.6. Banach space
Definition: A Banach space (X,]||.||) is a complete normed linear space where
completeness means that for sequence (x,) in X with ||x,,, — x,|l = 0 (m,n - ),

there exists x € X such that |[x, —x|| = 0 (n— o).
Examples of normed linear space

R™ is a normed linear space with norm

@
Illy = 1l
i=1
(®)
n 1/2
Ixll, = [lem]
i=1
©
n 1/n
il = [lem]
i=1
@

]l = max |x;]
1<isn

(i) C[a, b] is a normed linear space with norm

IfIl = sup |f(x)l

x€[a,b]
where C[a, b] is the set of continuous functions on [a, b] .
(iii) Iy, c, co are the normed linear spaces with the norm
llx|| = sup|x,| ; but not with ||x|| = lim |x,,|
n—->oo
The word norm is used to denote the function that maps to ||x|| . Every normed linear
space may be regarded as a metric together with a metric d(x,y), i.e., distance

between x and y is d(x, y) . In any metric space the open and closed balls with center

at x and radius r are the sets

14



B.(x) ={y:d(x,y) <r}
and

Br(x) = {y:d(x,y) <1}
respectively.

In particular , if X is a normed linear space, the sets
B, (0) = {x:|lx|| <1}
and
B1(0) = {x: llxll < 1}

are called the open unit balls and closed unit balls of X respectively. By declaring a
subset of a metric space to be open if it is a (possibly empty) union of open balls, a
topology is obtained . It is quite easy to verify that the vector space operations
(addition and scalar multiplication) are continuous in this topology if the metric is

defined in the form of a norm as above.

1.3.7. Inequalities

We list below some well known inequalities .

(i) Triangle inequality : For any a,b € C, we have |a + b| < |a| + |b] .
(if) Let p > 1 and q be that %+$= 1,a>=>0,b = 0. Then we have abs%p+bq—q
with equality if and only if aP = b9.

(iii) Holder’s inequality : Let p > 1 and g be that %+3 =1, ay,ay,..,a, =0 and

by, by, ...,b, = 0. Then

15



(iv) Minkowski’s inequality:
Let p>1,a4,ay ...,a, 20 and by, by,...,b, = 0. Then
n ? n n ?
(Z (ar + bk)p> < (Z ai) + (Z b,f)
k=1

This is called Minkowski’s inequality.

1.3.8. Sequence spaces
Definition: Let ® be the family of all complex sequences (x,) with x,, € Candn € N.
The family ® under usual point wise addition and scalar multiplication becomes a

linear space over C. Any subspace of o is called a sequence space.

We shall list some of the sequence spaces which will be frequently used in our

context.
() loo
This is the space of all bounded sequence of x = (x,,) with natural metric
d(x,y) = sup %0 = ¥l
and is defined as
lo = {x = (xy) € w:sup|xy| < }.
(ii) The spaces c and ¢,

These are the subsets of [ , both having [, metric. ¢ is the space of convergent
sequences and c, is the space of null sequences (x, — 0) . In the space ¢, (but not in
c) one may actually use max|x, — y,| instead of sup |x, — y,| for the metric. We

represent spaces ¢ and ¢, as
¢ ={x=(xx) €w:|x;, — | » 0forsomel € C}

={x = (x) €Ew:|xx| >, k > oo forsomel € C}

and

co={x=(x) Ew:|xp| >0 ask - o }

16



(iii) The space cs
It is the space of all convergent series and is defined as

n (0]

cs =3x = (x) € w: (2 xk> is convergent

k=1 n=1
(iv) The space l(p)

Let p = (px) be a bounded sequence of strictly positive real numbers, so that 0 <

pr < supp, = H < co. Then we define the sequence space I(p) as

I(p) = {x = (0 € 0: ) PP < oo}.
k=1

A natural metric on I(p) is

o W
d(x,y) = (Zm —ymk)
k=1
where d is a function

d:l(p) xl(p) > R

As a special case when (py) is constant i.e. p, = p , we write [, for [(p). We note
that p = (py) is a sequence in case of [(p) whereas p is the number in case of [, .
Explicitly , for p > 0, [, is the set of all sequences such that Y.}, |xy[|? < o . For

p = 1, the metric for L, is

1
> P

d(x,y) = (Zm—mp) ;
k=1

since M = p.

When 0 <p <1,since M = 1, the metric for [, is

dCx,y) = ) It = yil?.
k=1

17



For L, , the cases p = 1 and p = 2 are the special case of importance. The metrics for

[, and 1, are respectively given by

d(x,y) = ) xi = il
k=1

and
1
o z
d(x,y) = (lek —3’k|2) .
k=1
The space [, is often called the Hilbert space.
(iv) The space I, (p)
Let p = (px) be a bounded sequence of strictly positive real numbers, so that 0 <
prx < sup px = H < oo. Then we define the sequence space [, (p) as
Lo (0) = = (00): 5up P < o}
k

. (p) is a metric space with the metric

Pr
d(x,y) = sgplxk — Yilm

where (x,y) € l,(p) and M = max(1,supp, = H). If (p;) is constanti.e. p, =p,

we write 1, for [, (p). Here [, is the set of all bounded sequences x = (x;).
(vi) The spaces c(p) and cy(p)
If p = (px) be a bounded sequence of strictly positive real numbers, we define

c(p) = {x = (xx) € w:|x) — |’k - 0 as k — oo for some [ € C}

and

co(p) = {x = (xx) € w: |x|Pk > 0 ask - oo }

These spaces are metric spaces with metric
Pk
d(x,y) = Sip |l — yiI™

where

M = max(1, suppy = H).
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If p = (px) is constant i.e. p, =p for all k we write ¢ and ¢, for c(p) and ¢y (p)
respectively. The spaces c and ¢, represent the sets of all convergent sequence and
null sequences respectively. We note that c and ¢, are the metric spaces with the

metric
d(x,y) = S';-plxk = Ykl

(vii) The difference sequences [, (A), c(A) and ¢y (A)
Kizmaz [41] defined the difference sequences [ (A),c(A) and ¢y (4) as,

lo(A) = {x = (xy): Ax € Lo}

c(A) = {x = (xy): Ax € ¢}

co(A) = {x = (xx): Ax € co}
where Ax = x;, — Xp41.
These spaces are Banach spaces with norm

lIxlla = loxa| + llAx ]l

(viii) The spaces Al (p) and I, (A,p)

Let p = (px) be a bounded sequence of strictly positive real numbers , then we
define Al (p) as

Al (p) = {x = (x1): Ax € s (p)}.
The sequence space Al (p) is paranormed by

Pk
glx) = Sl}ipleklM

Also if A.(x) = (k"Axy)r=q, (r < 1) where Ax = x;, — x41 , then we define
lo(Ap) as,

loo (Arp) = {X = (xk): Arx € le (p),T' < 1}
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(ix) The spaces w(p) , wy(p) and wy, (p)

If p = (px) be a bounded sequence of strictly positive real numbers, Maddox [45]

defined the sequence spaces w(p) , wo(p) and we, (p) as:

w(p):{x:(xk)ew:%im—I|pk—>0; for some IeC,n—>oo}
k=1

Wo(p):{x:(xk)ea);%i|xk|pk -0, n—>oo}and
k=L

neN

n
1
W (p) = {x = (xi) € wisup= ) [x, [P < oo}

The spaces w(p) and w,(p) are paranormed spaces paranormed by

1

1% M
90 = sup (; Elxkv’k>

k=1

or equivalently
900 = sup(2 7 E, P Yo
(1.3.1)
where ; is the sum over the range 2" <k <2™ and M=(Lsupp,) as in [44,45].

Further w_(p) is the paranormed space by the paranorm (1.3.1) if and only if
O0<inf p, <sup p, <o [44].
(x) The space Q(t)

The sequence space Q(t) was introduced by Fricke and Fridy [38]. For each r in the
interval (01),

let

G(r)={x=(x)ew:x =0(t) .

We define the set of geometrically dominated sequences as
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G=JG(r)

re(0,1)

The analytic sequences are defined by
1
A= {x:(xk)ea):lim sup| x, [» <oo}

Obviously G < A. Various authors studied matrix transformation from A or G into [,

c or l, , but the question of mapping from [;, c or [, into A or G was not considered.

To set the stage for general theory, Fricky and Fridy replaced the geometric sequence

(r") with a nonnegative sequence t=(t,) and defined the sequence space

Qt)={x=(x)ew:x =0(t)}.
(xi) The sequence space [(p)

If p:{ pk} be a bounded sequence of strictly positive real numbers, then Chodhary

and Mishra [15] introduced and studied the sequence space I(p) which is defined as

I(p) = {x = (Xk)=2|tk(x)|p" < 00}
k=1

where
k

£ (%) =in.

i=1

If p = (py) is constant i.e. p, = p for all, then we write l_p for I(p) .

1.3.9. Cauchy sequence
A sequence (x,) in a normed linear space X for every n € N is called a Cauchy

sequence in X if and only if
lx, — xmll <&, (mn— o)

That is for every & > 0 there exists N, = Ny(¢&) such that ||x,, — x,,|| < & for all

mn >N, .

21



1.3.10. Complete normed linear space

Definition: A normed linear space is said to be complete if every Cauchy sequence in
X converges to an element x € X i.e. for every sequence (x,) in X with
l|x, — x|l 0, (m,n—> o), there exists x € X such that |x,—x| -0,

(n - ).

We note that a complete normed linear space is called a Banach space. The spaces

R™, C", cs, I(p),le, €, Co 1,(1 < p < o) are the examples of Banach space.

In a normed space convergence and absolute convergence of series may be defined in
a natural way. A series ).;°_, x; With x;,, € X is called convergent to s € X if and only
if s, >s(n—-),ie|ls,—s|l »0(n— o) wheres, =Yr_;x;, .Aseries ) x;
is called absolutely convergent if and only if Y ||x,|| <o . In R and C it is well
known that every absolutely convergent series is convergent , and this result depends

upon completeness.
Following theorem gives a nice series characterization of a Banach space.

Theorem: A normed linear space is complete if and only if every absolutely

convergent series in X is also convergent in X [48].

1.3.11. Homeomorphisms

Definition: Let X, Y be topological spaces. Then f: X — Y is called a homeomorphism
if and only if it is bijective and bicontinuous. Bicontinuous means that both fand f !
are continuous. Equivalently, f is a homeomorphism if and only if it is bijective,

continuous and open.

As an example the open interval and the whole real line R are homeomorphic with

homeomorphism
2x —1
f(x) = G =1 x € (0,1)
1.3.12. Isomorphism

Definition: Let X,Y be linear spaces over the same scalar field. A map f: X - Y is
called linear if f(Axy + ux,) = Af(x1) + uf(x,) for all scalars A, u and all
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X1, X, € X . An isomorphism f: X — Y is a bijective linear map. We say that X and Y
are isomorphic if there is an isomorphism f:X — Y. We regard isomorphic linear
spaces as equivalent from the algebraic linear space point of view, for an isomorphism

clearly preserves the linear operations.

For an example, the sequence space [(p) is isomorphic to the space I(p) .

1.3.13. Basis in a paranormed space (X, g)
Definition: Let (X, g) be a paranormed space . A sequence (b;) of elements of X is

called a basis for X if and only if, for each x € X , there exists a unique sequence (A)

X = Z/’{k bk
k=1

of scalars such that

that is, such that

g(x—Z/lkbk)%O (n - o).
k=1

The idea of basis was introduced by Schaulder in 1927 and what we call a basis is

often termed as a Schauder basis.

The sequence (ey) = (eq ey, ....) of unit vector is a basis for each of the spaces

[(p) and ¢, under their usual paranorms

9(0) = ClxelP)w on U(p)
and
llx]| = sup ||
on ¢ .

The sequence (e, eq ey, ...) is a basis for the space ¢ of convergent sequences under its

natural norm given by
llx|| = sup ||

for each x = (x;) € c . By e we denote the sequence (1,1,1, ...) and by e, the k"

unit vectors.
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Not all normed spaces have a basis. For example, [, , the space of all bounded

sequences, with the natural norm ||x|| = sup |x,| has no basis.
k

1.3.14. Duals of the sequence space

Definition: For a sequence space X we define

(i)
X* = {a = (ay): ZIakxkl < oo forevery x € X}
k=1
(ii)
XB = {a = (ay): z a,x; is convergent for each x € X}
k=1
(iii)

n

k=1

XY = {az(ak):sup < foreacthX}
n

X* , XB and XY are called the a- (or K&the- Toeplitz), p- (or generalized Kéthe-
Toeplitz [1]) and y — dual spaces of X respectively. These duals were introduced by
Garling [27].

We note that X* < X# < X7. We state below - duals of the some of the sequence

spaces.
Theorem [1].

The - dual of the sequence spaces c and ¢, is the space [; defined by

L = {x = (xk):ZIXkl < 00}

Theorem [2].

(i) For 0 <p < 1,the B-dual of the sequence space [, is the space [, .

(i) For 1 < p < oo, the - dual of the sequence space [, is the space [, where %+

-1,
q
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Theorem [3].

The f- dual of the sequence space [l is ba(N) which is the space of all bounded

finitely additive set functions u defined on the set of all positive integers N.

We note that the p- duals of sequence spaces, ¢, and [,(0 <p < o) are also
sequence spaces but that of [, is not a sequence space. This is due to the fact that the

sequence space [, has no basis.
Theorem [4].

(M) If 0 <p, <1foreveryk € N, then
[(p)? = l,(p) [82]

(i) If p,, > 1 forevery k € N , then

l(p)? = M(p)
where
> _
Mm@ = | J{a= @) N 7 <o
N>1 k=1
with
11
—+—=1 [47]
Pr A4k

Theorem [5].

Let p;, > 0 forevery k € N . Then

lo (p)'g = My (p)
where

M) = () {a = (@): ) la NP < oo} [25].
k=1

N>1
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Theorem [6].

Let p, > 0 foreveryk € N . Then

Co (P)ﬁ = My(p)
where

NOREY {a = (a)):

N>1

had 1

|a|N Pk <oo} [47]
k=1
Theorem [7].

If 0 <p, <1 forevery k € N, then
w(p)f = M

where

e 1
M = {a = (ak):z max,. [(ZTN"l)Pqukl < oo for some integer N > 1
r=0

and max, is the maximum taken over 2" < k < 271 [25].

Theorem [8].

Let p, > 0 foreveryk € N . Then
c(p)f = Mo(p) Ncs

where

M) = | {a = (ak):ilakuv‘i < oo}
k=1

N>1

and

cs = {x € w: Z Xx converges} [24].

k

Theorem [9].

(i) If 0 <p, <1for every k €N , the B- duals of sequence space [(p) Iis the

sequence space [, (p) which is defined as
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o] k-1
lo(p) = {a = (ay): a, (= Y (N"2)pv + (N~2)Pk converges}
2, =),

v=1
and supy |ag|Pk < oo}, N > 1, Aay, = a; — ag,q [15].

(ii) If 1 < px < sup p, < o for every k € N , the 5- duals of sequence space [(p)

is the sequence space [, (p) = M(p) where

[e] k-1
M(p) = {a = (ay) : Z a, (— Z (N)_ﬁ + (N) 4 converges}
k=1

v=1

and

= Pk 1 1
ZIAaquk (N) % <oo,N> land —+— =1 [15]
~— Pr qk

1.3.15 Matrix transformations
Definition: Let X and Y be any two sequence spaces and let A = (a,,) be an infinite

matrix of complex numbers (n,k = 1,2,...). We write Ax = (4,,(x)) if

Ay (x) = Z AnkXk

k
converges for each n € N . If x = (x;) € X implies that Ax = (4,(x)) €Y, then

we say that A defines a matrix transformation from X into Y and we denote it by
writing A : X = Y . The sequence Ax is called the A transform of X . By (X,Y) we
mean the classes of the matrices A such that A:X — Y . The matrix A is also called
the linear operator. We list below the some of the inclusion theorems on matrix

transformation of well known sequence spaces.
Theorem [1]

A € (ln,ly) ifand only if

Sup2|ank| <
L
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Theorem [2] : Kojima- Schur

A € (c,c) ifand only if

(i)
SupElankI < ®
n
k
(i)
lim Ank = Ay
n-oo
(i)

lim Ank = QA

n—-oo

Theorem [3]

A € (I (p), L) ifand only if

Su
np Zlank IN'/Pk < oo for every integer N > 1
K

Theorem [4]: Schur
A € (ly, c) ifand only if
(i)

> lawd

k=1
converges uniformly inn € N .

(i) There exists
lim Ak = A
n—->oo
foreachn e N

The class (1., ¢) was obtained by Schur in 1921. The characterization of this class is
known as Schur theorem and the matrices in the class (I, c) are known as Schur

matrices.
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Theorem [5].

A € (14,1,) ifand only if

M=supZ|ank|p<oo (1<p<m)
k
n

(i)

sup |apx| < oo(p = ) fork € N.
nk

Theorem [6].
Let 1 <py <coandletA € (I, o) N (I4,1;) . Then A € (1, 1,) .
Theorem [7]

Let 1 < p, <suppyx = H < oo for every k € N. Then A € (I(p),l,) if and only if

there is an integer B > 1 such that

[o.0]
suleankW’cB‘Qk <
" k=1

1 1
where —+—=1.
Pk dk

Theorem [8]
Let 0 <p, < 1foreveryke N.Then A € (I(p),l,) ifand only if

sup |y [Pk < oo
n

Theorem [9]
Let1 < py, <suppy = H < o forevery k € N. Then A € (I(p),c) ifandonly if

(i) there exists an integer B > 1 such that

o0
sup2|ank|qk3“7k <
" k=1
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where

1 1
— 4 —=1
Pr 4k
(i)
Ank = Ax(n - o)
and k is fixed.

Theorem [10]
Let 0 <p, < 1forevery k € N.Then A € (I(p),c) ifandonly if

(i)

Sup [Pk < oo
n

(i)
A = A (n - )

and k is fixed.
Theorem [11].

Let p, > O0forevery k € N.Then A € (I,(p),ls) ifandonly if

had 1
Supzmnklek < ®
" k=1
for every integer N > 1.
Theorem [12].

Let p, > 0 forevery k € N.Then A € (I.(p),c) ifand only if
(i)

- kY

PR

k=1
converges uniformly in n, for all integers N > 1.
(ii)

Ak = ax(n - ©)

and k is fixed.
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Theorem [13].
Let (px) €l , then A € (c(p),c) ifand only if

(1) there exists an absolute constant B > 1 such that

oo
1
SupZIanl B Pr < oo
n
k=1

(ii)
limay,, = ap(n - o)

and k is fixed.
(iii)

lim Ane = @
n—->oo
k=1

Theorem [14].
Let (px) € l , then A € (co(p), c) ifand only if

(i) there exists an absolute constant B > 1 such that

[o/0)
1
Sup2|ank|B Pk < o0
" k=1

(ii)
limay,, = ap(n - o)

exists for every fixed k.

Theorem [15]

Let 0 <p < 1.Then A € (wp,c) ifand only if
(i)

lim Ank = A
n—-oco
k=1

k is fixed.
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(ii)
M(A) = supz 27/P AL(n) < oo

where

Ar(n) = max |an|
for each n .The maximum is taken for k such that
2" < k<2,
Theorem [16] .

Letp = 1. Then A € (wy,c) if and only if

(i)
lim Ak = g
n—oo
k=1
k is fixed.
(ii)

supz 27/P AP(n) < 0
n r=0

Theorem [17] .
Let 0 < pr < 1.Then A € (w(p),c) ifandonly if

(i) there exists an integer B > 1 such that
- a
C = supz max, {(ZrB‘l)kaankI} <
n r=0
(ii)

lim Ank = g
n—->oo
k=1

exists for every fixed k .
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(iii)

lim Ap =
n—-oo

exists .

1.3.16 Some special types of matrices

(i) Sparse and dense matrices

Definition : A sparse matrix is a matrix populated primarily with zeros as element or
entries. On the contrary , if a large number of element differ from zero , then it is
common to refer to the matrix as a dense matrix. The fraction of zero elements (or
non zero elements) in a matrix is called the sparsity (or density). As an example we

can observe that the matrix given by

1200000
0340000
0056700
0000080

000000 9]

IS a sparse matrix which contains only 9 non zero elements out of 35, with 26 of these

elements as zero.
(ii) Band matrix

Definition: A band matrix is a sparse matrix whose non zero entries are confined to a
diagonal band , comprising the main diagonal and zero or more diagonals on either
side. We may define a band matrix in terms of matrix bandwidth. Consider an n X n

matrix A = (a;;) . If all matrix elements are zero outside a diagonally bordered band

whose range is determined by constants k, and k, :
Cll]=0 1f]<l—k10r ]>l+k2,k1,k220

then the quantities k; and k, are called the left and right hand bandwidth
respectively. The bandwidth of the matrix is k; + k, + 1. In other words , it is the
smallest number of adjacent diagonals to which the non zero elements are confined. In

this connection , a matrix is called a band matrix if its bandwidth is reasonably small.
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A band matrix with k;= k,= 0 is a diagonal matrix ; a band matrix with k;=k,=1 is
a tridiagonal matrix ; when with k,= k,= 2 one has a pentadiagonal matrix and so on.
If one puts k; =0, k, =n—1, one obtains the definition of an upper triangular

matrix. Similarly for k; = n — 1 and k, = 0 one obtains a lower triangular matrix.

As an example the matrix

1 -2 0 O
0 2 -3 O
A —

1o 0 3 -4

is a double band matrix.
(iii) Unitriangular matrix

Definition: If the entries of the main diagonal of a (upper or lower) are all 1 , the

matrix is called (upper or lower) unitriangular. For example the matrix

n—k+1, n=>k
A= S"=Ane) =
0, otherwise
that is
1 00O
21 00
A={3 2 1 0
4 3 2 1

is a lower unitriangular matrix.

1.3.17 Infinite matrices as a difference operator

We give brief account of the infinite matrices and difference operators that we have

used and taken as a reference in our context.
(1) The infinite matrix S

The matrix S = (s, introduced in [15] is defined as
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1, 0<k<n

S= (Snk) =
0, k>n
It is an infinite matrix given by
1000
1100
S=@Gw)=|1 110
1111

Chaudhary and Mishra [15] have defined the sequence space [(p) which consists of

all sequences whose S- transform are in I(p) i.e.
I(p) = L]
(ii) The matrix R®

It is the matrix of Riesz mean (R,t,) and is given by

n
t Zt, 0<k<n
RE= () =1 T 2
0,

k>n

where (t;,) is the sequence of positive real numbers.

Altay and Basar [11] have defined the spaces r{(p) , 7t (p) , v&(p) and r(p) which
consists of all sequences whose R? transforms are in co(p) , c(p) , lo(p) and I(p)

respectively, that is,
15(0) = [co@rt, 1E@) = [c@)]gt, 15®) = [loo(@)]re and (0 = [L(p)]ge.
(iii) Cesaro matrix of order 1

The matrix defined by

-, 1<k<
C=(chx) =1in n

0, k>n

is called the Cesaro matrix of order 1 or the matrix of arithmetic mean.
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The sequence spaces w(p), wy(p) and w,(p) which are defined by Maddox [44,45]
consists of the sequences whose all C- transforms are in the spaces [(p),

co(p) and [, (p) respectively, i.e.

w(p) =[l(P)c, wolp) = [co(P)]c and woo (p) = [l (P) ]
(iv) The matrix G (u, v)
We denote by U the set of all sequences u = (u,) such thatu, #0forallneN .

Foru e U, let % = (i) . Then we define the matrix G(u,v) which is called the

Un

generalized weighted mean or factorable matrix as

Up Uk, 0<k<n

G(w,v) = (Gnk) =
0, k>n

that is

uv, 0 0 0
uv, uwv, 0 0
Gu,v) =WV, UV, uv, 0
uv, uVv, u\v, uV,

Recently in 2006/2007 Altay and Basar [12,13] have defined the sequence spaces
l(u,v,p) and A(u,v,p) for A€ {l,,c,co} which are derived by using the
generalized weighted mean G(u,v) . The space I(u,v,p) consists of all sequences
whose G (u,v) transforms are in I(p) and A(u, v, p) for A € {l,,c, cy} consist of all

sequences whose G (u, v) transforms are in [(p), that is,

l(u, v, p) = [l(p)]G(u,v)
and

/1(u, v, p) = [A(p)]G(u,v)
for A € {l,,c,co}.

Using the matrix G(u,v) as the operator we have introduced and studied new

sequence spaces w(u,v,p), wy(u, v,p) and wy, (u, v, p).
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(v) The difference operator matrix A

The difference operator matrix A is defined as

(-, n—-1<k<n
A= (Snk) =
0, 0<k<nork>n
that is,

1 0 0 O
-1 1 0 O

A= 0 -1 1 O
0O 0 -11

It is a double band matrix.

In 2012 Demiriz and Cakan [78 ] have defined new sequence spaces A(u, v; p, A) for

A € {cy, ¢, Lo, L} by using the operator matrix G (u, v, A) defined by

Uy, (Vi — Vies1), 0<k<n-1
G(u,v,A) = G(u,v)A= (ghy) = Uy Vg, k=n
0, k>n
that is,
TAYA 0 0 0
u, (v, —Vv,) u,V, 0 0
Gu,v,A) = us(v, —V,) Us(V, —V,) U,V 0

U4(V1_Vz) u4(V2_V3) U4(V3_V4) u,v,

The matrix G (u, v, A) is the combination (product) of the matrices G(u,v) and A .
The sequence spaces A(u, v; p,A) for A € {cy, ¢, L, [} consist of all sequences whose

G(u,v,A) transforms are in A, that is,

/1(11,, v, D, A) = [A(p)]G(u,v,A) .
Using the matrix G(u,v,A) as an operator we have introduced and studied new

sequence spaces (u,v;p,A) , wo(u, v;p,A) and wy, (u, v; p, A).
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(vi) The matrix 4

In our context in chapter three we have defined an infinite matrix A which is the n’th

power of S = (spi) -

Thus
A=8"=Aw) = { 0, otherwise
that is,
1 0 0 O
21 00
A=|3 2 1 0
4 3 2 1

It is also a lower unitriangular matrix. Using the matrix A as the operator we have

defined the sequence spaces I(p,A), lo(p,A) , c(p,A) and cy(p, A) .
(vii) The matrix A;

In our context we have defined an operator matrix 4; which can be expressed as a

sequential double band matrix given by

11 5 0
L g

o X 1 o

t2 t2

=g o L _%

t3 t3

0 0 0 tl

4

To construct the matrix 4; , we have defined a diagonal matrix

1
. 1 — i=j
diag | — | = ¢

, otherwise
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that is,

19 0 0

t
o X o o

1 t2
d‘ag(?,-):ootio
3
00 0 %

where each entry t = ( ) € (0,1).

1
tj

The multiplication of the difference operator matrix A and diag (ti) yields a double
)
band matrix
1 0 0 0
tl
R
) Lot
sdiag ()= g 101
t2 t3
o o -1
t, t,

We have defined the transpose of A.diag (ti) as the matrix 4; , which is a double
ij
band sparse matrix. Using the matrix A; together with generalized weighted mean

G (u, v) we have defined the new sequence spaces X(u, v;p, /1]-) for X € {lo, ¢, cp}.
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CHAPTER TWO

Part One:
Paranormed Sequence Spaces w (u,v,p) , wo(u,v,p) and
W (u, v, p) Generated by Generalized Weighted Mean G (u, v)

2.1. Preliminaries
By @ we mean the spaces of all complex valued sequences. A vector subspace of @
is called a sequence space. The usual notations |, ¢ and c, represent for the spaces

of all bounded, convergent and null sequence respectively. A linear topological space

X over the field R is said to be a paramormed space if

(i) there is a subadditive function

g:X = Rsuch that g(8) = 0, where @ is the zero vector in the linear space X .

(i) g(x) = g(—x) forall x € X

(iii) scalar multiplication is continuous ,that is, |an —a|—>0and g(x, —x) = 0 imply
g(apx, —ax) - 0.

If p:{pk} be a bounded sequence of strictly positive real numbers, Maddox [45]

defined the sequence spaces w(p),w,(p) and w_(p) as:

n
1
w(p) = {x = (x) € w:—Zka — [|Px - 0, forsomel € C, n- 00}
=]
1 n Px
W, (p)= X=(Xk)€wiHZ|Xk| -0, no>oyand
k=1

1 n
Weo (p) = {x = (%) € wrsup — lekl”" < 00}

eN
n k=1

It has been shown in [44] that the spaces w(p) and w,(p) are paranormed spaces

paranormed by
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i

9(x) = sup (% Z|xk|vk>

k=1

or equivalently

i
g(x) = sup (2_r E kalpk>
T
T

(2.1.1)

where Y is the sum over the range 2" <r<2™ and M=(Lsupp, =H). Further

w_(p) is the paranorm space paranormed by (2.1.1) if and only if

0<inf p, < sup p, < [44]. Now we shall prove it.

Let us suppose that (2.1.1) is the paranorm for the space w,(p). Then w_(p) is a
linear space and so sup p, <o [44,45]. For a real scalar A such that A —» 0 and a

sequence x € wy (p) such that x is fixed imply Ax — 6, a zero vector of we, (p).

This property implies that infp, > 0 . On the contrary , let us suppose that it is not.

Then there exists k; < k; < --- such that p;, < % (i=12..).

Also k; must be choosen in such a way that k, lies in the interval 2™ < k; <
21*1 k, lies in the interval 2™ < k, < 272*1 .. and so on, where r; <1, < -+ .

Now define

_ 27i/Pk k =k
X = { ’ . t
0, otherwise

Then if we write
1/M
1
hGO = supi(55) D lelP
T
T
for all x € w.,(p) where Y, is the sum over 2" < k < 2"*! | we have

1
5 g(x) < h(x) <2g(x)
(2.1.2)

where g(x) isas defined in (2.1.1).
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Now h(x) =1,butforr=rand0 < |A| <1,
1 _ . ,
(F)ZM Xe|Pk = APk = AV > 1asi— .
T

Hence for 0 < |A] < 1, we have h(1x) = 1 and so g(Ax) 2% by (2.1.2).

But this contradicts the fact that A - 0, X € w,(p)imply Ax — 6, the zero vector

of w. (p) . Hence the condition 0 < infp, < supp, < oo Is necessary.

On the other hand, let us suppose 0 < infp, < supp, < oo . We need to show (2.1.1)
is the paranorm for w,, (p) . By the definition of g it immediately follows that g(x) =
0 x=0 and g(x) = g(—x) and for x,y € w,(p) the subadditivity of g follows
from Minkowski’s inequality. Now it remains to show the continuity of scalar
multiplication. For it let us take real scalar A and x € w.,(p) suchthat A - 0 and x is
fixed. Now,
9" (Ax) < 1AIm g (x)
(2.1.3)

It holdsonly |[A| <1, m = infp, > 0.
From (2.1.3) choosing sufficiently small A , we have
g(Ax) > 0asrA—0.

This implies Ax — 6 , a zero vector of wy(p) , thereby showing existence of

continuity of scalar multiplication in wy,(p) .
Hence (2.1.1) is the paranorm for w,, (p) if and only if 0 < infp, < supp, < .

Next we shall show that w(p) is complete with its natural paranorm . Let y > 0 and
N,(y) for the number of k in 2" < k < 2" such that p, <y. Two cases are

possible:
(i)
inf,5¢ lim;_,o sup 27'N,(y) = 0

(i)

inf),5¢ lim,_,o sup 27"N,(y) > 0
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In case (i) we first let €>0 . Then there exists y, >0 such that
lim sup, 27"N,(y,) < €/2,

whence 27N, (y,) < €, for all sufficiently large r. Choose i so large that
|l = 1D] < min(1, £/%°) .

This is possible by theorem 5 [46], on the assumption of course that (x®) is a Cauchy

sequence in w(p) with [ the strong Cesaro limit of x(® . Now for all sufficiently

2-r2|1—z<i>|p"sz-r Z 142" 2 Il 10
T

pk<y0 rkayo

large ,

< 27N, (yo) + 277 Z €

Tpr=vo
<2¢
Hence, 27" 3|1 — 1®]"* = 0 (r - ), from which it follows that w(p) is complete.

Now we deal with case (ii). Denote the positive expression in (ii) by 2c . Then there

exists r; such that 27"N.(1) > ¢ for r =r; . Also, there exists r, > r; such that
27N, G) >c¢ for r=r, . Generally we have 277N, G) > ¢ for r =1y, where
r, <r, <--. By the argument of theorem 5 [46] , there exists I = I(c) such that
i > 1 implies
2-r2|l — 1O < ¢/2
r
(2.1.4)

for all sufficiently large r. Now we must have () = [® for every i >1 . For

otherwise
|l(i) = 1(1)| >0

for some i > I and then , withr =y,
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2—r2|l<i) — 0% > o7 2 10 — P
T

Pr<l/s

> 27"N, (%) |1® — 1(1)|1/5

> |[(i) - l(1)|1/s >c/2
(2.1.5)

for sufficiently large s . The argument above depends on having [I® — 1P| <1
which obviously holds for sufficiently large i,I. Now (2.1.4) and (2.1.5) are
contradictory, whence (l(i)) is ultimately constant. This proves that w(p) is

complete.

Let X and Y be any two sequence spaces and A = (a,x) ; n,k € N be infinite
matrix of complex numbers a, .Then we say that A defines a matrix mapping X
into Y ;and it is denoted by writing A:X —Y if for every sequence x=(X)e X ,
the sequence ((Ax),) isin Y , where

o)

(00 = ) ayexic; (nEN)

k=1
(2.1.6)

By (X,Y) we denote the class of all matrices A such that A: X — Y. Thus, 4 € (X,Y)
if and only if the series on right side of (2.1.2) converges for each n € N and every

x € X;and we write,

Ax = {(Ax) }nen € Y forall xe X .

We denote by U for the set of all sequences u=(u,) such that u. #0 forallne N .

For ueU, let %:(ui] Let us define the matrix G(u,v)=(g,,) as,

n
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2.1.7)

for all n,k € N ,where u_ depends only on n and v, only on k. The matrix

G(u,v)=(g,,) is called generalized weighted mean or factorable matrix.

2.2. New Sequence Spaces
In the present part of the chapter we shall introduce the sequence spaces
w(u,v; p),w,(u,v; p) and w, (u,v; p). Before introducing these sequence spaces we

would like to present some remarks. Malkowsky and Savas [29] have defined the

sequence spaces Z(u,v,X) which consists of all sequences whose G(u,v)- transforms

are in X e{lw,c,co,l(p)}where u,veU . Chaudhary and Mishra [15] have defined

the sequence space m which consists of all sequences whose S- transforms are in

I(p) ; where the matrix S =(s,, ) is defined by

S _{1; 0<k<n
nk = 0; k>n

Moreover Maddox [45] introduced the sequence spaces w(p) of all strongly

summable,w,(p) of strongly summable to zero and w,(p) of bounded sequences

which consist of all sequences whose C- transforms are in the spaces 1(p),c,(p)and

I (p) respectively ; where

: 1<k <n
C:(an):

and C=(c,,) is called the Cesaro matrix of order 1 or the matrix of arithmetic mean.

The matrix domain X, of an infinite matrix Ain a sequence space X is defined by
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Xa={x=(x)ew:Axe X}

(2.2.1)
which is a sequence space.
With the notation of (2.2.1) , we can have the following representations:

X(u,v,p)=[X],, for X &{l,,c,c,.1(p)}

(P =[1(P]s, 1,v;p)=1(P)g( [13]

w(p) = [L(p)]c , wo(p) = [co(P)]cand we, (p) = [l (P)]c-
Following the works of the authors [13,15,29,44] , for p={p, } is a bounded sequence
of a strictly positive real numbers , we now define the new sequence spaces x(u,v; p)
for pe{w,w,,w,} by
u(u,v; p) :{X:(Xk) € w:[zun Vi Xk] e u( p)}
k=1

(2.2.2)

Using (2.2.1), we may represent these sequence spaces as ,

1@, v; p) =[u(P)ls., 5 for u E{W’ WO’Woc}

In other words the sequence spaces w(u,v;p) , wo(u,v;p) and we(u,v;p) are
the sets of all sequences whose G (u, v) transforms are in the spaces w(p) , wy(p)

and w,, (p) respectively.
If p, =1 forall k€N, we write g(u,v)instead of w(u,v;p) for u € {w, wy,
Weo }.

It is easy to verify that the sequence spaces w(u,v;p) , wy(u,v;p) and
We(u,v;p) are linear spaces under usual coordinatewise addition and scalar

multiplication.

We shall first establish following some simple properties.
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Proposition 2.1.1: The sequence spaces u(u,v;p) for u€{w, wy, w,} are

complete paranorm space paramormed by

1 n P | M
h(x)=sup Eg|UndXk| ;

or equivalently

1

h(x) =sup, (2r2|unvkxk|pk )M
(2.2.3)
where Y is the sum over r in the range 2" <k <2"™. For the space w,_(u,v;p),
(2.2.3) is a paranorm if and only if O<inf p, <supp, <.

Proof: The proof of this proposition follows from the similar arguments as in the

theorems 5,6 in [46] and theorem 2.1 in [13]. If {x”}is a Cauchy sequence in
u(u,v; p); then {G(u,v)x“} is a Cauchy sequence in x . Now it is a routine work to

show u(u,v; p)is complete paranormed space under the usual paranorm.

Proposition 2.1.2: The sequence spaces u(u,v; p) are linearly isomorphic to u(p)

where 1 e{w,w,,w, }.
Proof: We define the transformation
T tp(u,v; p) = by,
Xy =T(X).

Linearity of T is obvious. Further, if Tx=6, then x=6. Hence T is injective.

Next, let y={y,} e u.
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Then

gives successively

1y
V1= UWV1x O X4 = _<_)
U1 \Uyg

1 .
Vo = UV X1 + Uy Uy X0TXy = — (y—2 - &) ; using value of x,,
Uy \Uy Uuq

Y3 = U3zV1Xq + U3V X, + UzV3X30rX —i<&—&>

3 3Y141 3v242 3Y343 3 V3 \Us U,
using value of x; and x, and so on. Continuing in this way, we have a generalization
that

1 _
xk:_(&—yk 1), keN
U \U  Ug-—1

(2.2.4)
where y, = 0fork <0.

Now from (2.2.3)

L& 1/M
AG) = sup {—Zlunvkxmk}
neN (M

k=1

n
)
= sup {—
neI\II) {n

v i(&_yk—l)
" kvk U  Ug—q

pk}l/M

1/M

1
= sup -~ (i lP% + alPe + P + )]

neN

= g(¥) ; using (2.1.1)
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Thus , we deduce that x e u(u,v; p)and as a consequence we conclude that T is

surjective and is a paranorm preserving. Hence T is a linear bijection and showing

that the sequence spaces u(u,v; p) are linearly isomorphic to u(p) .

2.3. Duals
In [25] Lascarides and Maddox have determined the - dual (the generalized Kothe-

Toeplitz the dual) of sequence space w(p) as the space M given by
- a1
M = {a= (ak):z max, [(ZrN"l)kaakI < oo for some integer N > 1
r=0

for 0 < p, < 1 and max;, is the maximum taken over 2" < k < 2"*+1[25].

In this section we obtain the g - dual of w(u, v;p) . We recall that if X be a sequence

space , we define S —dual of X as:

XB = {a = (ay): Z a, x is convergent for each x € X}
k=1

Theorem 2.3.1

Let 0< p, <1 forevery k € N . Then w”(u.v; p)=T"where

_Ja_ . 1 (2f|\|71)9k (2r|\|71)9k4 4l Zerplm a, _oa
r= a—(ak).zr:ak v ET—— convergesan mlﬂ;lo( ) R @)

m"m

.Proof: We first assume that the conditions hold. Let a<I"and x ew(u,v; p).Then

for y e w(p), there exists a positive integer N >1 such that

Py

i|)’k| <00

k=1

1
n
or equivalently

2 Tl <
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where sum over r runs from 2" <k <2,

It follows that ,

1

Y| (2’N1)pk .

Now using (2.2.4),we have

m m-1 1 a
zakxk — Zak - ﬁ_yk—l + mym
k=1 k=1 Vilu U U,V
m-1Qa, y y a
k| Yk k-1
< (B doda] oy,
kLY, (U Uy UV,

1

Py

a|(ZNY) (2N

1

Pm

+

r Vi Uy U,y

IN

u.v

m-™m

" (z2n)

<00.

Hence , it follows that f a X, converges for each x ew(u,v; p) .So, ' cw” (u,v; p) .
k=1

On the other hand, let a ew” (u,v; p) . Then, i a, X, converges for each x ew(u,v; p) .
k=1

Since

K=y Chay —(ZrN_l) ew(u,v; p);
Vi Uy Uy
it follows that
" 2r -1 e r -1 E
co |1l ()
k=1 Vy u, U,
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converges, which is one of the condition to be proved . Next it remains to show that

1

lim(2N) " 2 —o@)
m—oo umvm
For it, on the contrary let,
lim(2'N") " .0(), which is immediately against the fact that 3 ax,
N—o0 mVm k=1
o [1[(2NT) (2NT)
converges for each x ew(u,v; p)and > a, | — - converges.
k=1 Vi u, U,
Hence, we must have,
™ a
lim(2'N™)  —— =0(1)
m-—oo umvm

So, we arrive at the result w# (u, v; p) € T ; thereby proving w? (u, v;p) =T .

2.4. Matrix Transformation

In this section we give characterization for the matrix classes (w(u,v;p),l,),
(w(u,v; p),c)and (w(u,v; p),C,).
Theorem 2.4.1

Let 0< p, <1forevery k € N. Then Ae(w(u,v;p),l,)ifand only if

(i) there exists an integer N >1 such that

rng-1 % rng-1 ﬁ
sup, > max ., | a, v (2 ’: ) —(2 ’: ) <oo and
r k K k=1
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(i)

lim {(2N7) "ty 0w

m- m

Proof: Let the conditions be satisfied. Since,

m m-1 1 Y, Y, Y
k k=
Z:a‘nkxk = Z:ank _[__ 1] +—= anm
k=1 k=1 Vilu, U UV,
m-1 1 Y, \ a
k k-1
< zank _E__ J . |ym|
=R RV T T u,Vv,,
1 1
1 Py 1 Pk 1
< (ZrN_) (ZrN_) nm rn -1 "
S XAk < Zmax, (a1 - + (2'N)
b} r ; u, U, u,V,,
N 1
N 1 -
(N7) (2N7) | a
<sup, Ymax, |a, {— - +(2'NT)
r Vi Uy Uy UV

<00 , by using conditions (i) and (ii).

It follows that A I" and hence i a, X =A, (x)converges for each xew(u,v; p)
k=1

andn € N. Thus Axel .

On the other hand , let A< (w(u,v; p),l_). Since,

i - ew(u,v; p),
Vk uk uk—l

the condition (i) holds. In order to show that condition (ii) is necessary, we assume

that for N >1,
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lim {(er-l)ﬁ a"’”} + 0(1)

m=eo m*m’neN
that is,
L q
{(ZTN_I)Pm ﬂ} € l,.
neN

UmVUm

Now, therefore, there exists a sequence {N, } — cosuch that

1 1
1 ((2'N7YPe (27N )Pk

su Zmax a — =o0(1
np - r nk Vg Uy Ug—1 M
and
lim {(ZTN ‘1)$ Lnm } =0(1)
m=eo ' UmVUm neN

Hence, x, — o(w(u,v; p)) but x, — I(w(u,v; p)) . So, we arrive at the contradiction to
our assumption Ae (w(u,v; p),l_). Thus, condition (ii) is necessary; thereby

completing the proof for the theorem.

By using the arguments as in theorem (2.4.1) it is straight forward matter to prove the

following theorems:
Theorem 2.4.2

Let O0< p, <1foreveryk € N.Then Ae(w(u,v;p),c)ifand only if

i) there exists an integer N >1 such that

sup, >max, |a,s— - <o and
r

Jim f@ N e L = o)

UmVUm neN
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i)

lima, =,

n—oo
exists for every fixed k.

Theorem 2.4.3

Let O< p, <1forevery k € N.Then 4 € (w(u,v;p),co) ifandonly if

i) there exists an integer N >1 such that

1
Pr—1

1] (N7 (2N o
k uk uk

sup, > max, | a,
r

(i)

lim {(ZTN‘l)ﬂ nm } = 0(1) and
m-—-0oo

UmVUm neN
(iii)

lima, =,

n—oo

with o, =0 for every fixed k.
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Part Two:
Paranormed Sequence Spaces w(u, v; p,A) , wo(u, v; p,A) and
W (u, v; p,A) Generated by Combining the Generalized
Weighted Mean G(u, v) and the Difference Operator Matrix A

2.5. Preliminaries and Reviews

We recall that any subspace of the space ® of all complex valued sequences is called a
sequence space. We shall write [, , ¢ and ¢, for the spaces of all bounded, convergent
and null sequences respectively. By a paranormed space we mean a linear topological

space X over the field R if there is a sub additive function g: X — R such that
g(@)=0, g(x)=g(—x) and scalar multiplication is continuous i.e. |an —a|—>0and
g(x,—x) =0 imply g(e, X, —ax) =0, for all @’s in R and all x’s in X; where & is
the zero vector in the linear space X .

If p={pk} be a bounded sequence of strictly positive real numbers, Maddox [45]

defined the sequence spaces w(p),w,(p) and w,_(p)which are the spaces of strongly

summable, strongly summable to zero and bounded sequences respectively. We have

shown them in section 2.1.

Let U denote the set of all sequences u=(u,) such that u, =0 forall neN. For ue

U, let %:[i} Let us define the matrices G (u, v) = (gnx) and A=(3,,)as:

un

Up Uk, 0<k<n

gnk={
0, k>n
and
(—1)"k, n—1<k<n
6nk=
0, 0<k<nork>n
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for all n,k eN, where u depends only on n and v, only on k. The matrix

G(u,v) = (gnx) is called generalized weighted mean or factorable matrix and A=
(6,1) is called the difference operator matrix. We denote the combination (product)

of G(u,v) and 4 by G (u,v,A) and is given by

Upn (Vg — Viey1), 0<k=sn-1
g%k = Uk Vg, k=n
0, k>n

(2.5.1)

2.6. Remarks and New Sequence Spaces w(u,v; p,A), W,(u,v; p,A) and
w_ (u,v; p,A)

In the present part of the chapter we shall introduce the sequence spaces
w(u,v; p,A),w,(u,v; p,A) and W, (u,v; p,A); which are the set of all sequences
whose G (u, v, A)- transforms are in the spaces w(p), w,(p)and w_(p) respectively,

where G (u, v, A) denotes the matrix as defined in (2.5.1).

Before introducing these sequence spaces we present some remarks. Malkowsky and
Savas [29] have defined the sequence spaces Z(u,v,X) which consists of all sequences

whose G(u,v)- transforms are in X e{lw,c,co,l(p)}where u,veU . Chaudhary and

Mishra [15] have defined the sequence space m which consists of all sequences

whose S- transforms are in 1(p) ;where S =(s,, ) is defined by

1, 0<k<n
Snk =
0, k>n
Basar and Altay [33] have defined the space bs(p) as the set of all series whose

sequence of partial sums are in |_(p). In [10,11], the authors also have studied the
spaces r'(p),r.'(p), r.(p)and r;(p).The space r'(p) consists of all the sequences
whose Riesz (R') transform are in the spacel(p), where the matrix R =(rn‘k)of the

Riesz mean (R, t,) = (5, is given by
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n

n
_ tk/Ztk, 0<k<n
Tk =

k=0

0, k>n

with the sequence of positive real numbers (t,).

Moreover the sequence spaces w(p),w,(p) and w_(p)introduced by Maddox are the

set of all sequences whose C- transforms are in the spaces I(p), c,(p) and I _(p)

respectively ; where C = (c,) With

1
-, 1<k<n
Chk = \n
0, k>n

The matrix C=(c, ) is called the Cesaro matrix of order 1 or the matrix of arithmetic

mean.

Recently in 2012 Demiriz and Caken [78] have introduced and studied the sequence

spaces C,(u,v; p,A), c(u,v;p,A), |_(u,v; p,A)and I(u,v; p,A)which consists of all
sequences whose G(u,v,A)-transforms are in c,(p),c(p),l (p)and 1(p)

respectively; where G(u,v,A)is as defined in (2.5.1).
The matrix domain X, of an infinite matrix Ain a sequence space X is defined by
Xa={x=(x)ew:Axe X}
(2.6.1)

which is a sequence space.

With the notation of (2.6.1), we have the following representations,

X(u,v,p)=[X],, for X €{l,,c,c,,I(p)}[29]

1(p)=[I(p)] s [15], bs(p)=[l..(p)]s [33]
re)=[lMy . rmE=LME » cME=cP] vPE)=[c(p)].[10,11]

AV p.A)=[ 4], Or 2 {c,(p). c(p), 1. (). I(p)} [78].
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Following the works of the authors [10,11,15,29,33,45,78] , for p={p,} a bounded

sequence of a strictly positive real numbers , we now define the new sequence spaces

u(u,v; p,A) for u € {w,wy, wy,} by

u(u,v;p,A) = {x = X € w: (Z unvatk> € M(P)}

k=1
(2.6.2)
where tk(x)=%§k; x. and At, =t, -t _, forall keIN with t,=0. Now, w(u,v;p,A) is
i=1
the set of all sequences whose G(u,v,A) -transforms are in u € {w, wy, we.}, that is ,

w(u,v; p, A)=[u( p)]G(u,v,A) :
Whenever the matrix G(u,v, A) is defined to be the unit matrix ,
UV =1, n=k

dni =
0, otherwise

we find that

w(u,v; p,A)=w(p) , W,(U,v; p,A)=w,(p) and w,_(u,v; p,A)=w_(p) .

Further if p, = p>O0for every ke, then w(u,v; p,A)=w" , w,(u,v; p,A)=w,"
and w,_(u,v; p,A)=w," [45].

The sequence y=(y,,) defined as,

m

Vi = z U, Vj AL

j=1

= Uy [V1 At + VAL, + v3At + - + v Aty
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= Uy [v1(t; — to) +vo(t; — 1) +v3(ts —t5) +

e+ U (t — t—1)]

m—1

Y = Z U AV; tj + Uy Uy by
j=1

(2.6.3)
where Av;=v; -v;,,; will be frequently used in our context as the G(u,v,A)-
transform of the sequence x =(x,).

We shall first establish following some simple properties.

Proposition 2.6.1. The sequence spaces w(u,v;p,A), wy(u,v;p,A) and

W (u, v; p, A) are linearly isomorphic to w(p), w,(p) and w,_(p) respectively.

Proof: We prove the proposition for the space w(u,v;p,A). For each
xew(u,v; p,A), we have G(u,v,A)xew(p). It is easy to verify that G(u,v,A) is

linear and injective. Also the matrix G(u,v,A) has an inverse H(u,v,A) = (hyy)

given by,
1/1 1
(LE-1, o<kt
U \Vg  Vg41
Mg = ! n=k
UV
0, k>n

Thus w(u, v; p,A) is linearly isomorphic to w(p).

With the similar arguments we can show that w,(u,v; p;A) and w,_(u,v; p;A) are

linearly isomorphic to w,(p) and w_(p) respectively .

Proposition 2.6.2.  Let ¢, =(G(u,v; A)x)k for all k € N. We define the sequence

R = {hﬁl")}nEN for every n,k eN by
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i{i_i] O<k<n-1
uk Vk Vk+1
h) = 1 , k=n
! uka
0, k>n

Then, the sequence h® = {h,(q")} is a basis for the space w(u,v; p,A) and any

neN

x € w(u,V; p,A) has a unique representation in the form
x=3£,h®.
k=1

It can easily be verified.

Proposition 2.6.3. The sequence spaces u(u,v;p,A)for u € {w,wy,ws,} are

complete paranorm sequence spaces paranormed by,

1n 3 ™M
h(x)=sup{ﬁk§|unvatk|p }

neN

Where

M =max(L,sup p,)

or equivalently
1
h(x)=sup{2'2|unvatk|pk }M :
r r
The summation Y. in r runs from the range 2" <k <2"". For the sequence space

W, (u,v; p,A), h(x)is a paranorm if and only if O<inf p, <supp, <.

The proof of this proposition follows immediately from the proposition 2.6.1; where

h(x)=P(G(u,v,A)x)and P is the usual paranorm on 4 .
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2.7. Duals
In this section we find g —dual of w(u,v; p;A). We recall that if X be a sequence

space , we define B —dual of X as,

XB = {a = (ay): z a, Xy is convergent for each x € X}
k=1

Theorem 2.7.1

Let 0< p, <1 forevery k eN . Then W”(u,v; p,A)=T"where Tis given by,

Llac (1 1)ealn
U [V Vv, Vi, ) iska

FU
lim {(zw-l)pm
m—oo u

m*m

r{a(ak) ;Y max, (2" Nfl)pk

and

an} = 0()
for some integer N >1and max, is the maximum taken over 2" <k <2,

Proof: Let a € I'.Then there exists an integer N >1such that,

< oo

> max, (2' N‘l)p

1la (1 1)e,
U Ve (Ve Y, )itka

1
lim {(zw-l)ﬁ
m-oo

and

am} =0(1)

m*m
We take xew(u,v;p,A), then G(u,v,A)xew(p) for which we shall write

Gx e w(p) in brief.

Hence,

S|
M

Pk
|GX| < oo

=~
Il
iN

or equivalently
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1 Pk
?;|GX| < 0

where the summation over rruns from 2" <k <2"*. Also, there exists an integer

1

N >1such that [Gx| =y,|< (2" N’l)ﬁ.

We have,
m m-1 a 1 1 m
2 aX =12 — X (__ —jZ a; | Y+ Y
= k=t Uy |V Vi Vi )ikt nVm
m11|a, 1 1 m
<Y | | S| Y | Y| an Y
U |V Vo Vi ) itke A

So, it follows that,

*1a m
_{_u(i_i] v a,}
U | Vi Ve Vi, Jiska

< oo, Where h(x) is as defined in the proposition 2.6.3.

go|akxk|s;maxr (2'N7) Nh(x)+(2rN‘1)pm .

u.v

m-™m

Hence, it follows that §|akxk| converges and T cw”(u,v; p,A) . On the other hand ,
k=1
let aew’(u,v; p,A) but

I

1la (1 1)e,
U Ve (Ve Y, )itka

> max, (2'N )

and

lim (2fo1)me61m +0(1)

for every integer N >1.

Now, therefore, there exists a sequence {N, } — 0such that
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r U [ve (Ve V., )ik
and
lim1(2'N;*) ——a, {=0(1)
m—oo V

Hence, x, —O0(w(u,v; p,A); but x,—I(w(u,v; p,A)which is contradiction to our

assumption that aew” (u,v; p,A) .
This implies that a € T". As a consequence, we get W’ (u,v; p,A) T .

Thus w’”(u,v; p,A)=T"and this completes the proof. The 8 -duals for the spaces

wo(u, v; p,A) and w, (u, v; p, A) can be obtained in the similar manner.

2.8.  Matrix Transformation
In this section we give characterization for the matrix classes (w(u,v;p,A),ls),

w(u,v;p,8),c), wu,v;p,A),co) and (w(u,v; p,A),Q(t)).
Theorem 2.8.1

Let 0< p <1 forevery keN.Then Ae(w(u,v;p,A),l,)ifand only if

i) there exists an integer N>1 such that

1

sup ¥ max, (2° N‘l)pk lCye| < o0

n r

where
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lim (2fN-l)pm A

m—oo

~0(1).

nm

m™m
neN

Proof: Let the condition be satisfied. Since

m-1 1
Z Cou Yo tT—an¥Yn
k=1 u

m™m

m
Z ank Xk
k=1

it follows that,

kéankxk < ;maxr(Z'N‘l)pk |an|+(2rN_1)pm ﬁanm
SSUp{Zmaxr(Zer)pk |an|}+(2er)pm uiva”m

<o0; using conditions (i) and ( ii).
It implies that A eI and hence iankxk =A,(x) converges and belongs to | for
k=1

each x e w(u,v; p,A)andn € N.

On the other hand, IetAe(w(u,v; p,A),Iw). Hence iankxk converges for each
k=1

x e w(u,v; p,A)and n € N. We have,

m-1 1
Z Cou Y t— @ ¥n
k=1 u

m™m

m
z a‘nk Xk
k=1

(2.8.1)

We need to show the existence of conditions (i) and (ii). As a contrary, let us assume

that

1

Pk

supxmax, (2'N*) [, |=oo
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and

1
lim {(zrzv-l)ﬁ

m—oo

% 0(1)

anm}
UmVUm neN

Now, therefore, there exists a sequence {N, } — oo such that

1

max, (2'N, )" fe, =0

and

2 1
lim {(ZTNr “Dom » anm} =o(1)

m=ee mVm neN
Hence from (2.8.1) x —O0(w(u,v;p,A); but x —I(w(u,v;p,A) which is
contradiction to our assumption that A (w(u,v; p,A),l, ). Thus conditions (i) and (ii)
must hold. This completes the proof.

By using this theorem 2.8.1, it is now a straight forward matter to prove the following

theorem.
Theorem 2.8.2

Let 0< p, <1 foreveryk eN. Then Ae(w(u,v; p,A),c)ifand only if

1) there exists an integer N > 1 such that

1

Pk

supymax, (2N [c,,| <o

where
U, | Yy Vi Vi Ji=k+s
i)
1
lim {(ZTN “Dom anm} =0(1)
m=o m*m neN
and
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i)

limc, =¢,

exists for every fixed k.
Theorem 2.8.3

Let 0< p, <1 forevery keN.Then Ae(w(u,v;p,A),c,)ifand only if

1) there exists an integer N>1 such that

1

Pk

sup Y. max, (2r N’l) | |< 0

where
! {ank J{i_i) $ aﬂ}
U, | Yy Vi Vi Ji=ks
i)
1
lim {(ZrN Dyom anm} =0(1)
m=e mVUm nenN
and
iii)
limc, =¢,

n—oo

exists with ¢, =0for all k eN.

Fricke and Fridy [38] introduced a new sequence space Q(t).We define here Q(t)

and give some results from [15] which will be used in this section. For each r in the
interval (0, 1), let

G(r):{xz(xk)EW:xk :O(tk)}_

We define the set of geometrically dominated sequences as

re(0,1

G=|JG(r)
©1)
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The analytic sequences are defined by
1
A= {x:(xk)ea):lim sup | x, |n <oo}

Obviously Gc A. In [37,71,76], the various authors studied matrix transformation
from A or Ginto |, c orl_, but the question of mapping from I, cor I into A or
G was not considered. To set the stage for general theory, Fricky and Fridy replaced

the geometric sequence (r") with a nonnegative sequence t=(t,) and defined ,

Qt)={x=(x)ew:x =0(t) }

For given infinite matrix A the sequence o is defined by o, :Z|ank | Further,
k=0

Fricky and Fridy made the following remarks:

Remark 2.8.1.If one wishes to have a matrix A that transforms every null sequence in

to a sequence that converges at least as rapidly as some t, 40, then A must satisfy
o€ Q(t ) Similarly, if t is a nonzero constant sequence, then Q(t)=1, .

Remark 2.8.2.This remark is about obtaining a “given rate of convergence” by
mapping ¢, into Q(t). The work in[ 18,19 ] has shown that regular matrices cannot

accelerate the rate of convergence of every null sequences. Therefore we say that

having A map ¢, into Q(t) does not say that every sequence in ¢, is accelerated,
even if t, 4 0 very rapidly ; some sequences that are already in Q(t) may map into
other members of Q(t) that converge at the same rate or slower.

Theorem 2.8.4

Let 0< p <1 forevery keN.Then Ae(w(u,v;p,A),Q(t))if and only if

Ae(w(p),Q(t))
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and

1
lim {(zrzv ~1)om

m—oo

anm} €l

UmVUm neN

Proof: Let C=(c,)e(W(p),(t)) and

1
lim {(zw ~1)om

m—oo

anm} € ly

m= m nenN
Take any = (x;) € w(u, v;p,4) . As Ce(w(p),Qt)), then we have C, e w’(p) for

each neN. Hence Cxexists and , therefore, we immediately obtain from the equality

m m-1 1
Z ank Xk = Z an yk + anm ym
k=1 k=1 u

m-™m

that Ax exists and
Ae(w(u,v; p,A),Q(t)).

On the other hand let Ae(w(u,v; p,A),Q(t))and take any y=(y,)ew(p). Then

A, eTI"and, therefore the condition

1
lim {(zrzv ~1)om

m—oo

anm} € ly
m= m nenN

IS necessary.

Moreover we have ,

m m m
Z Cok Vi = Z Z Uk Vg CnjXg
k=1j=k

k=1
Taking m—o0, we find that Cy exists and equals to Ax.Hence C e(w(p),Q(t)).

This completes the proof.
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CHAPTER THREE

Part One:
Paranormed Sequence Space I(p, A) Generated by Lower
Unitriangular Matrix A

3.1. Preliminaries
By @ we mean the spaces of all complex valued sequences. A vector subspace of @

is called a sequence space. We shall write |, cand c,for the spaces of all bounded,

convergent and null sequence respectively. A linear topological space X over the
field R is said to be a paramormed space if there is a subadditive function g(x):X —
R such that g(8) =0, g(x) = g(—x) and scalar multiplication is continuous i.e.
la, —a]>0and g(x, —x) - 0 imply g(ax, —ax) - 0, forall o’s in R and all
x’s in X , where @ is the zero vector in the linear space X . Maddox [44,45] has

introduced the sequence space
I(p):{x =(x) e co:é|xk|pk <oo} :

where p:{pk} is a bounded sequence of strictly positive real numbers. Latter

Chaudhary and Mishra [15] introduced and studied the sequence space
1(p) :{x =(X)ew :ki;l|tk(x)| < oo}
where
k
tk(x):éxi .

The sequence space mis a complete metric linear space paranormed by,

1

960 = <Z|tk(x)|m«>

k=1
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where

M =max(d,sup, p,) -
Let X and Y be any two sequence spaces and A=(a,); n, keN be an infinite
matrix of complex numbers a, . Then we say that A defines a matrix mapping X
into Y ;and it is denoted by writing A:X —Y if for every sequence x=(x)e X |,

the sequence ((Ax),) isin Y , where

[ee]

(Ax), = Z Xy N EN

k=1

(3.1.1)

By (X,Y)we denote the class of all matrices A such that A:X —Y . Thus,
Ae (X,Y) if and only if the series on right side of (3.1.1) converges for each neN

and every xe X ; and we write,
Ax = {(AxX)p}ney €Y forall xeX .
The matrix domain X , of an infinite matrix A in a sequence space X is defined by
Xa={x=(x)ew:Axe X},
(3.1.2)

which is a sequence space.

With the notation as in (3.1.2) , we can have the following representation,
(P =[(P)]s
(3.1.3)

In other words the sequence space mwhich is the set of all sequences whose S-

transforms are in the sequence space [(p) [15], where S = (s,,;) is an infinite matrix

given by
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1, 0<k<n
S= (Snk) = {
0, k>n
(3.1.4)
In expanded form
1 0 0 0 ..
1 1 0 0 ..
S=11 11 0 ..
1111 .. /
The multiplication S with itself to n factors produces an infinite matrix
1 000
2 1 00
3210 :
4 3 21
which we denote by A.
Thus,
on _n—k+1, n=k
A=S"= ) = { 0, otherwise
(3.1.5)
It is a lower unitriangular matrix.
Using A as the operator , we now introduce a new sequence space 1(p, 1) as
I(p,2)= {x=(x) e w: Ax e I(p)}
(3.1.6)

where A is as defined in (3.1.5)

Thus, I(p,4)is now the set of all sequences {u, } whose A =S"- transforms are in the

sequence space I(p) . Using the notation as in (3.1.2) I(p, 1) can be represented as
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I(p, ) =[1(P)],
where the sequences,
{Au, =, —u,,} €l(p) with u,=0
and
k -
{Uk}:{é(k—l +l)xi}.

(3.1.7)

We shall first establish some simple propositions for [(p, ).

Proposition 3.1.1.We have,

I(p)<I(p) =I(p,A).

Proof : We have
|(p)={X=(Xk)ea):§l|Xk|pk <oo}
and
m:{X:(Xk)ea):éhk(x)W <oo}
where
k
tk(x):éxi :

It follows immediately by using the definitions of the sequence spaces I(p),@ and

I(p, 1) that

I(p)<I(p) =I(p,A).
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Proposition 3.1.2.The sequence space I(p, A)is linearly isomorphic to I(p).

Proof: For each xel(p,4), we have Axel(p)where A is as defined in (3.1.5). It is
easy to verify that A is linear and bijective. Also the matrix A has an inverse given

by

1, k=n, n=>3and k<n-—2
U= () =140, k >n, n>4and k<n-3
-2, n=>2and k<n-1
(3.1.8)
that is,
1 0 0 0 O
-2 1 1 0 0
~ 1 -2 1 0 O
=lo 1 =2 1 o
o o0 1 -21

Thus, the sequence space I(p,4) is linearly isomorphic to 1(p) .

Proposition 3.1.3. The sequence space I(p,A) is a complete paranormed sequence
space paranormed by,

n 1/M
ga)=t2mum}
k=1

(3.1.9)

where
M = max(1, sup py)

Proof: The proof of this proposition follows immediately from the proposition 3.1.2;
where g(x) = P(Ax) and P is the usual paranorm on I(p).

Proposition 3.1.4: Let ¢, =(2x), for all k € N. We define the sequence x*={x,*}

for every k € N as in (3.1.8). Then the sequence {‘u(k)}kEN is the basis for the
sequence space I(p,4) and any x el(p, A)and has a unique representation

x=3 ¢
k=1

It is easy to verify.
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3.2. Duals
In this section we find the g -dual of the sequence space I(p,4) for 0 < p, <1 and
1 < p, < suppy < oo forevery k € N. Recall that if X be a sequence space by f—

dual of X , we mean the space X# defined as

XB = {a = (ay): z a, Xy is convergent for each x € X
k=1

We shall begin the section with the following lemmas [25] to prove the following

theorems.

Lemma 3.2.1. If 0 < p, < 1forevery k € N, then [(p)? = [, (p) where

L) = {x = (0", " IxlPx < o} [82]

Lemma 3.2.2. If p, > 1 forevery k € N, then I[(p)? = M (p) where

OREY {a = <ak):2|ak|qw‘ﬁ < oo}
k=1

N>1
with
1 1
—+ —=1[24,47].
Pr 4k

Theorem 3.2.1

Let O< p, <1foreveryk € N. Then
Fp, ) =l D)
where
lo (0, 1) = {a = (ay): sup ;|A*a;|P* < oo}
and
Azak = Aak - Aak+1
Proof: Let a € 1, (p, A). Then there exists an integer N >1 such that

P
<00

sup|A°a,
k
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where

Azak =A ay — Aak+1
Take xel(p, 1), then Axel(p).
Hence,

>[Ax™ < co.
k=1

So, there exists an integer N >1such that

1

4% < (N2) P
We have,
m m
Z AxXg| = z (U — 2Up—q + Ug_3)
k=1 k=1
where
k
e = Z(k i+ D
i=1
with
u, =0fork <0
Now,

m

k=1

= |a1u1 + az(uZ - 2u1) + a3(U3 - 2u2 + ul) + .-

+ am(um - 2um—l + um—z)l
=|(ay — 2a; + az)uy + (a; — 2a3 + aguy + -+ (@ — 2am41 + Qpi2) U
=|(Aa; — Aay)uy + (Aay — Aaz)u, + -+ (Ady, — Adp 1)Ul ;

where

Aaj =aj — Ajyq

m m
Z A Xy Z Azakuk
k=1

k=1
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m
< > Iagliud
k=1

m

Z Azak

k=1

(N—Z)l/pk

Px

Since, [A%a, <M.

" is bounded, so that for some M >0, [Aa,

We remark that the sequence

{N=2}7x € I(p)

and if
SM™(N?)™ >0,
k=1
then
{IVI i }élﬂ(p).
Therefore,

1

Sla|<SM™(N?)" <w.
k=1 k=1
Hence it follows that i a x, converges for each x el(p,1) and l,(p, 1) < IF(p, A).
k=1

On the other hand, let ae1”(p,A). Then, i a, X, converges for each xe l(p,A). It
k=1

needs to show that

Pk

sup, [A%a,| <oo.

On the contrary, let

Pk

sup, ‘Azak =0,
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Then,

{A%a }el”(p)=1.(p).

Hence, there exists a sequence y ={y, } l(p) such that éAzak y, does not converge.
Although if we define the sequence u ={yk} by
He =Yoo =2¥at+ Y Y;=0
for <0 ,then
pel(p,4)

and

> A =2 AZak Yi
k=1 k=1

It follows that the series iakyk does not converge; which is contradiction to our
k=1

assumption that a e 1”(p, A). Hence we must have

Pk

sup, ‘Azak <o

which shows 18 (p, 1) € 1., (p, 1) and completes the proof.

Theorem 3.2.2

Let 1< p, <sup p, <oo foreveryk € N. Then 17(p,4)=M(p, 1) where

s _ % 1 1
M(p,A) ={a = (ak):ZIAZaRIQkN Pk converges where —+—=1and N > 1
=] dx Pk

Proof: Let aeM(p,A) andx el(p,A) . From the inequality
|Pk

b, | < b [* +]y,

we obtain,
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I

lax=[A%u|< A%, N +Nu [

(3.2.1)

where N is the integer associated with a eM(p, 4) and i-ﬁ-i:l.

k k

Now,

X

‘ZA%W

szpﬁwd
k=1

o
< i{‘Azak NN |uk|pk}
k=1

k=1

<3y {‘Azak BNy Ng”‘(x)}

< oo

It follows that i a x, converges and M(p,2) < 1”(p,1).
k=1

On the other hand, let a<l”(p,A). Then, i a, X, converges for each xel(p,1). As
k=1

acontrary, let a¢M(p,A4). Then,

K

P

3 ‘Azak %N
k=1

does not converge.

Since

x={&}={N”}eup)Jha1{A%H}ewupy4ﬂ(m.

Now , there exists a sequence y={y, } l(p) ; such that 5 A’a, y, does not converse.
k=1

However , if we define s ={x} by,

78



e =Y o= 2Y o+ Y
withy; =0 for j<O0, then

pel(p,4)

and

YA =2 Azak Yy -
k=1 k=1

It follows that the series iak,uk does not converge which is contradiction to our
k=1

%
Py

assumption that ael”(p,A). Hence we must have the series i‘Azak "N
k=1

converges and 17 (p, 1) = M(p, A) . This completes the proof.

3.3. Matrix Transformation

In this section we give characterization for the classes (I(p,4),l.), (I(p,4),c) and
(1(p,4).¢,) -
Theorem 3.3.1

Let O0< p, <1 forevery k € N. Then, Ae(I(p,A),l,)if and only if

Pk

sup ‘Azank <o,
n,k
Proof: Let the conditions hold. Then we have,
sup [A%a, | <o
n,k

0 Pk
Take xel(p,4).Then Axel(p)and hence Z|ix| <o,
k=1

So, there exists an integer N >1such that

1

12X < (N2)P .
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We have

0 o0 k
kz,la“kxk = kZil(Aank—AanM)uk ,whereu, =§(k—i+1)xi
= kZ_lAzankuk

<y |A%a,
k=1

U]

1

0 2 Pk 2 P
SSUpZ‘A a, ‘N

nk k=1

<0o0.

Hence it follows that > a,, x, convergesand Ax €, .
k=1

Conversely, let Ae (I(p,4),1.) . Then Zank X, converges for each x=(x,) l(p,4)
k=1

and n € N. We need to show that

sup |A% @ [Pk < oo
n,k

Now , since i a X, converges , we have {a,}xen € 1#(p, 1) for every n € N. It
k=1

implies that

sup |A%? @ [Pk < oo
n,k

which is as desired.

Theorem 3.3.2
Let 1< p, <supp, <o foreveryk € N.Then Ae(l(p,4),l,) ifand only if
SuleAzanquk N_qk/pk < 0
n p—

k=1

where

80



i+i:1.

O« P«

Proof: Let the conditions hold i.e. 1< p, <sup p, <o . Take xel(p,4).Then

Ax el(p)and hence
90 = ) |axlPe < oo
k=1

Then there exists an integer N >1such that

1

|Ax|< (N
Now,

Z anka Z Azankuk
k=1 k=1

o
< i{‘Azank NN |uk|pk}

k=1

(3.3.1)

9k

<sup Y {‘Azank TNy Ng" (X)}

n k=1

<00

. n
Hence it follows that " a. x, convergesand Axel, .
k=1

Conversely, let Ae(I(p,4),l,). Then iamkxk converges for each x=(x)el(p,4)
k=1

and {Ax}el, . We need to show,

q

o, e E

sup Y [A%a, | "N P <oo
n k=1

where
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i+i:1.

P Ok

Since, i a, X, converges for each x el(p, 1), then
k=1

{@ni}ken € P (0, 1)
foreveryn e N.

G
“N ™ <oo: where i+i:1.

< | A2
Hence, kz_l‘A Ay

P O
Further, since {ij}elw ,Sup, iankxk <oofor n € N, it follows immediately from
k=1
(3.1.1) that
» %
2 i P
sup Y [A%a, | "N P <oo
n k=1
where
i+i:1
P Ok

Hence it completes the proof.

Theorem 3.3.3

Let O0< p, <1foreveryk € N.Then, Ae(l(p,A),c)if and only if
i)

p
sup|A%a,,| " <coand
n.k

H 2 2
limA®a, =A’g,

for every fixed k.

Proof: Let the conditions (i) and (ii) hold. Take any x el(p,4). Then Axel(p).

82



Hence,
0 Py
2jﬁx| <o,
k=1

Again, there exists an integer N >1, such that

1

|2X < (N2)™
We have,
éank X, |= éAzankuk <o
as in theorem 3.3.1.
Also, by using condition (ii) ,
éAzank U |= éAzakuk <.

Therefore, {Azak}k _ € 17(p) and since the sequence {a}ien € ¥ (p, 2) ;the series

i a,, X, and i A’a,u, converge for every n € N and every x=(x,) €l(p, 1) . Hence
k=1 k=1

AXx ecC.

Conversely, let Ae(l(p,1),c). Then  a x for x=(x)el(p,4) and n € N. We
k=1
need to show that the conditions (i) and (ii) hold.

Moreover , { A X} ec for n— oo and for some fixed k. Then,

A2
> A%a ,u,

k=1

= lim

n—oo

Z ank Xk
k=1

lim

Nn—oo

So, limA%a, =A%, , where «, = lima, for some fixed k. Further it remains to
n—o0

n—o

show that
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Py
<0,

sup‘Azank
n.k

Since, i a,, X, converges, we have
k=1
{anitken € 1P (p, )

Py s .
<0 :which is as desired.

2
and hence SUKD‘A "
n,

Theorem 3.3.4.

Let 1< p, <sup p, < forevery k € N. Then Ae(l(p,/l),c) if and only if

)
X 2 th 7:7i
sup Y. [A%a, " N <o
n k=1
where
i+i=1 and
O« P«
i)

H 2 2
limA©a, =A%,

for every fixed k.

Proof: Let the conditions (i) and (ii) hold. Take any xel(p,4). Then Axel(p). We

have,
g0 = ) |AxlPk < oo
k=1

Again, there exists an integer N >1, such that

1

Ax| < (NP

We have,
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<0

> ay X | = ‘ZAzank Uy
k=1 k=1

as in theorem 3.3.2.

Also by using condition (ii)

<00,

S A2
ElA a,, Uy

3 A’a,u,
k=1
Now, using the same argument as in theorem (3.3.3), we arrive at the result Axec.

Conversely, let Ae(I(p,2),c); then i a,, X, converges for each x=(x,)el(p,4).
k=1
We need to show that conditions (i) and (ii) hold.

Moreover , { A x} ec for n— oo and for some fixed k. Then,

S A2
> Aa,u,

k=1

= lim

n—oo

lim

n—oo

Z ank Xk
k=1

So,

limA®a, =lim A(Aa,) =lim A(Aa,) =1im A&, .. —a,,) = A — )

n—oo

=A’q, for some fixed k, which is condition (ii). Now it remains to show that

condition (i) holds.

Since, f‘, a,, X, converges for each xel(p, 1), then we have
k=1

{@nitken € P (p, 1)

foreveryn e N,

Hence ,
o0 q _qik
> |A%ay " N P <o
k=1
where
i+i:1
P Ok
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It follows from the same arguments given in the proof for theorem 3.3.2 that

o — G
N P <oo,

sup X |A%a,,
n k=1

It completes the proof.

By using the arguments as in the theorems (3.3.3) and (3.3.4), it is straight forward

matter to prove the following theorems:
Theorem 3.3.5:

Let 0< p, <1 foreveryk € N. Then, Ae(I(p,A),c,)if and only if
i)

p
¥ <oo and

sup|A*a,,
n,k

: 2 2
lim A%a,, =A",

n—oo

with ¢, =0 forall k € N .

Theorem 3.3.6 :

Let1< p, <supp, <o foreveryk € N.Then Ae(l(p,4),c,) ifand only if

i)
> 2 qy 727‘;
sup 3 |A%a, [ N <o
n k=1
where
i+ L =1 and
d« P«
i)

H 2 2
lim A%a,, =A"g,

n—o0
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with o, =0for all k € N.

Finally we remark that the sequence, 1 =
{(1,0,0,...),(-2,1,0,0,...),(1,-2,1,0,0, ...), ... } is not [(p) convergent but it is A-
l(p) , thatis, I(p, 1) convergent.
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Part Two:
Paranormed Sequence Spaces X(p,4) for X € {l., c,cy)}
Generated by Lower Unitriangular Matrix

3.4. Preliminaries
By @ we mean the space of all complex valued sequences and any vector subspace

of w is referred as a sequence space. The symbols |, cand c,stand for the spaces of

all bounded, convergent and null sequence respectively. By a paranormed space we
mean a linear topological space X over the field R if there is a subadditive function

g: X > Rsuch that g(#)=0, g(x)=g(-x) and scalar multiplication is continuous
ie. |a,—a|l—0and g(x,—x)—0 imply g(a,x, —ax) =0, for all o’s in R and all
x’s in X, where @ is the zero vector in the linear space X . If p=(p,)be a bounded

sequence of strictly positive real numbers, Maddox [44,45] defined the sequence

spaces | (p), c(p)and c,(p) as follows:
Iw(p):{x =(x,) € :sup|x|™ < oo} ,
k
c(p) = {x = (x) € w: Ilim |x; — 1|P* = 0 for some [l € (C}

co(p):{x:(xk) e w:Jim|x | =o} .

The space ¢,(p) is a complete paranormed space paranormed by

Pk

h(x) :Slip|Xk | )
and the spaces |_(p) and c(p) are complete paranorm spaces paranormed by h(x) if
and only if inf p, > 0[44,45,46].

Let X and Y be any two sequence spaces and A=(a, ); n, keN be infinite matrix

of complex numbers a,,, . Then we say that A defines a matrix mapping X into Y ;

and it is denoted by writing ,
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A X >Y

if for every sequence x=(x,)e X , the sequence ((Ax),) isin Y , where

[ee]

(Ax), = z AnkXx, NEN

k=1

(3.4.1)

By (X,Y)we denote the class of all matrices A such that A:X —Y . Thus,
Ae (X,Y) if and only if the series on right side of (3.4.1) converges for each n € N

and every Xe X ; and we write,

Ax = {(Ax)n}nEN €Y

(3.4.2)
forall xeX .
We now introduce new sequence spaces X (p,4)for X €{l_,c,c,}as,
X(p,A)={x=(x):Ax e X(p)}
(3.4.3)
where
n—k+1, n=k
A= (Ank):Sn:{
0, otherwise
as defined in (3.1.5) in section 3.1
and
1, 0<k<n
S = (Snk) = {
0, k>n

as defined in (3.1.4) in section 3.1.

We recall that the matrix domain X, of an infinite matrix A in a sequence space X is

defined by
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XA

{X:(Xk)ea):AXe X}
(3.4.9)

which is a sequence space.

Using the notation (3.4.4) , we can represent X (p,A) as

X(p, A)=[X(p)],

X(p, A) can also be defined as the set of all sequences {u;} whose A = S™ transforms

are in the sequence space X € {l., c, c,} Where the sequence {u;} is given by

k
{1y} = {Z(k i+ 1)xi}

(3.4.5)
We shall now establish some propositions.

Proposition 3.4 1 :Sequence space C,(p,4) is linear metric space paranormed by g,

defined by

p

g(x)=sup|Ax" , where M =max(L,sup p,)
K k

= SLk1p|uk|M.
(3.4.6)
Proof: From the definition of g it is clear that g(x) =0<x=0and g(—x)=g(x) for
all xec,(p,4). To show linearity of c,(p,A)with respect to coordinate-wise addition

and scalar multiplication, let us take any two sequences X,y ec,(p,4) and scalars

,B € R. Since A is linear operator by [48] ,we note that
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Py

g(ax-+ fy) =sup|a(ax+ py)|”

Pk Pk

< max{1,|oc|}sup|/1x|V +max{1,|,8|}sup|/1y|V
k k

= max{L|ef}g(x) +max{L |A}a(y)
This follows the subadditivity of g , i.e.
g(x+y)<g(x)+g(y)
(3.4.7)
Now it remains to show the continuity of scalar multiplication in c,(p,A) . For it, let
{x"} be any sequence of the points in ¢,(p,A) such that
g(x"-x)—0

and {«, } be sequence of real scalars such that o, -« . Now by using (3.4.7), we

have
g(x")<g(xX)+g(x" —x)
Further,
P
g(a X" —ax) = sup‘/l(anx" —ax)M
k
P P
<(la, —a|™ g(X") +|a, —a|™ g(X" — X)) <oo
(3.4.8)
for all n.

Since {g(x")}is bounded, we find from (3.4.8) that
g(a, X" —ax) <o

foralln e N.
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That is, the scalar multiplication for g is continuous and therefore g is a paranorm on

the sequence space ¢,(p,4).

It can easily be verified that g is the paranorm for the spaces |_(p,4) and c(p,A) if

and only if inf p, >0 .

Proposition 3.4.2 :The sequence spaces X(p,4) for X €{l_,c,c,} are complete

metric spaces paranormed by g, defined as in proposition 3.4.1.

Proof: We prove this proposition for ¢,(p,4). Take a Cauchy sequence {Xx"}in the

space C,(p,4), where
X" ={x{M, x™, xM LY
Now for given &> 0, there exists a positive integer n,(¢)such that,

g(x"—=x")< e forall mn=>n,(¢).

Also, from the definition of g for each fixed k € N, we have

‘{ﬁvxn}k _{ﬂxm}k ‘:\)/T

Py
M

< sup2x"} ~{Ax",

<&

forall m,n=n, () .

Now , this implies that, {(1x°),,(AX").,(AX?),,...}is a Cauchy sequence in R for

each fixed k € N. Since R is complete, the sequence {Ax"}, converges and let
X"} > {43 as n— oo .

For each fixed k € N, m—ooand n>n,(¢), itis clear that
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P g
‘{ﬂ'xn}k —{Ax} M SE
(3.4.9)
Since
X" ={x"}ec,(p, 1)
we have,
P g
AX"y M <2
xR =3
(3.4.10)

for each fixed k e N .

Combining (3.4.9) and (3.4.10), we obtain that

P
A |

< ‘{lxn}k _{/lx}k ‘& +‘{lxn}k ‘E/T
<¢

forall n>n,(¢).

Hence , the sequence {Ax} € c,(p). Since {X"} was an arbitrary Cauchy sequence in

Co(p,4), we conclude that the space c,(p,A) is complete. It completes the proof.
Proposition 3.4.3: The sequence spaces X(p,4) for X &{l_,c,c,} are linearly
isomorphic to the respective spaces X.

Proof: For each xe X(p,A), we have Axe X(p), where A is as defined in

section 3.1.5 . It is easy to verify that A is linear and bijective. Also the matrix A has an

inverse given by,
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1, k =n, n=>3and k<n-—2
U= () =140, k>n, n>4and k<n-3
-2, n=2and k<n-1

(3.1.11)

Thus, the sequence spaces X (p, A) is linearly isomorphic to the corresponding spaces

X(p)for X € {l,,c,co}.
Proposition 3.4.4: Let ¢, =(4x), and 0< p, SSlip p, <o for all k € N. We define
the sequence u* = {ugﬂ}nm for every fixed k € N as in proposition 3.4.3. Then,
(i) the sequence
(.

is the basis for the sequence space c,(p,4) and any xec,(p,4)has a unique

representation x=3 &, x® and
k=1

(i) the set

{o.u“}

is a basis for the space c(p,A)and any x ec(p,A) has a unique representation in the

form
x=lvo+3 (&, —)u®
k=1
where I =lim (4x), and v' =(1,3,0,0,...)

It is easy to verify this proposition.
3.5. Duals
In this section we find the generalized Kothe-Toeplitz dual i.e. g-dual of the

sequence spaces l,(p,A) , co(p,A) and c(p,A). If X be a sequence space , we
define f—dual of X as
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XB = {a = (ay): z a, Xy is convergent for each x € X}
k

=1

Theorem 3.5.1

Let p, >0 foreveryk € N. Then I”(p,2)=M_(p, 1) where

M_(p,A) =Nﬁz{a:(ak):§jl‘A2ak‘ N <oo}
and

A’a =Aa, —Aa,,, .
Proof: Let aeM_(p,4) and xel (p,4).We choose an integer

N > max(L, sup|u,|™) . Then we have,
k

m m [ )
kZlakxk :‘kzl(Aak —Aa, U, | ; whereu, = _Zi(k—l+l)xi
= = i=
a2
=(> A"a.u,
k=1
< | A2
SZ‘A akHuk|
k=1
1
<3 |A2 "
<Y |A%a|N
k=1
<o0.

Hence,
I\/Ioo(p’ﬂ’)g Iooﬂ (p’ﬂ’) "

On the other hand , let ael” (p,A) but agM_(p,A). Then there exists an
integer N >1 such that

1

kz_l‘Azak‘N P =00,
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Then, {A’a, }¢1” (p)=M_(p), where

My (p) = ﬂ {a = (ak):ZIaklNi < oo} [25]
k=1

N>1

Hence , there exists a sequence Yy={y,}el (p)such that iAzakyk does not
k=1

converge. Although if we define the sequence u ={x, }by
e =Y 1 —2Y + Yieu
withy, =0for j<O0,then x€l, (p,1)and therefore,

YA =2 Azak Yi -
k=1 k=1

Hence it follows that the series i a, 1, does not converge; which is contradiction to
k=1

our assumption that a<l_”(p, A) . Hence we must have,

1
kz_‘,l‘Azak ‘N P <0

This shows that I” (p, 1) = M_(p, A) . It completes the proof.
Theorem 3.5.2

Let p, >O0foreveryk € N. Then coﬁ(p,/I)z M, (p, A) where

1
Mo(p,2)=U{a=(a): 2[A%a|N ™ <o},

Proof: Let ae M (p,4)and xec,(p,4). Then

1
é‘Azak‘N P < oo

for some N >1 and

. 1
|uk|p <ﬁ
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for all sufficiently large k ; whence for such k ,

i|akxk|:i‘&akuk‘
k=1 k=1

< i‘Azak Huk|
k=1

1
< Z‘Azak‘N P < o0
k=1
Hence,
Mo (P, 2) ¢ (P, 2).
On the other hand, let aecoﬁ(p,/i) but a¢ M,(p,4). Then the convergence of

i a x, forall xec,(p,A) implies that a € M,(p, 4). For otherwise, as in the proof
k=1

of theorem 3.5.1, we can easily construct a sequence u € ¢,(p, A)such that é a, L4,
does not converge; which becomes contradiction.
Hence,
¢ (P, A) = My(p, 2).
This completes the proof.

Corollary 3.5.1. Let p, >0 for every k € N. Then ¢/ (p,2)=M,(p, 1) "cs , where

cs is the set of convergent series. The proof of this corollary is the direct consequence
of the theorem 3.5.2.

3.6. Matrix transformation

In this section we characterize the classes (I (p,4),l.), (I (p,4),c) and

(L.(p, 4),G,) -
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Theorem 3.6.1

Let p, >0 forevery k € N. Then Ae(l, (p,4),l,)if and only if

1
N * < oo

supZ‘Azank
n k=1
for every integer N > 1.

Proof: Let the condition holds. Then we have,

1
NP <oo.

sup i Aa,
n k=1

Take xel_(p,2). Then Ax el (p)and hence sup|Ax|™ <oo. So there exists an
k

integer N >1such that

1

AX| < N

Then,

o0

> Aau,

k=1

< i‘Azank
k=1

where u, = f (k—1+1)x
i=1

o0
Z ank Xk
k=1

uy|

_1
N Px

<sup)|A’a,
n k=1
< o0,

Hence it follows that Zankxk converges foreachn € Nand Ax el .
k=1

On the other hand , let A< (l_(p,4),l.). As a contrary let us assume that there exists
an integer such that

1
N Pk =0,

sup i ‘Azank
=1

Nk
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Then the matrix (A°a,,) ¢ (l..(p),l,), as in theorem 3 [25] and so there exists a

y =(y,) €l (p) with suply, | = 1such that
k
D Nayy, #0()
k

Although if we define the sequence u ={x, }by

M =Yoo — 2yk71 + Yy

withy, =0 for j<O0,then u el (p,4)and therefore
> ay =2 A’a,y, .
k=1 k=1

It follows that the sequence {A, ()}, ; which is contradiction to our
assumption. Thus,

1
SUp Y [A%a, N ™ <o

nok=1

and it completes the proof.

Theorem 3.6.2 :

Let p, >0foreveryk e N.Then Ae(l_(p,A4),c)ifand only if
(i)

1
Npk

i ‘Azank
k=1

converges uniformly in n for all integer N > 1.
(ii)

H 2 2
limA®a, =A"e,

n—oo

for some fixed k.
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Proof: Let the conditions (i) and (ii) hold. We first state a lemma due to Lascarides
and Maddox [25].

Lemma 3.6.1: Let p, > 0 forevery k. Then A € (I,(p),c) if and only if

0
D lan NP

converges uniformly in n, for all integers N > 1.

(i)
Apk = Ak

(n - oo, k fixed) .
Now, since the conditions (i) and (ii) hold , using lemma 3.6.1 we have the matrix
(A%a,) e (1.(p).c) .

By using,
o0 o0 2
2. 8y X =2 ATay, Uy
k=1 k=1

(3.6.1)
we have ,
(A.(x)) € (I.(p, 4), ©)
for every n € N.

Hence, Ae (l_(p,A),C).

On the other hand let Ae(l_(p,A), ¢). Then from (3.6.1) it follows that

(A%a,) (1.(p).c)

Hence from the lemma 3.6.1 , we arrive at the result that the conditions (i) and (ii)

hold. This proves the theorem.

Using the same arguments as in the theorems (3.6.1) and (3.6.2), it is straight forward

matter to prove the theorem:
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Theorem 3.6.3 :

Let p, >Oforevery k € N. Then Ae(l_(p,A),c,)if and only if

(i)

© =
Npk

> | Aay,

k=1

converges uniformly in n for all integers N > 1 and
(i)

limA®a, =A%, with o, =0forallk €N .

n—oo
Finally we remark that the sequence,

b = (b) ={(1,0,0,...),(=2,1,0,0, ...), (1,—2,1,0,0, .. )} & Lo (p) bUt € Ioo(p, ) .
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CHAPTER FOUR
SOME PARANORMED SEQUENCE SPACES GENERATED BY

COMBINING SPARSE MATRIX /1]- AND GENERALIZED WEIGHTED

MEAN G (u, v) THAT GUARANTEES THE GIVEN RATE OF

CONVERGENCE

4.1. Preliminaries
By o we denote the space of all complex valued sequences. Any vector subspace of ®
is regarded as a sequence space. We shall write [, ¢, c, and cs for the spaces of all

bounded, convergent, null and convergent series respectively.

A linear topological space X over the real field R is said to be a paranormed space if
there is a subadditive function g: X — R such that g(6) =0, g(x) = g(—x) and
scalar multiplication is continuous , that is, |a, — a| = 0 and g(x, —x) —» 0 imply
g(apx,_ax) - 0 forall « € R and x € X ; where 0 is the zero vector in the linear

space X.

Let X,Y be any two sequence spaces, and let A = (a,,;) be any infinite matrix of real
number a,;, where ,n,k € N . Then we say that A defines a matrix mapping from X
into Y by writing A: X — Y, if for every sequence x = (x;) € X , the sequence Ax =

(A, (x)), called the A- transform of x, is in Y, where

A= ) awxe  (nEN)

k
(4.1.2)
By (X,Y) , we denote the class of all matrices A such that A: X — Y. Thus, 4 € (X,Y)
if and only if the series on the right hand sided of (4.1.1) converges for each n € N

and every x € X , and we have Ax € Y forall x € X.

We shall assume here and after that {p,} is a bounded sequence of strictly positive
real numbers with supp, = H and M = max[1, H]. Then, 1.J. Maddox [44,45] have

defined the following sequence spaces c(p), co(p) and [, (p)as,
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c(p) = {x = (xk):lli_)rglxk — [|Pk = 0 for some [ € (C}

¢o(P) = {x = Goo): lim |, [P = 0}
and

a9 = x = s supl P < ]
keN
The space cy(p) is a complete paranorm space paranormed by

Pk
g(x) = sup [x|™
keN

(4.1.2)

The spaces [, (p) and c(p) are complete paranormed space paranormed by g(x) if

and only if infp, > 0.

For simplicity in notation, here and in what follows, the summation without limit runs
from 1 to «. Let (X, g) be a paranormed space. A sequence (by) of elements of X is
called a basis for X if and only if , for each x € X, there exists a unique sequence (ay)

of scalars such that
g(x— iakbk>—>0
k=1

asn — oo.

The series ).i°-; @b, Which has the sum x is then called the expansion of x with
respect to (b,,) and is written as

o

X = Zakbk

k=1
In this chapter we introduce a set of new paranormed sequence spaces L, (u, v; p, 4;),
c(u,v;p,4;) and co(u, v; p, ;) generated by the combination of sparse matrix A; and
the generalized weighted mean matrix G(u,v) . We establish some topological
properties, obtain bases for c(u,v;p,4;) and c¢o(w,v;p,4;) and find B- duals.
Furthermore, we characterize the matrix classes (I,(w,v;p, %), L), (I.(w,v;p, %;),¢)

and (1,,(w,v;p,4,),¢o). Besides, we give characterization theorem for the case of
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mapping from the sequence space [,(p) to new sequence space l,(u,v;p,4;) that

guarantees the given rate of convergence.

4.2. Remarks

Several authors have defined many new sequence spaces by using a generalized
weighted mean (or a factorable) matrix G (u,v) and the difference operator matrix A
or by combining them. The difference sequence spaces were first studied by Kizmaz
in 1981 [41]. Since then many authors have defined and studied new difference
sequence spaces by considering the matrices that represent the difference operator.

Some of the example, are as follows:

Malkowsky and Savas [29] have defined the sequence spaces Z(u,v,X) which
consists of all sequences such that G(u,v)— transform are in € {l,,c,co,L,}.

Choudhary and Mishra [15] have defined the sequence space I(p) whose S —
transform are in I(p). Altay and Basar [10] have studied the space rt(p) which
consists of all sequences whose Riesz transforms (R*) are in the space [(p). Recently,
Demiriz and Caken [78] have defined the sequence spaces A(u,v;p,A) for 1 €

{co, c, 1, I} by combining the matrix

_ (U vy, 0<k<n
6uwv) = (g = {0 O
(4.2.1)
and the difference operator matrix
(=", n-1<k<n
A= (6nk) =
0, 0<k<nork>n
(4.2.2)

Most recently Baliarsingh [70] has introduced the spaces X(A;,u,v,p) for X €
{l.,c,co} by combining the matrix G = (gnx) as given in (4.2.1) and a double band

matrix
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1 -2 0 O

0 2 -3 0
A] =

0 0 3 4

(4.2.3)
For a sequence space X, the matrix domain X, of infinite matrix A is defined by

Xy= {x=(x): Ax € X}
(4.2.4)

Using the notation (4.2.4), the sequence spaces introduced by the authors stated above

can be represented as

Z(u,v,p) = [Xlguw, (@) = [1(M)]s, r* () = L)1t
A, v;p,8) = [Aguva and X(4;,u,v,p) = [XIouva)

Can now we make generalization in constructing new sequence spaces by introducing
the operator matrix which guarantees the fast rate of convergence? The answer, we
claim, is yes. Before introducing the new sequence spaces, we construct a new double

band sparse matrix4; . For this we begin with a diagonal matrix ,

1
. 1 - i=j
diag == tj
Y 0, otherwise
1 0 0 O
b
0 1 0 O
t2
In expanded form, diag (ti): 0 0 1 0
ij t3
0 0 O 1
t4

(4.2.5)
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where

t= <%> € (0,1).

The multiplication of this matrix with the difference operator matrix A yields a double

band matrix ,
1
— 0 0 0
ty
1 1
—— — 0 0
1 ty ty
A.diag <t_) =1 0 1 1 0
b t, ts
1 1
0 0 —= —

We denote the transpose of A. diag (i) by 4;. Thus,

tij
1 1
- - 0 0
ty ty
0 ! - 0
ty ty
— 1 1
4 0 0 il _—
ts ts
1
0 0 0 —

(4.2.6)

We use 4; together with G (u, v) to define our new sequence spaces.

We write by U the set of all sequences u = (u,,) such thatu,, # 0forne N . Foru €
U, let
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Let u,v € U and let us take the matrix G (u, v) as defined in (4.2.1) forall n,k € N ;
where u,, depends only on n and v, only on k. The matrix G (u, v) is called
generalized weighted mean or factorable matrix. We shall now define the matrix

G(u,v,4) as,

Vg-1
!(un (fk T) ksn
G(uv/'l) G(u,v)4; = gnk I__unvn' k=n+1
kO, otherwise

4.2.7)

We use the matrix G(u, v, 4;) to define new sequence spaces.

4.3.  The Paranormed Sequence Spaces X (u, v; p, 4;) for X €

{le, €, Co}
Following [10,11,12,13,15,29,42,70,78],we define the sequence spaces X(u,v;p, 4;)
for X € (L., c,cy) by

X(u, v; p,/lj): {x = (xk):< ji_‘,lukvjljxj > € X(p)}

(4.3.1)

where 4;x; is defined as follows

1 ,

and Ax; = x;_q —x; With xo = 0, (j € N). 4;is a sequential double band matrix as
defined in (4.2.6). Using the notation as in (4.2.4), we may represent the sequence

spaces X (u, v;p, 4;) in (4.3.1) as

X(wv;p,4) = XD]ewway

fore (I, c,cp) .

In other words X (u v;p, Aj) are the sequence spaces which consist of all sequences

whoseG (u, v, A;)- transforms are in X (p).
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Here and after we use the convention that any term with negative and zero subscript is
equal to zero. In the following propositions we prove that these spaces are complete

paranormed linear metric spaces and isomorphic to the spaces L. (p), c(p) and cy(p)
respectively. Moreover, we establish basis for the spaces c(u, v;p, /1]-) and
co(u, v;p, Aj). Since the proof may also be obtained in the similar way for the other

spaces, we give the proof only for one of these spaces in order to avoid the repetitions

of the similar statements.

Proposition 4.3.1 : Sequence space ¢, (u, v; p, 4;) is a linear metric space

paranormed by g, defined by ,

Pk
k M

glx) = 5111cp Eukvj/ljxj

j=1
(4.3.2)

Proof: We shall check the properties that g should satisfy. From the definition it is
clear that g(x) = 0 ® x = 0 and g(x) = g(—x) for all x € ¢o(u, v;p, 4;) . To show
the linearity of cq(u,v;p,A;) with respect to coordinatewise addition and scalar
multiplication, let us take any two elements x,y € co(u, v;p, 4;) and scalar a, f € R

. Since 4; is a linear operator from Maddox [25] , we note that

Pk
k M
g(ax + By) = sup Z wvid;(ax; + By;
k =
P P
k M k M
< max{l,|al}sup|>uyv;2,x;|  + max{l,|B]}sup|X uyv;4y;
et E!
= max{1, |a|}g(x) + max{1,|B|}g(y)
This follows the subaddivity of g, that is,
gx+y) <gx)+g®)
(4.3.3)
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Now, it remains to show the continuity of scalar multiplication in c,(u, v; p, 4;) . For
it, let {x"} be any sequence of points in c,(u, v; p, 4;) such thatg(x™ —x) - 0 and

{a,,} be sequence of real numbers such that a,, —» a . Now by using (4.3.3), we have

glx™) < gx) +gx" —x)

Further,
Pk
k M
glapx™ —ax) = sup 2 wevihi(anx" — ax;
[
Pk Pk
< <Ian —almg(x") + |almg(x" — X)> <o
(4.3.4)
foralln e N

Since {g(x™)} is bounded , we find from (4.3.4)that
g(a,x™ —ax) < ©
foralln e N.

That is, the scalar multiplication for g is continuous and therefore g is paranorm on

the sequence space ¢, (u, v; p, 4;) .

It can easily be verified that g is the paranorm for the spaces [,(u,v;p,4;) and
c(u,v;p, 4;) ifand only if infp, > 0.
Proposition 4.3.2: The sequence spaces X(u,v;p,4;) for X € {l,,c,co} are

complete metric spaces paranormed by g, defined as in proposition 4.3.1.

Proof: We prove the proposition for the sequence space co(u,v;p,4;). Take a

Cauchy sequence {x"} in the sequence space c,(u, v; p, 4;) , where

x™ = {xén),xfﬂ,xgn), }

Now, since {x"} is a Cauchy sequence, for given &> 0 , there exists a positive

integer ny (&) such that,
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gx"—xM)<e¢
forall m,n = ny(¢) .

Also from the definition of g for each fixed n € N, we have
Pk
M

|{G(u, v, A)x"} —{G(wv, Aj)xm}k|

Pk
< supg |{G(u, v, lj)xn}k —{6(uv, Af)xm}k|M <é
forall m,n = ny(e).

This implies that

{(G(u, v, 4)x°), (G(w v, 2)x") ., }

is a Cauchy sequence in R for each fixed k € N. Since R is complete the sequence

{G(w,v, 4;)x™} converges and let
{G(wv )"}, = {6 (w v, 4)x],
asn- o

For each fixed k € N, m —» coand n > ny(¢) , itis clear that

Pk

w _E
(6 (wv.2)xm), - (6w v 4, | <5
(4.3.5)
Since x" = {x,ﬁ")} is a Cauchy sequence in ¢y (u, v; p, ;) we have
% ¢
(G (u v, 2)xm), | < >
(4.3.6)

for each fixed k € N.

Therefore by combining (4.3.5) and (4.3.6) we obtain that
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Pk
|(6Cw v 1)), [

Pk Pk
< |6 (v 2)x"}, = {6(wv.2)x} | + [{6(w v, 2)xm) | < e
forall n = ny(¢).

Hence, we have the sequence {G(u,v,4;)x} € co(u, v;p,4;) . Since {x™} was taken
as an arbitrary Cauchy sequence, the space ¢, (u, v; p, 4;) is complete. This completes

the proof.

Proposition 4.3.3: The sequence spaces X(u, v;p, Aj) for X € (I, c, cy) are linearly

isomorphic to the spaces X (p).

Proof: For each x € X(u,v;p,4;) we have G(u,v,;)x € X(p) where A; as defined
in (4.2.6). It is easy to verify that 4; is linear and bijective. Also the matrix 4; has an

inverse given by,

T]=(Tlnk)=<_2i’ K =n

\0, otherwise

for all n,k € N . Thus, the sequence spaces X(u,v;p,4;) for X € (I,,,c,co) are

linearly isomorphic to the spaces X (p).

Proposition 4.3.4: Let y, = (G(w,v,4;)x), forall k € N . Now for fixed n € N we

define the sequence a® = {a,ﬁk)} by

neN
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t t:\ 1
(’“ ’)— 1<k<n-1
G\ YUY
(k) LR
a =<
B DR
WY
\0, otherwise

foralln,k € N. Then,

(i) The sequence {a(k)} LN is the basis for the sequence space c,(u, v; p, ;) and any

x € co(u, v;p, 4;) can uniquely be represented as

x = Z L™
k

(i) The set {z, a(")}keN is the basis for the sequence space c(u, v;p,4;) and any x €

c¢(u, v; p, 4;) can uniquely be represented as

x={tz+ Z(,uk — Da®
K

where
= ]ll_g)lo(G(u, v,/lj)x)k
z = (zy)
and
1/t ¢t
P <J_—1 _ _J)
Vk =t uj_1 u]

The proof of the proposition is straight forward.
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4.4. Duals
In this section we determine - dual of the spaces X (u, v; p, 4;) for X € {l,,,c,co} . We

recall that if X be a sequence space , we define - dual of X as,

XB = {a = (ai): Z a xiis convergent for each x € X
k=1

Theorem 4.4.1

Define the sets d;(p) , d,(p) , ds(p) and d,(p) as follows:

n-1[Jj-1 ; i1 . .
- (- o3 S5 292 ofvi .
N>1 " % =k = Vit Ui/ Wi W
n—-1[Jj-1
tir G\ 1 ¢ L
d,(p) = U a:(ak):supz (v' _v_>u__W @G| N Pe < oo
N>1 [l el e U A

d0) = Unsafa = (@): (Zjk [Z1] (82 - ) £ = 2| o,V 7 € Lo fand

Vigr v/ u ujv;j
iy g N1t
: i+1 b j .
ds(p) = {a = (a;): lim ( — —>———J a; | exists
n-oo el b Viy1  Vi/ U Ui

Then,
(Lwv;p,2)) = dy(@) N es
8
{Co(u' v D, /11')} = dy(p) N d;(p) and

(e v;p. )Y = dy(p) N ds(p) N da(p)

Proof: We find the B-dual of the sequence space L, (u, v;p, ;) only. Before giving

proof we state the following lemma which we will use latter.
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Lemma 4.4.1 [61,70]: Let p, > 0 for every k € N. Then A € (L,(p),c(q)) if and

1
only if sup Yx|la,,| NPk < oo for all integers N > 1 and there exists a; € w such that
n

1 dn
lim (ZIank — al Npk> =0
n—oo
K

for all integers N > 1.

Now for the sequence a = (a,) € w , we define the infinite matrix,

(Tl—l t t
Z<L1——’>—’, 1<k<n-1
SV Ul
n
D=(d = t;
( nk) _Z ] a, k=n
WY
\0, otherwise

foralln, k e N.

Forany x = (xx) € l,(u,v; p, 4;) ; we have

n n k t. ; .
>ax = (Z—'( Yia _Lj}ak
k=1 k1l v \ U,

n-1| j-1{ t. ) . t.
- z{fz[ﬁ—t—'jﬁ——lyj}aj =0y (MEN).
J

A

Thus we observe that the sequence (a,x,) € cs whenever (x,) € l,(w,v;p, 4;) if

and only if Dy € candy € l,(p) . This implies that a = (a,) € l.(u, v; p, /1]-)3 if and

only if D € (I,(p), c). Hence from the lemma 4.4.1 we conclude that
B _
{l.aw,v;p, 4)} = di(p) Ncs
4.5.  Matrix transformation

In first part of this section, we give the characterization of the classes
(lw(u, v;p, /'lj), lw), (lw(u, v;p, /'lj),c) and (lw(u, v; p,/lj), CO) . Define a matrix C =
(an) by
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(4.5.1)
Then we have the following characterization theorems.
Theorem 4.5.1

A € (L,(w,v;p,4),1,) if and only if

1
sup( > Co [N P > < oo
n k
for all integers N > 1.
Theorem 4.5.2
A € (L,(w,v;p, %), c)if and only if
(i)
1
sup( > lcq IN > < oo
n k
for all integers N > 1 and

(i)

n—o

1
Iim{2|cnk AL pk}: 0, a=(ay) Ewand N > 1.
k

Theorem 4.5.3: A € (L.(w,v;p, 4;), ) if and only if

(i)

x
sup( S lcq N ) < o
n k

for all integers N > 1 and
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(i)

n—oo

1
Iim(z|cnk — [N pk]: 0, a=(ay) Ewand N > 1and
k

(iii)

limc,, = «, exists with a,, = 0 forall k € N.

n—oo

In the second part, we give some remarks before characterization of new class.
Various authors, including us, have studied matrix transformation from new sequence
spaces ,for example, X(u,v;p,A) to X or X(p). However, the cases of mapping
from X or X(p)to the new sequence space X (u, v; p, A) have not been considered. In

this connection we give the following characterization theorem.

Theorem 4.5.4

A € (L.(p), L(w,v;p,4;) ) if and only if

I’ k-1V\/. i u.v.
nidn=1 = | 29U Sha %00 ay | €lwuvpa).
j=k i=1 ti+l t tj .

Proof: First suppose that A € (lw(p), Lo(uw,v;p, Aj)) but (e,) € lﬁ(u, v;p, 4;) for

every n € N. So there exists an x € L.(u, v; p, 4;) such that
D euX = 0(1)
k

for each n € N.

However if we define a sequence y = (y;) by
k-1
Vi+1 Vi Vka
=u L — = |,
Vi k|:§(ti+l ti j tk :|

then it is clear that y € [,(p) and that

Zank Y = Zenkxk # 0(1).
K K

(4.5.2)
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This contradicts the fact that
A€ (loo(p)' lOO(uI vp, A}))
Hence, we must have
(ent) € L (u,v;p,4)
foreachn € N.

Next, suppose that the given condition is satisfied. Then it follows immediately from
the fact

Zank Y = Zenkxk
P K

that, Ay € L.(w,v;p,4;) for arbitrary y € L,(p).Thus 4 € (loo(p), Lo.(uw,v;p, /1]-)).

This completes the proof.
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CHAPTER FIVE
ON EXPLORATION OF SEQUENCE SPACES AND FUNCTION SPACES

ON INTERVAL [0,1] FOR DNA SEQUENCING

5.1. Preliminaries

John Maynard Smith in 1970 first introduced the notion of sequence space for protein
evolution. He proposed a “sequence space” where all possible proteins are arranged in
a protein space in which neighbors can be interconnected by single mutation [23].
These problems are not only unique to protein structures but relevant to many other
areas such as DNA sequence, brain imaging, climate data, financial data and others.
In these area of interest the data have common features that: data are enormous,
information is multi dimensional and complex, the sample size is relevantly small,
they posses finitely many non zero elements in the sequence and some elements in the
sequence repeat many times. For instance, four types of nucleotide A, T, G and C are
linked in different orders in extremely long DNA molecules. It now becomes a
continuing challenge for scientists, engineers, mathematicians and others to record

and preserve data in these endeavors.

When the data received from the reservoir to obtain some information have lower
dimension and samples have larger size, the statistical methods such as that the
covariance matrix [4, 68], dot matrix [57] and position weight matrix [83,86] can deal
with the cases promptly in a simplified way. However, when data have
multidimensional character and the sample size is smaller, the statistical methods may
lead to errors [26].

In this connection authors [26] have pointed out the necessity of the new definition of

norm to fit a given data ‘a’ in a of set some class samples S as follws:

Let us consider a simple example from a classification problem. Set S as a set of some
class samples and a as a given data. Is a close to someone of S or a new class?A
simpler approach is to consider problem inf sesla — slp, where p denotes the norm in

Lp space. In most cases, there is at least one so€S such that
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la — solp = infsesla — slp.

We denote by (a) the feasible set. Can we say that a is close to some so€F(a)? To see
disadvantage, we divide sequence s€S into three segments (s1, s2, s3); the first
segment s1 is composed of the first n1 elements, the second segment s2 is made of the
next no elements, and the third is composed of the others. Similarly, we also divide a

into corresponding three parts (a1, az, as). Now, we reconsider

inflla; — Sl”p ) inf|la, — SZl”p' infllaz — 53||p
S1 S, S3

Perhaps we would find that F(a1) N F(a2) N F(as) = 0. Can one say that a is a new
class? From this example, we see that we need a new definition of the norm to fit
application. Motivated by these questions, we revisit the sequence spaces and function
spaces defined on [0, 1] .Here, the sequence spaces we work on are different from the
existing spaces. In the present chapter, we shall introduce our idea and the resulted

sequence space and function spaces on [0,1].

Based on the sequence spaces and function spaces on interval [0,1], in the present
chapter we examine the behaviors of sequences generated by DNA nucleotides. It has

been aimed to extend the results of authors [26] by: introducing new function space in
[0,1], extending the basis function % , introducing a new sequence b = (b,) =

(Xyena,) which can characterize DNA sequence , obtaining some new completion
results among the existing spaces in [0,1] and formulating strongly p- summation
method.

Definitions and Notations
The following definitions and notations will be useful in further discussion.
(i) DNA

Definition: DNA stands for Deoxyribonucleic acid which is the chemical stuff it is
made of. Structurally DNA is polymer — a larger structure that is made up of repeating
parts of smaller structure — like a brick wall is made up not just one brick but of many

similar bricks all closely joined.
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(i) DNA Nucleotides

Definition: In the DNA polymer, the tiny repeating structure are called Nucleotides.
In other words, nucleotides are organic molecules that serve as the monomers or
subunits of DNA . The millions of tiny unit nucleotides together form the entire DNA
polymer which is called a DNA strand having double helix structure. There are four

types of nucleotides. They are:
A = Adenine , C = Cytosine, G = Guanine, T = Thymine
(iii) Sequence alignment

Definition: Sequence alignment is the procedure of comparing two (pair-wise
alignment) or more multiple sequences by searching for a series of individual
characters or patterns that are in the same order in the sequences. There are two types
of alignment: local and global. In global alignment, an attempt is made to align the
entire sequence. If two sequences have approximately the same length and are quite
similar, they are suitable for the global alignment. Local alignment concentrates on

finding stretches of sequences with high level of matches.
(iv) DNA sequence

Definition: A DNA sequence is a specific sequence of all little bases each base is
either Adenine (A), Cytosine (C), Thymine (T) or Guanine (G).

(v) DNA sequencing

Definition: DNA sequencing is the process of determining the precise order of
nucleotides within a DNA molecule. It includes any method or technology that is
used to determine the order of the four bases — adenine, cytosine, thymine and

guanine — in a strand of DNA.

5.2.  Sequence Spaces and Function Spaces on [0,1] for DNA
Sequencing

We discuss the existing function space on [0,1], basis function representation theorem

and the set inclusion relation as in [26].

Leta = (aiayas, ..., a, ...) be a DNA sequence where a,, € {4,C,T,G} and
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a(x) = Ap1(x) + Cpy(x) + Tps(x) + Gp,u(x)
(5.2.1)

Clearly, for different DNA sequence, we have different polynomials p;(x) .It is a
simpler reserve form. To extend it into a sequence of infinitely many non zero terms,
we take x € [0,1] . Here,a(x) is called the generation function in the classical
queuing theory. We remark that the generation function is not continuous function
defined in [0, 1] . Hence in order to find out a feasible form of a(x) we integrate first

and then differentiate.

Denoting by L the integral operation and performing it for constant 1 leads to,

X

L'(D(x) = f ldx =x

0

2

x X
PO = [ Py =1

0

Generalizing we get,

n

X
L") =—
n!
(5.2.2)
foralln e N.
For any polynomial p,,(x) of order n, it can be written as
2 XN
pn(x) =apg.1+ayx + az 27 + -+ tn
n
= [Z akLk] (D)
k=0
(5.2.3)
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Next , we consider the differential operator D for the for the function %T which yields

(D)=t 0 () =i

In general for 1 < k < n, it holds that

n—k

Dk(%l):(;—k)!

(5.2.4)
Therefore the coefficient sequence is given by

(aO) ay, ay, "'Fan) = (DOIDll DZI ---’Dn)pn|x=0
(5.2.5)

and ’% is defined to be the basis function.

Moreover, the polynomial space over [0, 1] , denoted by P[0,1], is a normed space

with the norm

)

Ipl, =sup{|op

(5.2.6)

where
Ifllo = max|f(x)l
0=sx=<1
In this space, the integral and differential operations are bounded linear operators. To

extend to an infinite sequence, we take a subset Cy;[0,1] of C*[0,1] defined by
| < oo}

Cy/[0,1] is a Banach space. Now for the function space on interval [0,1], there exist

Cy = {f € C*[0,1]: sup|D" f

n>0

(5.2.7)

the following set inclusion relations
P[0,1] c Cx[0,1] € €*[0,1] < C*[0,1] < C[0,1] < L*[0,1] < LP[0,1] < L'[0,1]

(5.2.8)
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But the completion of (P[0,1],]l.]lz) is not the space (Cy[0,1],.llg) . For the

completion of the space (P[0,1],|.|ls) authors have defined the following spaces on
[0,1]:

n

C¢,0[O11]:{ f (X) = i a, X_rllln;loan :O} )

n=0 n! .

o0

C¢'p[0,1]={f(x) = a, % i |an|p <oo}f0rp > 1and

n=0 n=0

CM[O,l]:{f(x): > anX—:sup|an|< oo}
' n=0 n! nxo

These spaces are isomorphic to C,,1 and |, respectively [26].

Obviously P[0,1] c Cy,[0,1] © Cy[0,1] and authors have shown the following set
inclusion relations:

P[0,]] = C,,[0,1] C, [0,] = C,,[0,] =C,,[01]=C,7 [0,1], 1< p<oo

(5.2.9)

5.3.  New Function Space and Sequence Space on [0,1] for DNA
Sequencing and New Set Inclusion Relations

We define for any x €[0,1], a polynomial function of order n

p,(X)= 21 a, ( kzl L* (1) (x)) , 20=0.

n 14 Xk
= a —_
VZ::I Y (kl k!J
(5.3.1)
where L is integral operator and
i x* for v=12,3,....,n
k:]_k! V_1 3y ey
(5.3.2)
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is new basis function defined in the polynomial function P[0,1] which illustrates
better approximation to the problem. Further by using differential operator for the

basis function

k

v X
ZH for v=12,3,...,n

k=1

we find that ,

v i v—k
DX =X 1<k<v
=ATH OESY

Obviously,
D'p,(0)=a, +a, +...+a,

D?p,(0)=a, +a,+...+a,

D"p,(0)=a,
Therefore the coefficient sequence b = (b,,) is given by

(a,+a,+..+a,a,+a,+..+a,,..,a ) = (Dl,DZ,...,D”)pn(x)|X:O

(5.3.3)
Thus we obtained new coefficient sequence to characterize DNA sequence. With the

coefficient sequence b = (by) defined by b, = i a,, forall k ; we can characterize
v=k

DNA sequence and the result is helpful to explore for the possible application in DNA
sequencing. The following table shows the distribution of the coefficient sequence
b = (by,) with all possible alignments of DNA nucleotides.

124



Table 1. Distribution of the coefficient sequence b = (by)

b, - a;a,a3a,4a5a6a,a50, ... ay

b, - ayazasasaga,agag ...a,

b; _ A304050607050g ... Ay
b, - a,a5040,050g -.. Ay
b, - a,

where a,, € {4,C,T,G} . In computational process, if we input a DNA sequence |,
BLAST (Basic Local Alignment Search Tool) will display all possible gene matches
with closure similarities between the existing DNA sequence in Gene Bank and the
input sequence. The most likely matches will be displayed from top to bottom

sequence alignments.

The polynomial space P[0,1] is now a normed space normed by,

lIplly = sup

nz1

n
Z(D"p — D*1p)
k=1

To extend the case to an infinite dimension, consider a subset of function space
C”[0,1] defined by

Cg‘j[o,l]:{f e C”[0,1]:sup

n>0

\D”f

<}

which is a linear space.

The authors [26] have shown the sets inclusion relations as

P[0,]=C,,[0<=C,,[0]=C, [0,0<C,.[01=C7 [0,1], 1< p<c.
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Let the completion of the space C,;[0,1]be C,,[0,1]. Then we have the following
representation theorem.
Theorem 5.3.1

The space
© kX" L.
C,ol0=79(x) =T a (X —):limb, =0
k=1 v=l V! n—o

is isomorphic to the space C,,[0,1], where

Proof: We define an operator

T:C, [0, -C,,[0,1]

by
(b)) = (a,) =T((b,)).
The linearity of T is obvious. Now,

T((0,))=9(x)

= X" . x X x>
:1bnm—blﬂ+b25+b3§+...

n

X X2
(a1+a2+a3+...)5+(a2 +a3+a4+...)§+...

= X+a(X+X2)+ (X+X2+X3)+
BT TR TEAR S TRIP T TE
0 n Xk
= a R
nZ::1 n(|<z=:1k!)

Hence T is bijective. Thus T is isomorphism mapping and C, ,[0,1] is isomorphic to

C,,[01].

126



Now for p >1we define new norm on the space P[0,1] by

o)

gllyp =1

k=1

k
Z(D”p —D""'p)
v=1

1
Pyp
[0/

Let C, [0,1] be the completion of the space C, [0,1]. Then we have the following
representation theorem.
Theorem 5.3.2

The space
0 k v 0
C, ;0.1 ={g(x> =$a,(X ) 5, < oo}
k=1 v=l V! n=0

is isomorphic to the space C, ,[0,1].

The proof of the theorem follows immediately by using isomorphism operator defined

as in the proof of theorem 5.3.1.

Further, letting p — o« we define new norm on the space P[0,1] by

PRCUEIIS)
k=1

lglly,c = sup
nz1

[ee)

Then we have the following theorem.
Theorem 5.3.3

The space
0 k XV
c,.[01] ={g(x> = > a,(> =) suplb,| < oo}
k=1 v=l V1 n>0

is isomorphic to the space C, [0,1].

The proof is similar to the proof of theorem 5.3.1 .

We, therefore, observe the following sets inclusion relations:
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P[0,1]=C, ,[0,1]<=C, ,[01]=C,,[01]=C,,[01]=C,_[01]=C, [01]=Cy [0,1]
,1<p<o

(5.3.4)
Moreover the spaces C,,[0,1],C, [0,1] and C,_[0,1] are respectively equivalent

to C,,[0,1],C,,[0,1] and C,_[0,1]. Hence C,,[0,1],C, [0,1] and C, _[0,1] are

Banach spaces with their natural norms.

5.4. Strongly Summation Method

Let (b,) be a sequence of real or complex numbers and satisfy limb, =0. We define

n—o0

a new strongly p- summation method for the sequence (b,,) as

1

So,p =|bn|=(|bn|p)E
Sop (" +,o )’

1
S2.p :(|bn72|p +|bn73|p +|bnf4|p)p

1
p P
bn—k—j‘ ]

We , therefore, obtained a new non negative sequence (Sk.p k> 0) ; Where

k
Sk.p =(Z

i=0

m M m M
Skp S<Skp<Sy, ands, ands,

are the values in decreasing and increasing queuing.

Then it is a normed space normed by
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[l o =supsy

(5.4.1)

where H is the generalized strongly summation and p is the p-norm in finite
dimensional space .

In particular when {b }el®, s, , —0,as k — oo hence

1
[©), <SP <=

Finally, we define the sequence spaces by
G =|(0):5UPS, , <o)

%mquyﬁg%ﬁzq

These spaces are evidently Banach spaces with their norm as defined in (5.4.1).
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CHAPTER SIX

CONCLUSIONS AND RECOMMENTATIONS

6.1. Conclusions

We have presented our results in chapter two to chapter five. The results in each
chapter posses their own significance, specific characteristics and applications. In
chapters two, three and four the role of infinite matrices has been considered as
operators to construct new sequence spaces. In chapter five we have presented a
practical application of sequence - function space on [0,1] to characterize DNA

sequencing.

In chapter two, we have considered the role of infinite matrices G(u,v), called
generalized weighted mean and the difference operator matrix 4 to introduce the new
sequence spaces. In the first part of chapter two, generalized weighted mean G (u, v)
has been introduced to construct the new sequence spaces w(u,v,p) , wy(u,v,p)
and w,, (u, v, p) , which are the set of all sequences whose G (u, v) transforms are in
w(p) , wo(p) and w, (p) respectively. Any generalization of the sequence spaces of
Maddox i.e. w(p) , wo(p) and w,(p) by the application of generalized weighted
mean G(u,v) have not been considered yet. In this regard our work leads to the
extension of the work of Maddox [44,45]. In order to provide comprehensiveness to

the work, we have established some properties and characterized the matrix classes

(W(u, v, p)’ lOO) ' (WO (u, v, p)» C)' and (WOO (u' v, p)r CO)'

In the second part of chapter two, the role of the matrix G(u,v,A) which is the
combination of generalized weighted mean G (u, v) and the difference operator matrix
A has been applied to introduce the new sequence spaces w(u, v; p,A) , wo(u, v; p, )
and we, (u, v; p, A) , which are the set of all sequences whose G (u, v, A) transforms are
inw(p) , wo(p) and we,(p) respectively. This work is the continuation of our work
in the first part of chapter two. It focuses on the extension of the work of Maddox by
the application of the matrix G(u, v,A) . To complete the work in concrete form we
have discussed essential properties along with characterization of the matrix classes
ww,v;p,4),¢), (Wo(w,v;p,8),¢) , (Weo(u,v;p,8),¢o) and (w(w, v; p, 4), (1)) -
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In chapter three, we have constructed a new matrix S™ = 4;

where

1, 0<k<n

5= {

0, k>n

and
n—k+1, n=>k
i {
0, otherwise

as in (3.1.4) to define the new sequence spaces (p, A) in the first part and [, (p, 4) ,
c(p, 1) and cy(p, A) in the second part. The sequence space [(p,A) is the set of all
sequences whose A- transform are in the sequence space [(p). Similarly the sequence
spaces l,(p,A) , c(p,A) and cy(p, A) are the set of all sequences whose A- transform
are in the sequence space L, (p), c(p) and c,(p) respectively. Our work is expected to
lead a remarkable contribution in constructing new sequence spaces by generalizing
the spaces I(p), lo(p) , c(p) and cy(p) using a lower unitriangular matrix A .
Moreover along with the establishment of some properties , we have characterized the
matrix classes (I(p,4),¢c), (I(p,A),cy) and (I(p,A),ls,) in the first part and
(lo(@ A), 1), (l(p, 1), ) and (I (p, A), co) in the second part of chapter three.

In chapter four, we have constructed a new operator sparse band matrix A; which we
combined with G(u,v) to define the new sequence spaces l.(w,v;p,4;) ,
c(u,v;p,4;) and co(u, v; p, 4;) . By the nature of construction, the sequence spaces
lo(u,v;p,4)) , c(u,v;p, 4;) and ¢4 (u, v; p, 4;) are the set of all sequences whose 4;
transforms are in the sequence spaces l,(p) , c(p) and cy(p) respectively.
Furthermore we have characterized the matrix classes (lo,(w,v;p,4;) leo)
(o(wvip4),c) and  (Io(w,v;p,4;),co). Besides, we have given the
characterization theorem for the case of mapping from the sequence space [l (p) to
the newly defined sequence space I, (u,v;p,4;) that guarantees the given rate of

convergence.
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We remark that the matrices G(u,v), G(u,v,A) , 4 and 4; that have been used as
operators in different chapters to construct the new sequence spaces are all distinct
and posses different characteristics. We expect that the rate of convergence improves
by the application of these matrices in comparison to the earlier generalizations in the
corresponding spaces.

In chapter five, we have presented a practical application of sequence spaces for DNA
sequencing in the field of bioinformatics. Based on the function spaces and sequence
spaces on interval [0,1], in chapter five we have examined the behaviors of sequence
spaces generated by DNA nucleotides. We have extended the results of authors [7] by

introducing a new coefficient sequence b = (b,) = Qy=na,) Where a, €

k

{A,C,T,G} on [0,1] and extending the basis function X—l(n € N) in [26] into i %
n! k=1 K!

(n € N) as a new basis function.

We have also established some isomorphism theorems on newly introduced function

spaces and obtained some new completion results between the existing spaces in [26].

6.2. Recommendations

Summability theory has very wide applications in functional analysis. It is not
possible to discuss all the properties and aspects of newly introduced sequence spaces
in the present thesis. Regarding the results found in this thesis, further generalizations
can be done to fill the gap in existing literature. We list below some of the future

works which one may carry out:

1. Finding a and y duals of the spaces.

2. Finding further characterization classes of the spaces.
3. Studying further properties of the spaces.

4. Finding dual spaces for function spaces in chapter five.
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