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Synopsis of Thesis

The theory of fixed point is an extensive field of research in mathematics having

various applications. Fixed point theory has played a central role in the develop-

ment of non-linear functional analysis and provided a power tool in demonstrating

the existence and uniqueness of solutions to various mathematical models repre-

senting phenomena arising in different fields such as in Engineering, Economics

, Game Theory and Nash Equilibrium, Steady State Temperature Distribution,

Epidemics, Flow of Fluids, Chemical Reactions, Neutron Transport Theory, Haar

Measures, Abstract Elliptic Problems, Invariant Subspace Problems, Approxima-

tion Problems, Logic Programming, Neural Networks.

In 1986, S.G. Matthwes [96] initiated the concept of dislocated metric space

in the context of metric domains in which the self-distance for any point need not

be equal to zero. In 2000, P. Hitzler and A. K. Seda presented modified forms of

metric space including dislocated metric space and pointed important questions on

topological aspects. In 2006, F. M. Zeyada, G. H. Hassan and M. A. Ahmed [162]

introduced the notion of Dislocated Quasi-Metric Space. Since then, a number of

fixed point theorems have been established by several authors in these spaces.

In this thesis, we have established common fixed point theorems for single pair

and two pairs of mappings in dislocated metric space and two fixed point theorems

in dislocated quasi- metric space which generalize and unify some well-known sim-

ilar results in the literature.

Chapter wise cameo description of the present study is as follows:

CHAPTER ONE deals with the general introduction of fixed point theory. It

includes some fundamental concepts and notations relevant to the development of

fixed point theory. A brief survey of the development of the fixed point theory in

metric space has been presented and some of the well-known theorems have been

stated with a review work on some applications of fixed point theorems.

CHAPTER TWO is intended to study the fixed point theorems of asymptotic

contractions. It deals with basic definitions and the chronological development of

some fixed point theorems of asymptotic contractions.
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CHAPTER THREE is intended to obtain some common fixed point theorems

with suitable examples in dislocated metric space. It includes basic definitions and

some theorems which are relevant for the establishment of our theorems.

CHAPTER FOUR is intended to establish fixed point theorems in dislocated

quasi-metric space. It also includes basic definitions and some results which have

relevance with our theorems.
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Abstract

The notion of dislocated metric space was first time introduced by S. G.

Matthews in 1986 under the name of metric domains. Dislocated metric space

is one of the important extensions of metric space. In 2006, F. M. Zeyada, G.

H. Hassan and M. A. Ahmed introduced dislocated quasi metric space which is

another important extension of metric space.This thesis investigates some new

fixed point theorems in dislocated and dislocated quasi- metric spaces which ex-

tend and unify some well-known similar results in the literature. A survey work

on some fixed point theorems of asymptotic contractions in metric space has also

been presented.
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Chapter 1

Introduction

In this chapter, we give a brief introduction of fixed point the-

ory, some fundamental concepts and notations relevant to the

development of fixed point theory. A brief survey of the

development of the fixed point theory under Meir - Keeler type

contraction in metric space has been presented and some of the

well-known theorems have been stated.

1.1 Introduction

Historically, the concept of fixed point was initiated by H. Poincare

in 1886. The concept of metric space was introduced by M.

Frechet in 1906 which furnished the common idealization of a

large number of mathematical, physical and other scientific con-

structs in which the notion of distance appears. The first fixed

point theorem is due to L.E.J. Brouwer in 1912. The fixed point

theory has played an important role in the problems of non-

linear functional analysis which is the blend of analysis, topol-

ogy and algebra.
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A fixed point theorem is one which ensures the existence of a

fixed point of a mapping T under suitable assumptions both on

X and T . Many non-linear equations can be solved using fixed

point theorems. In fact, fixed point theorems has applications

in non linear integral, differential equations, game theory, opti-

mization theory and boundary value problems etc.

Fixed Point Theory is divided into three major areas namely

(i)Topological Fixed Point Theory (ii) Metric Fixed Point The-

ory and (iii) Discrete Fixed Point Theory. Historically, the

boundary lines between the three areas was defined by the dis-

covery of three major theorems: (i) Brouwer’s Fixed Point The-

orem (ii) Banach’s Fixed Point Theorem and (ii) Tarski’s Fixed

Point Theorem.

Apart from establishing the existence of a fixed point, it often

becomes necessary to prove the uniqueness of the fixed point.

Besides, from computational point of view, an algorithm for

calculating the value of the fixed point to a given degree of ac-

curacy is desirable. Often this algorithm involves the iterates of

the given function. In essence, the question about the existence,

uniqueness and approximation of fixed point provide three sig-

nificant aspect of the general fixed point principle.

Banach’s contraction principle is perhaps one of the few most

significant theorems that answers all these three questions of ex-

istence, uniqueness and constructive algorithm convincingly. A

deeper, though especial result is Brouwer’s fixed point theorem

which states that any continuous function mapping a closed ball
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B(a, r) of Rn in to itself has a fixed point. In general, Brouwer’s

fixed point theorem ensures neither the uniqueness of the fixed

point nor the convergence of the iterates. While, the early proofs

of Brouwer’s theorem rely on algebraic-topological ideas based

upon analytical arguments. A brief survey of the development

of Brouwer’s fixed point theorem has been presented in the pa-

per [61].

Most of the mathematics is focussed on the solutions of the

various equations involving numbers. For example, for given

numbers a and b with a 6= 0, the linear equation ax+ b = 0 has

a unique solution. On the other hand, the quadratic equation

ax2 + bx + c = 0 may not have real solutions for real numbers

a, b and c with a 6= 0. However, it will always have a pair of

solutions in the system of complex numbers.

More generally, one can consider an equation of the form

S(x) = 0 where S is a real valued function of a real variable.

For T : R → R defined by T (x) = S(x) + x, obviously, a solu-

tion of S(x) = 0 is a solution of T (x) = x and conversely. An

element x0 for which T (x0) = x0 is called a fixed point of T .

Thus, the problem of solving the equation S(x) = 0 is equivalent

to finding the fixed point of the associated function T . In order

to find zeros of a function S, one should seek the fixed point

of related function such as T . The procedure of setting zeros is

known as iteration method or the fixed point method of solving

equation. The study of existence of fixed point falls within the

topology and algebraic topology. A topological space is said to

posses the fixed point property if every continuous mapping of

the space into itself has a fixed point. Of course, if a topological

3



space has the fixed point property, any other topological space

homeomorphic to the first will also possess the fixed point prop-

erty.

We will recall the following definitions.

Definition 1.1.1. Let X be a non empty set and d be a real

function from X ×X into R+ such that for all x, y, z ∈ X, we

have

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇐⇒ x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

then, d is called a metric or distance function and the pair

(X, d) is called a metric space. It is a topological space which

provides the general setting in which we study the convergence

of a sequence and continuity of a function.

Definition 1.1.2. A sequence {xn} in a metric space (X, d) is

called a Cauchy sequence if for given ε > 0, there corresponds

n0 ∈ N such that for all m,n ≥ n0 , we have d(xm, xn) < ε.

Definition 1.1.3. A sequence {xn} in metric space is said to

be convergent to a point z ∈ X if for given ε > 0, there exists a

positive number n0 ∈ N such that d(xn, z) < ε for all n ≥ n0.

4



In this case, z is called limit of {xn} and we write xn → z.

Definition 1.1.4. A metric space (X, d) is called complete if

every Cauchy sequence in it is convergent to a point in X.

Definition 1.1.5. A metric space X is said to be compact if

every sequence in it has a convergent subsequence.

Definition 1.1.6. Let X and Y be metric spaces with metrices

d1 and d2 respectively, then a function T : X → Y is said to be

continuous at x0 ∈ X if for every ε > 0 there exist some δ > 0

such that d2(Tx, Tx0) < ε for all x ∈ X satisfying d(x, x0) < δ.

Also, this happens if and only if

Txn → Tx whenever xn → x in X.

Definition 1.1.7. Let d be a metric on X. For x ∈ X and r > 0,

the set Ud(x, r) = { y ∈ X : d(x, y) < r} is called the open ball

about x of radius r.

Definition 1.1.8. Let E ⊂ X. An element x ∈ X is called a

limit point (or an accumulation point) of E if for every r > 0

there is some y in Ud(r, x) ∩ E with y 6= x.

Definition 1.1.9. A subset F of metric space X is called a

closed set if it contains each of its limit points.

Definition 1.1.10. Two self mappings S and T on a metric

space X are said to be commuting if,

STx = TSx ∀x ∈ X.

Two self mappings S and T on a metric space are said to be

commuting at a point z in X if STz = TSz.

5



Also, S and T are said to be non commuting if there is no such

point z in X where S and T commute.

Definition 1.1.11. Two self mappings S and T on a metric

space X are said to be weakly commuting if,

d(STx, TSx) ≤ d(Sx, Tx) ∀x ∈ X

The mapppings S and T are said to be weakly commuting at

a point z in X if, d(STz, TSz) ≤ d(Sz, Tz).

The notion of weakly commuting mappings was introduced

by S. Sessa [147] in 1982. He introduced the common fixed

points of non commuting generalized contraction mappings.

Definition 1.1.12. Two self mappings S and T on a metric

space (X, d) are called compatible if, limn→∞ d(STxn, TSxn) =

0, whenever {xn} is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

Two self mappings S and T on a metric space X are called

non compatible if they are not compatible. Clearly, S and T

will be non compatible if there corresponds at least a sequence

{xn} such that

lim
n→∞

d(STxn, TSxn)

is either non zero or non existent. G. Jungck [75] generalized the

notion of weak commutativity mappings and also weakly com-

muting mappings due to Sessa [147] by introducing the concept

of compatible maps in 1986, which is also called the asymptot-

ically continuous by Tiwari and Singh [160] in an independent

work. It may be observed that the compatible mappings com-

mute at their coincidence points. Also, from above definitions,

6



it is clear that commuting mappings and weakly commuting

mappings are compatible, but the converses are not necessarily

true.

Definition 1.1.13. Let S and T be mappings from a metric

space (X, d) into itself. Then, S and T are said to be weakly

compatible if they commute at their coincident point; that is,

Sx = Tx for some x ∈ X implies STx = TSx.

Definition 1.1.14. A mapping S of a metric space X into itself

is called non-expansive if d(Sx, Sy) ≤ d(x, y) for all x, y ∈ X

and x 6= y

Definition 1.1.15. Let S and T be self mappings on a set X,

then a point z in X is called a common fixed point of S and T if

Sz = z = Tz. Also the point z is called a coincidence point of S

and T provided Sz = Tz.

Example 1.1.16. Let (X, d) be a metric space with

X = [0, 1] and d(x, y) = |x− y|.
Let S, T : X → X be defined by Sx = x

3 and Tx = x
5 .

Then, 0 is the common fixed point as well as coincidence point

of the mappings S and T.

Definition 1.1.17. Let (X, d) be a metric space.

Let T : X → X and let p ∈ N, then T is said to generalized

p-contractive if

d(T px, T py) < diam{x, y, T px, T py} ∀x, y ∈ X, x 6= y.

Definition 1.1.18. A contraction T is called power contraction

if T k is a contraction mapping for some integer k > 1.

7



1.2 Historical Developments of Some Fixed

Point Theorems in Metric Space

Historically, the most important result in the fixed point the-

orem is due to L. E. J. Brouwer which asserts that every self

continuous mapping of a closed unit ball in Rn, the n - dimen-

sional Euclidean Space, possess a fixed point. A particular case

of Brouwer’s theorem can be stated as follows:

Theorem 1.2.1. The closed unit interval [0, 1] on the real line

posses a fixed point property, i.e each continuous mapping of

[0, 1] into itself has a fixed point.

The application of topological theorems to analysis, involves

infinite dimensional space of functions or sequences. The usual

procedure is to extend a theorem from finite dimensional space

to an infinite dimensional space. The infinite dimensional ana-

logue of Brouwer’s result was given by J. Schauder [145] in 1930.

Theorem 1.2.2. Any compact convex nonempty subset of a

normed linear space has the fixed point property for continuous

mapping.

Brouwer’s and Schauder’s fixed point theorems are funda-

mental theorems in the area of fixed point theory and its ap-

plications. Schauder’s theorem is of great importance in the

numerical treatment of equations in analysis. In 1935, A. N.

Tychnoff extended Brouwer’s result to a compact convex subset

of a locally convex linear topological space.

Theorem 1.2.3. Any compact convex nonempty subset of a lo-

cally convex Hausdorff real topological vector space has the fixed

point property for continuous mapping.

8



Perhaps the most frequently cited and most widely applied

fixed point theorem is due to S. Banach which appeared in his

Ph.D. thesis(1920, published in 1922)

Theorem 1.2.4. Let (X, d) be complete metric space and

T : X → X be a mapping such that d(Tx, Ty) ≤ kd(x, y) for

some 0 ≤ k < 1 and all x, y ∈ X. Then, T has a unique fixed

point in X. Moreover, for any x0 ∈ X, the sequence of iterates

x0, Tx0, T (Tx0), . . . converges to the fixed point of T .

when d(Tx, Ty) ≤ kd(x, y) for some 0 ≤ k < 1 and for all

x, y ∈ X, then T is called a contraction. A contraction shrinks

distances by a uniform factor k less then 1 for all pairs of points.

The above theorem is called the contraction mapping theorem

or Banach’s fixed point theorem. An elementary account of the

contraction mapping theorem and some applications, including

its role in solving non linear ordinary differential equations, is

in [21].

Banach contraction principle is simple in nature and its proof

does not involve much of topological machinery. The proof is

constructive, that is, the existence of the fixed point is estab-

lished by constructing the point as the limit of the sequence of

the iterates tending to the fixed point. The construction of the

sequence {xn} and the study of its convergence are known as

the method of successive approximation.

The following is the example of Banach Contraction Princi-

ple.

Example 1.2.5. The cosine function defined as T (x) = cosx

9



is a contraction function and has a fixed point.

Let (X, d) be a metric space with d as usual metric. Let

X = [0, 1] and define a function T : X → X by T (x) = cosx.

The graph of cosx and y = x intersect once over [0, 1], which

shows that cosine function has a fixed point in [0, 1].

Since, cos1 ≈ 0.54, cos[0, 1] ⊂ [0, 1].

For any differentiable function T , by mean value theorem,

T (x)− T (y) = T ′(t)(x− y)forsome t ∈ (x, y).

Now, cosx− cosy = −Sin(t).(x− y) for some t.

⇒ |cosx− cosy| = |−sint||x− y|.
Since, sine function increases on [0, 1],so |sint| ≤ sin1 ≈ 0.84147.

So, |cosx− cosy| ≤ 0.8415|x− y|.
Therefore, cosine is a contraction mapping on [0, 1]. To get fixed

point by iteration, we press cosine bottom repeatedly on a calcu-

lator taking any seed value in [0, 1], and we get p ≈ 0.739, as a

fixed point.

Banach contraction mapping theorem has long been used as

one of the most important tools in the study of nonlinear prob-

lems. It provides an impressive illustration of the unifying power

of functional analysis in an analytic method and of the useful-

ness of fixed point theorems in analysis. Therefore, numerous

generalizations of this theorem have been obtained during the

past four decades by weakening its hypothesis while retaining

the convergence property of successive iterates to the unique

fixed point of the mapping. The importance of these general-

izations are notions of non expansive and contractive mappings.

10



Another important direction of generalization of this principle

concerns the common fixed point of pair of mappings or sequence

of mappings satisfying contractive type conditions.

One of the most interesting generalizations of the Banach

Contraction Principle consists of replacing the Lipschitz con-

stant k by some real valued function whose values are less than

unity.

One of the first extension of Banach’s contraction principle to

become widely known is the following theorem due to E. Rakoth

[132] in 1962.

Theorem 1.2.6. Let (X, d) be a complete metric space and

suppose T : X → X satisfies

d(Tx, Ty) ≤ α(d(x, y)).d(x, y) ∀x, y ∈ X

where α : [0,∞)→ [0,∞) is monotonically decreasing. Then, T

has a unique fixed point z, and for all x0 ∈ X we have,

T nx0 → z as n→∞.

Rakoth’s theorem is related to the following theorem by

M. Edelstein [35] in 1962

Theorem 1.2.7. Let (X, d) be a non empty compact metric

space and suppose T : X → X satisfies

d(Tx, Ty) < d(x, y) ∀x, y ∈ X

Then T has a unique fixed point z, and for all x0 ∈ X we have

T nx0 → z as n→∞.

D. F. Baily [9] in 1966, extended the result of Edelstein to

compact metric space in the following theorem.

11



Theorem 1.2.8. Let (X, d) be a compact metric space and

T : X → X be continuous. If there exists n = n(x,y) with

d(T nx, T ny) < d(x, y)

for x 6= y, then T has a unique fixed point.

A subsequent generalization of Rakotch’s result was obtained

by D. W. Boyd and J. S. Wong [13] in 1969.

Theorem 1.2.9. Let (X, d) be a non empty complete metric

space and suppose T : X → X satisfies

d(Tx, Ty) ≤ φ(d(x, y)) ∀x, y ∈ X

where φ : [0,∞) → [0,∞) is uppersemicontinuous from the

right, and satisfies 0 ≤ φ(t) < t for t > 0. Then T has a

unique fixed point z and for all x0 ∈ X we have T nx0 → z as

n→∞.

A quantitative variant of the Boyd - Wong [13] theorem was

proved by F. E. Browder [19].

Theorem 1.2.10. Let (X, d) be a non empty, bounded, complete

metric space and suppose T : X → X satisfies

d(Tx, Ty) ≤ φ(d(x, y)) ∀x, y ∈ X,

where φ : [0,∞) → [0,∞) is monotone nondecreasing and con-

tinuous from the right, such that φ(t) < t for t > 0. Then

there exists a unique z ∈ X such that for all x0 ∈ X we have

T n(x0)→ z as n→∞. Moreover, if d0 is diameter of X, then,

d(T nx0, z) ≤ φnd0, and φnd0 → 0 as n→∞.
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In 1969, A. Meir and E. Keeler [97] generalized the Boyd-

Wong Theorem.

Theorem 1.2.11. Let (X, d) be a non empty, complete metric

space and suppose T: X → X satisfies the condition,

given ε > 0 there exists δ(ε) > 0 such that for all x, y ∈ X with

x 6= y,

ε ≤ d(x, y) < ε+ δ ⇒ d(Tx, Ty) < ε. (1.1)

Then, T has a unique fixed point z, and for all x0 ∈ X, we have

T nx0 → z as n→∞.

A mapping T: X→ X on a metric space (X, d) which satisfies

the condition (1.1) is called a Meir - Keeler contraction. In

order to compare the Boyd - Wong condition with Meir- Keeler

condition, the latter has been characterized by T. C. Lim [90]

in the following theorem.

Theorem 1.2.12. Let (X, d) be a non empty metric space, and

let T: X → X be a mapping. Then, T is a Meir-Keeler con-

traction if and only if there exists a (nondecreasing and right

continuous) function φ : [0,∞) → [0,∞) with φ(0) = 0 and

φ(s) > 0 for s > 0, such that

d(Tx, Ty) < φ(d(x, y)), x 6= y, ∀x, y ∈ X,

and such that for every s > 0 there exists a δ > 0 such that

φ(t) ≤ s for all t ∈ [s, s+ δ].

The theorems due to Boyd and Wong [13] and Meir -Keeler

[97] are the results of considerable significance and each of these

theorems has been extended and generalized by various authors.

Some significant generalizations of Boyd and Wong theorem are
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due to Park and Rhoades[126], Singh and Kasahara[151],

Hussain and Seghal [52], Singh and Meade [153], Jachymski

[55], Pant[116] , Pant and Pant [112], Pant et.al.[108]. Similarly

some of the well known generalations of Meir-Keeler theorem are

those due to Park and Bae [125], Park and Rhoades [126], Rao

and Rao [135], Jungck [75], Pant [[109],[114],[116],[117],[119]],

Jungck et.al. [74], Pant et.al.[[101],[105],[108]]

The fixed point theory for non expansive mappings has been

one of the main research areas of non linear functional analysis

since 1950s. Some well known results in the theory of nonex-

pansive mappings are probably the theorems established inde-

pendently by Browder [18], Gohde [46] and Kirk [82].

In 1968, R. Kannan [78] established the following fixed point

theorem.

Theorem 1.2.13. Let (X, d) be a non empty complete metric

space. Let T : X → X be a mapping such that there exists an

α ∈ [0, 1
2) for which

d(Tx, Ty) ≤ α[d(x, Tx) + d(y, Ty) ∀x, y ∈ X

then there exists a unique fixed point to which all Picard iteration

sequences converge.

In 1973, G. E. Hardy and T. D. Roggers [47] obtained the

following fixed point theorem under the generalized contractive

condition.

Theorem 1.2.14. Let T be a self mapping on a complete metric

space X such that,

d(Tx, Ty) ≤ a[d(x, Tx)+d(y, Ty)]+b[d(x, Ty)+d(y, Tx)]+c d(x, y)
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for all x, y in X where 0 ≤ 2a+2b+ c < 1. Then T has a unique

fixed point.

In 1975, B. K. Dass and S. Gupta[32] generalized Banach

Contraction Mapping Theorem through rational expressions.

Theorem 1.2.15. Let T be a mapping of a metric space X into

itself such that,

1. d(Tx, Ty) ≤ αd(y,Ty)[1+d(x,Tx)]
1+d(x,y) + β d(x, y)

for all x, y ∈ X, α > 0, β > 0, α + β < 1

2. for some x0∈ X, the sequence of iterates {Tn(x0)} has a

subsequence {T nk(xo)} with ξ = limn→∞ T
nk(xo) then ξ

is a unique fixed point of T.

In 1977, D. S. Jaggi [57] established the following fixed point

theorem using rational type contractive condition in complete

metric space which generalizes the Banach Contraction Mapping

Theorem..

Theorem 1.2.16. Let T be a continuous self map defined on a

complete metric space (X, d). Further let T satisfies the follow-

ing contractive conditions

d(Tx, Ty) ≤ α
d(x, Tx).d(y, Ty)

d(x, y)
+ βd(x, y) (1.2)

for all x, y ∈ X, x 6= y for some α, β ∈ [0, 1) with α + β < 1,

then T has a unique fixed point.

In 1977, B.E. Rhoades [140] proved the following fixed point

theorem based on generalized p-contraction.
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Theorem 1.2.17. Let (X, d) be a non empty compact metric

space, and p ∈ N. Let T : X → X be continuous and generalized

p-contractive. Then, T has a unique fixed point z, and for every

x0 ∈ X we have, limn→∞ T
nx0 = z.

In 1980, S. P. Singh [152] established the following improved

version of the Kannan’s theorem.

Theorem 1.2.18. Let T be a continuous mapping of a metric

space X into itself such that

d(Tx, Ty) <
1

2
[d(x, Tx) + d(y, Ty)]

for all x, y ∈ X, x 6= y, If for some x ∈ X, the sequence of

iterates{T nx} has a subsequence converging to z, then {T nx}
converges to z and z is the unique fixed point of T.

In 1988, B. E. Rhoades [138] compared some contraction con-

ditions and also considered generalizations of their conditions to

the cases where the condition holds for various iterates of the

functions. The comparison was shown by P. Collaco and J. Car-

valho in [30] in 1997.

Now, we present some common fixed point theorems in met-

ric space.

In 1976, G. Jungck [76] obtained a well known generalization

of Banach contraction principle to obtain common fixed points

of commuting mappings. Jungck introduced the following con-

tractive condition so called Jungck Contraction

d(Sx, Sy) ≤ kd(Tx, Ty),

16



0 ≤ k < 1 for all x, y ∈ X for a pair of self maps S and T in a

complete metric space X and established the following theorem.

Theorem 1.2.19. Let S, T : X → X be a pair of commuting

continuous self maps satisfying the condition,

d(Sx, Sy) ≤ k d(Tx, Ty), 0 ≤ k < 1.

then S and T have a unique common fixed point whenever

S(X) ⊂ T (X).

In 1983, B. Fisher [40] established a common fixed point the-

orem for four self mappings A, B, S and T

in a metric space (X, d) satisfying

A(X) ⊂ T (X), B(X) ⊂ S(X)

and the condition,

d(Ax,By) ≤ kmax{d(Sx, Ty), d(Ax, Sx), d(By, Ty)}, 0 ≤ k < 1.

then A,B,S and T have a common fixed point. In 1984, B.E.

Rhoades extended a theorem of Park and Rhoades [126] involv-

ing a pair of mapping satisfying a Meir-Keeler type contractive

condition for three mappings.

Theorem 1.2.20. Let f be a continuous self-map of a complete

metric space (X, d), g, h ∈ Cf the class of continuous and sat-

isfying the following condition,

For each ε > 0 there exists a δ > 0 such that

ε ≤ max(d(gx, hy), d(fx, gx), d(fy, hy),

[d(fx, hy) + d(fy, gx)]

2
) < ε+ δ
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implies d(fx, fy) < ε. Then, either there exists a point of co-

incidence of f and g or f and h, or f, g and h have a unique

common fixed point.

In 1984, A. Ganguli and in 1985, I.H.M. Rao and K.P.R.Rao

[135] extended Meir - Keeler type definitions for three mappings.

In 1986, G. Jungck [75] obtained the following fixed point the-

orem for four continuous mappings on a compact metric space.

Theorem 1.2.21. Let A, B, S and T be continuous self map-

pings of a compact metric space (X, d) with

A(X) ⊂ T (X) and B(X) ⊂ S(X).

If A, B, S and T be compatible pairs and

d(Ax,By) < max(m(x, y))

where,

m(x, y) = {d(Sx, Ty), d(Ax, Sx), d(By, Ty),

,
1

2
[d(By, Sx) + d(Ax, Ty)]}

Then, A, B, S and T have a unique common fixed point.

In 1986, R.P. Pant [119] simultaneously and independently es-

tablished following common fixed point theorem satisfying Meir

- Keeler type contractive condition with δ to be non decreasing.

Theorem 1.2.22. Let A, B, S and T be commuting self mapping

of a complete metric space (X, d) satisfying

A(X) ⊂ T (X) and B(X) ⊂ S(X) and the condition

given ε > 0, there exists a δ(ε) > 0, δ(ε) being non decreasing
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such that

ε ≤ max(d(Sx, Ty), d(Ax, Sx), d(By, Ty)) < ε+ δ

⇒ d(Ax,By) < ε

If one of the mappings A, B, S and T is continuous, then A, B,

S and T have a unique common fixed point.

Also, J. Jachymski [54], K. Jha and V. pant [65], V. Popa

[131], K.Jha [68], K. Jha, R. P. Pant and S. L. Singh [69], K.

Jha, R. P. Pant and G.Porru [70], K. Jha [72] have established

some common fixed point theorems for four mappings satisfy-

ing Meir-Keeler type contractive condition. Also, the common

fixed points for four mappings satisfying contractive condition

were extended for sequences of mappings by Jungck et.al [74],

J. Jachymski [54], R. P. Pant [116].

In 2007, K. Jha [72] established the following fixed point the-

orem for sequence of mappings involving two pairs of weakly

compatible mappings under a Lipschitz type contractive condi-

tion.

Let {Ai}, i = 1, 2, 3, ..., S and T be self mappings of a

metric space (X, d). In the sequel, let us denote

M1i(x, y) = max{(.Sx, Ty), d(A1x, Sx), d(Aiy, Ty),

,
1

2
[d(Sx,Aiy) + d(A1x, Ty)]}

Theorem 1.2.23. Let {Ai}, i = 1, 2, 3, ..., S and T be

self mappings of a metric space (X, d) such that,

1. A1X ⊂ TX,AiX ⊂ SX for i > 1
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2. Given ε > 0, there exists a δ > 0 such that for all x, y in

X, ε < M12(x, y) < ε+ δ ⇒ d(A1x,A2y) ≤ ε,

3.

d(A1x,Aiy) < α[d(Sx, Ty) + d(A1x, Sx) + d(Aiy, Ty)

+ d(Sx,Aiy) + d(Aix, Ty)]

for 0 ≤ α ≤ 1
3.

If one of AiX, SX, or TX is a complete subspace of X and

if the pairs (A1, S) and (Ak, T ), for some k > 1, are weakly

compatible, then all the Ai, S and T have a unique common

fixed point.

As fixed point theorems are statements containing sufficient

conditions that ensure existence of a fixed point, so one of the

central concerns in fixed point theory is to find a minimal set

of sufficient conditions which ensures the existence of a common

fixed point. Also common fixed point for generalized contrac-

tions necessarily require a commutativity condition, a condition

on the range of mappings, a contractive condition, and conti-

nuity of one or more mappings or in general, a Lipschitz type

contractive condition. In view of these essential requirements, in

the present investigation, we address the following central ques-

tion concerning common fixed point theorems.

Given a pair of self mappings on a metric space (X, d) satisfy-

ing a contractive condition, what minimal assumption on com-

mutativity, continuity and contractive condition guarantee the

existence of a common fixed point ? Following this course, re-

cently R. P. Pant [115] has established some common fixed point
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theorems under minimal type conditions. Also, the review work

on the fixed point results under Meir-Keeler contractive condi-

tion in metric space has been published in [64].

1.3 Some Applications of Fixed Point

Theorems

John Von in 1932, pointed out how fixed point theory could be

utilized to prove the existence of equilibrium in economic models

in a seminar on the topic On a system of economic equations and

a generalization of Brouwer’s fixed point theorem. This concept

has lead to win Nobel Prizes in economics for Kenneth Arrow

in 1972 and Gerard Debreu in 1983. Applications of fixed point

to Game theory also led to win a Nobel Prize in economics for

John Nash in 1994 [4].

The theory of fixed point is a very extensive field which has

wide applications. Fixed point theory has played a central role

in the problems of non-linear functional analysis and provided

a power tool in demonstrating the existence and uniqueness of

solutions to various mathematical models representing phenom-

ena arising in different fields such as in Engineering, Economics ,

Game Theory and Nash Equilibrium, Steady State Temperature

Distribution, Epidemics, Flow of Fluids, Chemical Reactions,

Neutron Transport Theory, Haar Measures, Abstract Elliptic

Problems, Invariant Subspace Problems, Approximation Prob-

lems, Logic Programming, Neural Networks.
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Banach’s fixed point theorem has applications in many branches

of mathematics such as analysis, differential functions, ODE and

integral equations, Image compression, Google’s pagerank algo-

rithem, Newton- Rapshon iteration, system of linear algebraic

equations, system of ordinary differential equations, Boundary

value problems, Uryshon-Voltera equations, Musielak-Orlicz space

settings,quasi-linear integrodifferential equations and Chomol-

ogy. The paper of K. Jha [58] deals with some applications of

Banach fixed point theorem.
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Chapter 2

Fixed Point Results of

Asymptotic Contractions

This chapter includes introduction, basic definitions and chrono-

logical developments of the fixed point theorems of asymptotic

contractions in metric space with further research scope.

2.1 Introduction

After the establishment of Contraction Principle by Stephen

Banach in 1922, R. Caccioppli in 1930, suggested the concept of

asymptotic contraction based on Banach Contraction Principle.

In 1962, E. Rakotch, probably, was the first for the extension of

weaker form of Banach Contraction Principle for the contraction

constant. In 1962, D. W. Boyd and J. S. W. Wong obtained a

more general condition. In 2003, W. A. Kirk introduced an

asymptotic version of Boyd - Wong Contraction. Since then,

many extensions of weaker forms of contraction conditions for

fixed points have been established by many authors. Asymptotic

fixed point theory deals with conditions describing a behavior

of iterates of a mapping. This chapter includes a survey work
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on fixed points of asymptotic contraction in metric space. In

this chapter, the notations φn and φn are used to denote the n

times iteration of the function φ and the sequence of function

respectively.

The paper on this survey work has been accepted for publi-

cation in [122].

Now we start with the following definitions:

Definition 2.1.1. [159] A metric space (X, d) satisfies the con-

dition of TCS- convergence if and only if x ∈ X and

d(T nx, T n+1x) → 0 as n → ∞ implies that { T nx}n∈N has a

convergent subsequence.

Definition 2.1.2. [159] Let X be a set and T : X → X.For

x ∈ X, the set OT (x) = { x, Tx, T 2x, ...} is called the orbit of x.

Definition 2.1.3. [159] A function f : X → R is T-orbitally

lower semicontinuous at the point p if and only if for all se-

quences { xn}n∈N such that xn → p follows that

f(p) ≤ liminfn→∞f(xn).

Definition 2.1.4. [159] A mapping T : X → X is said to be

orbitally continuous if ξ, x ∈ X are such that ξ is a cluster point

of OT then T (ξ) is a cluster point of T (OT ).

Definition 2.1.5. [84] Let (X, d) be a metric space. A mapping

T : X → X is said to be asymptotic contraction if,

d(T nx, T ny) ≤ φn(d(x, y)) for all x, y ∈ X where

φn : [0,∞)→ [0,∞) and φn → φ ∈ Φ (2.1)

uniformly on the range of d, where Φ is the class of functions.
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Now, we give an example satisfying the above condition.

Example 2.1.6. Let M = {n−1 ∪ {0} : n ∈ N} and d(M,d)

be a metric space with usual metric d. Define T : M → M by

T (0) = 0 and T (n)−1 = (n+ 1)−1. For t ∈ R, define

φn(t) = n−1 ∀n ∈ N and φ(t) = 0 ∀t.
Clearly φ(t) < t ∀t > 0 and φn → φ uniformly on M.

Put x0 = 1 then OT (1) = {1−1, 2−1, 3−1, ...} = {n−1} which is

bounded. Since, all the assumptions are satisfied and T k(x)→ 0

as k →∞. Hence, 0 is the fixed point of T .

In 2004, Philipp Gerhardy [44] gave the following generalized

definition of asymptotic contraction.

Definition 2.1.7. [44] A function T : X → X on a metric space

(X, d)is called an asymptotic contraction if for each b > 0, there

exists a moduli ηb : (0, b] → (0, 1) and βb : (0, b] × (0,∞) → N
and the following hold :

1. there exists a sequence of functions φn : (0,∞) → (0,∞)

such that for all x, y ∈ X, for all ε > 0 and for all n ∈ N
b ≥ d(x, y) ≥ ε→ d(T nx, T ny) ≤ φn(ε).d(x, y)

2. for each 0 < l ≤ b the function βbl := βb(l, .) is a modulus

of uniformconvergence for φn on [l, b], i.e.,

∀ε > 0 ∀s ∈ [l, b] ∀m,n ≥ βbl (ε)(|φm(s) − φn(s)| ≤ ε),

and

3. defining φ := limn→∞φn, then for each ε > 0 we have that

ηb(ε) > 0 and φ(s) + ηb(ε) ≤ s for each s ∈ [ε, b].
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where there is no ambiguity, superscript b from the moduli

ηb, βb are removed.

Definition 2.1.8. [90] A function φ from [0,∞) into itself is

called an L-function if φ(0) = 0, φ(s) > 0 for s ∈ (0,∞), and

for every s ∈ (0,∞) there exists δ > 0 such that φ(t) ≤ s for all

t ∈ [s, s+ δ]

Definition 2.1.9. [157] Let (X, d) be a metric space. Then,

a mapping T on X is said to be an asymptotic contraction of

Meir-Keeler type (ACMK, for short) if there exists a sequence

{φn} of functions from [0,∞) into itself satisfying the following:

1. limsupn φn(ε) ≤ ε for all ε ≥ 0,

2. For each ε > 0, there exists δ > 0 and ν ∈ N such that

φν ≤ ε for all t ∈ [ε, ε+ δ], and

3. d(T nx, T ny) < φn(d(x, y)) for all n ∈ N and x, y ∈ X with

x 6= y.

Definition 2.1.10. [158] Let (X, d) be a metric space. Then, a

mapping T on X is said to be an asymptotic contraction of final

type (ACF, for short) if the following hold:

1. limδ→+0sup{limn→∞sup d(T nx, T ny : d(x, y)) < δ} = 0

2. for each ε > 0 there exists δ > 0 such that for all x, y ∈ X
with ε < d(x, y) < ε + δ, there exists ν ∈ N such that

d(T νx, T νy) ≤ ε,

3. for x, y ∈ X, with x 6= y,there exits ν ∈ N such that

d(T νx, T νy) < d(x, y), and
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4. for x ∈ X and ε > 0, there exists δ > 0 and ν ∈ N such

that

ε < d(T ix, T jx) < ε + δ implies d(T ν ◦ T ix, T ν ◦ T jx) ≤ ε

for all i, j ∈ N.

Definition 2.1.11. [24] Let Ψ be the class of functions

ψ : [0,∞)→ [0,∞) with the properties

(i) ψ is the Lebesque - integrable on each interval [0, a) with

a > 0

(ii)
∫ ε

0 ψ(t) > 0 for each ε > 0.

Let (X, d) be a metric space. Then, a mapping T on X is said

to be an asymptotic contraction of integral Meir - Keeler type

(ACIMK, for sort) if there exists a sequence {φn} of functions

from [0,∞) into itself satisfying the following

1. limsupn→∞φn(ε) ≤ ε for all ε > 0,

2. for each ε > 0 there exists a δ > 0 and s ∈ N such that

φs(t) ≤ ε for all t ∈ [ε, ε+ δ], and

3.
∫ d(Tnx,Tny)

0 ψ(t)dt < φn(
∫ d(x,y)

0 ψ(t)dt) for all n ∈ N and

x, y ∈ X with x 6= y where ψ ∈ Ψ.

2.2 Fixed Point Theorems Under Asymptotic

Contractions

In 1962, E. Rakotch obtained the following fixed point theorem.

Theorem 2.2.1. [132] Let X be a complete metric space and

suppose T : X → X satisfies d(T (x), T (y)) ≤ α(d(x, y))d(x, y)
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for each x, y ∈ X where α : [0,∞)→ [0, 1) is monotonically de-

creasing then T has a unique fixed point x∗ and {T nx} converges

to x∗ for each x ∈ X.

In 1969, Boyd and Wong established a more general result on

contraction mapping theorem in metric space which states that

Theorem 2.2.2. [13] Let (X, d) be a complete metric space. Let

T : X → X be a function satisfying d(Tx, Ty) ≤ φ(d(x, y)) for

each x, y ∈ X where φ : [0,∞) → [0,∞) such that φ(t) < t for

all t > 0 and φ is upper semicontinuous from the right, then T

has a unique fixed point x∗ for each x ∈ X and {T nx} converges

to x∗ for each x ∈ X.

In this theorem it is assumed that φ : [0,∞)→ [0,∞) is up-

per semicontinuous from the right

(i.e rj ↓ r ≥ 0⇒ limsupn→∞φ(rj) ≤ φ(r)).

In 1986, M. R. Taskovic established the following results in

topological space.

Theorem 2.2.3. [159] Let T be a mapping of topological space

X:= (X, d) into itself, where X satisfies the condition of TCS-

convergence. Suppose that there exists a sequence of nonnega-

tive real functions { αn(x, y)}n∈N such that αn(x, y) → 0 and a

positive integer m(x, y) such that

d(T nx, T ny) ≤ αn(x, y) forall n ≥ m(x, y) (2.2)

and for all x, y ∈ X where d : X ×X → R0
+. If x 7→ d(x, Tx) is

a T-orbitally continuous and d(a, b) = 0 implies a = b, then T

has a unique fixed point ξ ∈ X and T nx→ ξ for each x ∈ X.
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As a localization of condition (2.2) of Theorem (2.2.3), we

have the following theorem.

Theorem 2.2.4. [159] Let T be a mapping of topological space

X:= (X, d) into itself, where X satisfies the condition of TCS-

convergence. Suppose that there exists a sequence of nonnegative

real functions { αn(x, y)}n∈N such that αn(x, Tx) → 0 and a

positive integer m(x) such that

d(T nx, T n+1y) ≤ αn(x, Tx) forall n ≥ m(x)

and for every x ∈ X where d : X×X → R0
+. If x 7→ d(x, Tx) is

a T-orbitally lower semicontinuous or T is orbitally continuous

and d(a, b) = 0 implies a = b, then T has at least one fixed point

in X.

In 2003, W.A. Kirk obtained a result which is asymptotic

version of the Boyd and Wong.The concept of asymptotic con-

tractions is suggested by one of the earliest version of Banach’s

contraction principle attributed to Cacciopoli [22] whose result

asserts that if X is a complete metric space then the Picard it-

erates of a mapping T : X → X converges to the unique fixed

point of T provided for each n ≥ 1 there exits a constant cn such

that,

d(T nx, T ny) ≤ cnd(x, y) x, y ∈ X with
∞∑
n=1

cn <∞ (2.3)

Theorem 2.2.5. [84] Let (X, d)is a complete metric space and

suppose T : X → X is an asymptotic contraction for which the

mappings φn in (2.1) are continuous. Assume also that some

orbit of T is bounded. Then T has a unique fixed point z ∈ X
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and moreover the Picard sequence {T nx}∞n=1 converges to z for

some x ∈ X.

In 2004, Jacek Jachymski and Izabela Jozwik [56] extended

and gave a constructive proof of Kirk obtaining a complete

characterization of asymptotic contraction on a compact metric

space. As a by-product, they have established a separation the-

orem for upper semicontinuous functions satisfying some limit

conditions with suitable example.

Theorem 2.2.6. [56] Asume that (X, d) is complete metric

space and T is a continuous selfmap of X. Then, the following

statements are equivalent:

1. T is an asymptotic contraction;

2. the core Y := ∩n∈NT n(X) is a sigleton;

3. T is an asymptotic φ0 contraction, where φ0(t) := 0 for all

t ∈ R+, and

4. T is a Banach contraction under some metric equivalent to

d.

In 2004, Y-Z Chen proved the theorem of Kirk under weaker

assumptions without the use of ultrafilter methods. Kirk’s paper

assumes the continuity for φ and all φn, but Chen assumes the

upper semicontinuity of φ and one of the φn
′s which is weaker

condition.

Theorem 2.2.7. [26] Suppose that (X, d) is a complete metric

space and suppose T : X → X such that,

d(T nx, T ny) ≤ φn(d(x, y)) for all x, y ∈ X,

where φn : [0,∞)→ [0,∞)
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and φn → φ uniformly on any bounded interval [0, b]. Suppose

that φ is an upper semicontinuous and φ(t) < t for t > 0. Fur-

thermore, suppose there exists a positive integer n∗ such that φn∗
is upper semicontinuous and φn∗(0) = 0. If there exists x0 ∈ X
which has a bounded orbit OT (x0) = {x0, Tx0, T

2x0, ...} then T

has a unique fixed point x∗ ∈ X such that

limn→∞T
nx = x∗ ∀x ∈ X.

In 2004, Philipp Gerhardy [44] using techniques from proof

mining [proof mining [15] refers to the logical analysis of given

mathematical proofs with the help of the tools and insights from

the part of mathematical logic known as proof theory, with the

aim of obtaining relevant information hidden in the proofs.], de-

veloped a variant of the notion of asymptotic contraction and es-

tablished a quantitative version of the corresponding fixed point

theorem. Using techniques from proof mining as developed in

[[85],[86]], he first derived a suitable generalization of the no-

tion of asymptotic contractivity and subsequently established

an elementary proof of Kirk’s fixed point theorem, providing

an explicit rate of convergence (to the unique fixed point) for

sequences {T nx}.
In 2006, T. Suzuki [157] introduced the notion of asymp-

totic contraction of Meir-Keeler type and established a fixed

point theorem for such contractions which is generalization of

fixed point theorems of Meir-Keleer [97] and Kirk [84]. Suzuki

has used the characterization of Meir- Keeler contraction (1.1)

proved by Lim [90].

Theorem 2.2.8. [157] Let (X, d) be a complete metric space.

Let T be an asymptotic contraction of Meir-Keeler (ACMK,
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for short) on X. Assume that T k is continuous for some k ∈
N. Then, there exists a unique fixed-point z ∈ X. Moreover,

limnT
nx = z for all x ∈ X

In 2007, T. Suzuki introduced a more generalized notion of

asymptotic contraction of final type (ACF,for short) and estab-

lished fixed point theorems for such contractions.

Theorem 2.2.9. [158] Let T be an ACMK on a metric space

(X, d) Then T is an ACF.

Theorem 2.2.10. [158] Let (X, d) be a complete metric space

and let T be an ACF on X. Assume that the following holds

if u ∈ X and limnT
nu = v, then ∃ ` ∈ N such that T `v = v.

Then there exists a unique fixed point z ∈ X of T. Moreover,

limnT
nx = z holds for every x ∈ X.

Theorem 2.2.11. [158] Let (X, d) be a complete metric space

and let T be an ACF on X. Assume that T ` is continuous for

some ` ∈ N. Then, there exists a unique fixed point z ∈ X of T.

Moreover, limnT
nx = z holds for every x ∈ X.

In 2007, Marina Arav, Fransisco Eduardo Castillo Santos,

Simeon Reich, and Alexander J. Zaslavski provided sufficient

condition for the iterates of an asymptotic contraction on a com-

plete metric space X to converge to its unique fixed point uni-

formly on each bounded subset of X. They improved the theorem

of Chen [26] and have established a more general result.

Theorem 2.2.12. [8] Let X be a metric space. Let x∗ ∈ X

be a fixed point of T : X → X. Assume that d(T nx, x∗) ≤
φn(d(x, x∗)) ∀x ∈ X and all natural numbers n,
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where φn : [0,∞) → [0,∞) and φn → φ uniformly on any

bounded interval [0, b]. Suppose that φ is an upper semicon-

tinuous and φ(t) < t for t > 0, then limn→∞T
nx = x∗ uniformly

on each bounded subset of X.

Theorem 2.2.13. [8] let X be a metric space. Let T : X → X

such that

d(T nx, T ny) ≤ φn(d(x, y))

for all x, y ∈ X and all the natural numbers n, where

φn : [0,∞) → [0,∞) and limn→∞ φn = φ, uniformly on any

bounded interval [0, b]. Suppose that φ is upper semicontinuous

and that φ(t) < t for all t > 0. Furthermore, suppose that there

exists a positive integer n∗ such that φn∗ is upper semicontinuous

and φn∗(0) = 0. If there exists x0 ∈ X which has a bounded

orbit OT (x0) = {xo, Txo, T 2xo . . . }, then T has a unique fixed

point x∗ ∈ X and we have limn→∞ T
nx = x∗ uniformly on each

bounded subset of X

In 2007, Ivan D. Arandelovic established a fixed point the-

orem of Kirk’s type unifying and generalizing the results of

[[26],[56], [84]].

Theorem 2.2.14. [7] Let (X,d) be a complete metric space,

T : X → X continuous function and (φi) sequence of functions

such that φi : [0,∞)→ [0,∞) and for each x, y ∈ X
d(T i(x), T i(y) < φi(d(x, y)).

Assume also that there exists upper semicontinuous function

φ : [0,∞)→ [0,∞) such that for any r > 0

φ(r) < r, ψ(0) = 0 and φi → ψ uniformly on any bounded inter-

val [0, b]. If one of the following conditions is satisfying:
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1. there exists x ∈ X such that the orbit of T at x is bounded;

or

2. limt→∞(t− φ(t)) > 0, or;

3. limt→∞
φ(t)
t < 1

then T has a unique fixed point y ∈ X and all sequences of

Picard iterates defined by T converges to y, uniformly on each

bounded subset of X.

In 2007, the results established by E. M. Briseid [16] build on

the analysis of Kirk’s fixed point theorem for asymptotic con-

tractions given by Gerhardy [44]. He had proved fixed point

theorems on asymptotic contractions which give an explicit rate

of convergence to the fixed point for a sequence. The rate of

convergence depends on the space, the mapping and the start-

ing point through a bound on the iteration sequence and some

moduli for the mapping appearing as parameters.

In 2007, K.P.R. Sastry, G.V.R. Babu, S. Ismail and M. Bal-

aiah [144] established a fixed point theorem with hypothesis

slightly different from that of Chen [[26], theorem 2.2].

In 2011, Behazad Djafari Rauhani and Jennifer Love [136]

introduced the weaker condition liminfn→∞d(x, T nx) = 0 for

some x in X, and proved that this condition implies the existence

of a fixed point and the convergence of the Picard iterates to this

fixed point.

Theorem 2.2.15. [136] Let (X, d) be a complete metric space.

Let T : X → X such that d(T nx, T ny) ≤ φn(d(x, y)) for all
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x, y ∈ X where φn : [0,∞) → [0,∞) and φn → φ uniformly

on any bounded interval [0, b]. Suppose that φ is upper semi-

continuous and φ(t) < t for t > 0 and assume that there is a

positive integer n∗ such that φn∗ is upper semicontinuous and

φn∗(0) = 0. If liminfn→∞d(x, T nx) = 0, then T has a unique

fixed point x ∈ X,and limn→∞T
ny = x for all y ∈ X.

In 2012, E. Canzoneri and P. Vetro introduced the notion of

asymptotic contraction of integral Meir-Keeler type on a metric

space and proved a theorem which ensures existence and unique-

ness of fixed points for such contractions.

Theorem 2.2.16. [24] Let (X, d) be a complete metric space

and T be an ACIMK on X. Assume that Tm is continuous for

some m ∈ N. Then there exists a unique fixed point z ∈ X.

Moreover, limn→∞T
nx = z for all x ∈ X.

Remarks: On the basis of the above results, we observe

that weaker forms of contractive conditions for the existence and

uniqueness of fixed point are rapidly being developed. The con-

dition of mappings to be continuous is necessary for the existence

of fixed point but for the convergence to such a fixed point, it is

not necessary. The rate of convergence depends upon the space,

mapping and the starting point through a bound on iteration

sequence. The notion of asymptotic contraction has been devel-

oped towards Boyd- Wong type and Meir -Keeler type conditions

with applications to rate of convergence. Finally, the notion of

Asymptotic Contraction and its development have become a

necessary tool for the existence of fixed point and it extends

several existing results in the literature.

35



Chapter 3

Fixed Point Results in

Dislocated Metric Space

In this chapter, we present the introduction of dislocated metric

space and the fixed point theorems which has been established

in this space with examples.

3.1 Introduction

In 1922, S. Banach proved a fixed point theorem for contrac-

tion mapping in metric space. Since then a number of fixed

point theorems have been proved by different authors and many

generalizations of this notion have been established. In 1986,

S. G. Matthews [96] in his Ph.D. thesis introduced the notion

of dislocated metric in the context of metric domains, in which

self distance of a point need not be equal to zero. In 2000, P.

Hitzler and A. K. Seda generalized the notion of topology by

relaxing the requirement that neighborhoods of a point includes

the point itself and by allowing neighborhoods of points to be

empty which evolved out of applications in the area of logic

programming semantics. Corresponding generalized notion of

36



metric is obtained by allowing points to have nonzero distance

to themselves. The study of common fixed points of mappings in

dislocated metric space satisfying certain contractive conditions

has been the center of vigorous research activities. Dislocated

metric space plays very important role in topology, logic pro-

gramming and electronics engineering.

C. T. Aage and J. N. Salunke [1], A. Isufati [53], K. P. R.

Rao and P. Rangaswamy [134] established some fixed point the-

orems for single and pair of mappings in dislocated metric space.

Now, we start with the following definitions, lemmas and

theorems.

3.2 Basic Definitions

Definition 3.2.1. [49] Let X be a non empty set and let

d : X ×X → [0,∞) be a function satisfying the following

conditions:

1. d(x, y) = d(y, x)

2. d(x, y)= d(y, x) = 0 implies x = y.

3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called dislocated metric(or simply d-metric) on

X.

Definition 3.2.2. [49] A sequence {xn} in a dislocated metric

space (X, d) is called a Cauchy sequence if for given ε > 0, there

corresponds n0 ∈ N such that for all m,n ≥ n0, we have

d(xm, xn) < ε.
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Definition 3.2.3. [49] A sequence in dislocated metric space

converges with respect to d (or in d) if there exists x ∈ X such

that d(xn, x)→ 0 as n→∞.

In this case, x is called limit of {xn} (in d)and we write

xn → x.

Definition 3.2.4. [49] A dislocated metric space (X, d) is called

complete if every Cauchy sequence in it is convergent with respect

to d.

Definition 3.2.5. [49] Let (X, d) be a dislocated metric space.

A mapping T : X → X is called contraction if there exists a

number λ with 0 ≤ λ < 1 such that d(Tx, Ty) ≤ λ d(x, y).

We state the following lemmas without proofs.

Lemma 3.2.6. Let (X, d) be a dislocated metric space. If

T : X → X is a contraction function, then {T n(x0)} is a Cauchy

sequence for each x0 ∈ X.

Lemma 3.2.7. [49] Limits in a dislocated metric space are

unique.

3.3 Fixed Point Theorems in Dislocated

Metric Space

Theorem 3.3.1. [49] Let (X, d) be a complete dislocated metric

space. Let T : X → X be a continuous mapping satisfying

d(Tx, Ty) ≤ λd(x, y), 0 ≤ λ < 1.

Then, T has a unique fixed point.
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In 2008, C. T. Aage and J. N. Salunke established following

fixed point theorems in complete d-metric space.

Theorem 3.3.2. [1] Let (X, d) be a complete dislocated metric

space. Let T : X → X be continuous mapping satisfying,

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty)

+ δ
d(x, Tx)d(y, Ty)

d(x, y)
+ µ

d(x, Tx)d(y, Ty)

d(x, y)

for all x, y ∈ X and α + β + γ + δ + 4µ < 1. Then, T has a

unique fixed point.

Theorem 3.3.3. [1] Let (X, d) be a complete dislocated metric

space. Let S, T : X → X be continuous mappings satisfying,

d(Sx, Ty) ≤ hmax{d(x, y), d(x, Sx), d(y, Ty)}

for all x, y ∈ X and 0 < h < 1 then S and T have unique

common fixed point.

In 2010, K.P.R. Rao and P. Ranga Swamy [134] established

the following theorem for four mappings in d-metric space.

Theorem 3.3.4. [134] Let (X, d) be a complete dislocated met-

ric space. Let A, B, S, T : X→X be continuous mappings satis-

fying,

1. S(X) ⊆ B(X) and T (X) ⊆ A(X) and T(X) or S(X) is

a closed subset of X, and

2. The pairs (S, A) and (T, B) are weakly compatible such

that
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d(Sx, Ty) ≤ hmax { d(Ax,By), d(Ax, Sx), d(By, Ty),

,
d(Ax, Ty) + d(By, Sx)

2
}

for all x, y ∈ X and 0 < h < 1 then the mappings A, B, S and

T have a common fixed point.

Theorem 3.3.5. [133] Let (X, d) be a complete dislocated met-

ric space. Let A, B, S, T : X→X be continuous mappings satis-

fying

1. S(X) ⊆ B(X) and T (X) ⊆ A(X)

2. SA = AS and TB = BT and

3. d(Sx, Ty) ≤ φ(max{ d(Ax,By), d(Ax, Sx), d(By, Ty),

,
d(Ax, Sx)d(By, Ty)

d(Ax,By)
})

for all x, y ∈ X, where φ : R+ → R+ is monotonically non

decreasing and
∑∞

n=1 φ
n(t) <∞ for all t > 0, then

(i) A and S (or) B and T have coincidence point or,

(ii) the pairs (A, S) and (B, T) have a common coincidence

point.

Daffer and Kaneko [31] proved the following fixed point the-

orem in complete metric space.

Theorem 3.3.6. [31] Let (X, d) be a complete metric space.

Let S be a surjective self mapping and T an injective self map of

X which satisfy the conditions that for a number α > 1 we have

d(Sx, Sy) ≥ αd(Tx, Ty) for each x,y ∈ X.
Then, S and T have a unique common fixed point.
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B.E Rhoades [137] extended the Theorem (3.3.6) into com-

patible mappings which is as follows.

Theorem 3.3.7. [137] Let (X, d) be a complete metric space.

Let S and T be compatible self mappings of X satisfying the

condition d(Sx, Sy) ≥ αd(Tx, Ty) for all x, y ∈ X and T (X) j

S(X), S continuous. Then, S and T have a unique common fixed

point.

S. Kumar [88] generalized the theorem for weakly compatible

mappings in metric space. Motivated with above theorems, we

now prove a fixed point theorem for a single pair of weakly

compatible mappings in dislocated metric space.

Theorem 3.3.8. [62] Let (X, d) be a complete dislocated metric

space. Let S, T : X → X be two continuous self mappings such

that

1. T (X) j S(X), the pair (S, T) is weakly compatible maps,

and

2. there exists a number α < 1
2, d(Tx, Ty) ≤ αd(Sx, Sy) ∀

x, y ∈ X,

If one of the subspaces T(X) or S(X) is complete then S and T

have a unique common fixed point.

Proof. Let x0 ∈ X. Using condition (1), choose x1 ∈ X such

that Sx1 = Tx0. We define sequences {xn} and {yn} in X such

that yn = Sxn+1 = Txn. Let S(X) be complete.
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Now, using condition (2), we get

d(yn, yn+1) = d(Txn, Txn+1)

≤ αd(Sxn, Sxn+1)

= αd(Txn−1, Txn)

= αd(yn−1, yn)

Hence, we get

d(yn, yn+1) ≤ αd(yn−1, yn) ≤ α2d(yn−2, yn−1) · · · ≤ αnd(y0, y1)

since α <
1

2
. So, as n→∞, αn → 0

This implies that {yn} is a Cauchy sequence. So, it converges

to some element z ∈ X. So, the subsequences {Sxn+1} → z and

{Txn} → z.

Since S(X) is complete, so there exists a point u ∈ X such

that Su = z. Now, by condition (2), we get

d(Tu, Txn) ≤ αd(Su, Sxn).

Now, taking limit as n → ∞, we get d(Tu, z) ≤ 0. So, this

implies that Tu = z. Hence, Su = Tu = z. Since the pair

(S, T) is weakly compatible, so we have STu = TSu ⇒ Sz =

Tz.

Now, we claim that z is the fixed point of T . For this, by

condition (2), we get

d(Tz, Txn) ≤ αd(Sz, Sxn).

Taking limit as n→∞, we get

d(Tz, z) ≤ αd(Sz, z)

= αd(Tz, z)
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a contradiction. Therefore, we have Tz = z.

Hence, we get Sz = Tz = z. This shows that z is the common

fixed point of the maps S and T .

To prove the uniqueness of fixed point, let u and v be two

common fixed points of the mappings S and T . Then, using

condition (2), we get

d(u, v) = d(Tu, Tv) ≤ αd(Su, Sv)

= αd(u, v),

which is a contradiction. Hence, we get u = v.

This completes the proof of the theorem.

We have the following example in favor of above theorem.

Example 3.3.9. Let X = [0, 1] and let d be defined by

d(x, y) = |x− y| then d is a dislocated metric. Let us define the

mappings S and T by

Sx =
x

2
and Tx =

x

8
.

Then, we can observe that

d(Tx, Ty) ≤ αd(Sx, Sy) for
1

4
< α <

1

2
.

The mappings S and T are weakly compatible at x = 0 and hence

x = 0 is the unique common fixed point of the maps S and T.

Motivated with the theorem in [161], we prove the following

common fixed point theorem for two pairs of weakly compatible

mappings in dislocated metric space.
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Theorem 3.3.10. [60] Let (X, d) be a complete dislocated met-

ric space. Let A,B, S, T : X → X be continuous mappings

satisfying

1. T (X) ⊂ A(X), S(X) ⊂ B(X), and

2. The pairs (S, A) and (T,B) are weakly compatible,

3. d(Sx, Ty) ≤ α d(Ax, Ty) + β d(By, Sx) + γ d(Ax,By)

for all x, y ∈ X where α, β, γ ≥ 0, 0 ≤ α + β + γ < 1
2 .

Then, A, B, S, and T have a unique common fixed point.

Proof. Using condition(1), we define sequences {xn} and {yn}
in X such that

y2n = Bx2n+1 = Sx2n, and

y2n+1 = Ax2n+2 = Tx2n+1, n = 0, 1, 2...

If y2n = y2n+1 for some n, then Bx2n+1 = Tx2n+1.Therefore x2n+1

is a coincidence point of B and T.

Also, if y2n+1 = y2n+2 for some n, then Ax2n+2 = Sx2n+2. Hence

x2n+2 is a coincidence point of S and A.

We assume that y2n 6= y2n+1 for all n. Then, using condition (3)
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we have

d(y2n, y2n+1) = d(Sx2n, Tx2n+1)

≤ αd(Ax2n, Tx2n+1) + βd(Bx2n+1, Sx2n)

+ γd(Ax2n, Bx2n+1)

= αd(y2n−1, y2n+1) + βd(y2n, y2n) + γd(y2n−1, y2n)

≤ α[d(y2n−1, y2n) + d(y2n, y2n+1)]

+ β[d(y2n−1, y2n) + d(y2n, y2n+1)] + γd(y2n−1, y2n)

= (α + β + γ)d(y2n−1, y2n) + (α + β)d(y2n, y2n+1)

So, we have

d(y2n, y2n+1) ≤
α + β + γ

1− α− β
d(y2n−1, y2n)

= h d(y2n−1, y2n)

where h =
α + β + γ

1− α− β
< 1.

This shows that

d(yn, yn+1) ≤ h d(yn−1, yn) ≤ ... ≤ hn d(y0, y1).

For each integer q > 0, we have

d(yn, yn+q) ≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + ...

... ...+ d(yn+q−1, yn+q)

≤ (1 + h+ h2 + ...+ hq−1)d(yn, yn+1)

≤ hn

1− h
d(y0, y1)

Since, 0 < h < 1, so we have hn → 0 as n→∞.

45



So, we get d(yn, yn+q) → 0. This implies {yn} is a Cauchy se-

quence in a complete dislocated metric space. So, there exists a

point z ∈ X such that {yn} → z. Therefore, the subsequences

{Sx2n}, {Bx2n+1}, {Tx2n+1}, and {Ax2n+2}

all converge to z. Since T (X) ⊂ A(X), there exists a point

u ∈ X such that z = Au. So, using condition (3), we get

d(Su, z) = d(Su, Tx2n+1)

≤ αd(Au, Tx2n+1) + βd(Bx2n+1, Su) + γd(Au,Bx2n+1)

= αd(z, Tx2n+1) + βd(Bx2n+1, Su) + γd(z,Bx2n+1)

Now, taking limit as n → ∞, we get

d(Su, z) ≤ βd(z, Su)

which is a contradiction, since 2α + β + 2γ < 1. So, we have

Su = Au = z. Again, since S(X) ⊂ B(X), there exists a point

v ∈ X such that z = Bv. We claim that z = Tv.

If z 6= Tv, then using condition (3), we get

d(z, Tv) = d(Su, Tv)

≤ αd(Au, Tv) + βd(Bv, Su) + γd(Au,Bv)

= αd(z, Tv) + βd(z, z) + γd(z, z)

≤ αd(z, Tv) + 2(β + γ)d(z, Tv)

= (α + 2β + 2γ)d(z, Tv)

a contradiction, since α + 2β + 2γ < 1. So, we get z = Tv.

Hence, we have Su = Au = Tv = Bv = z.

Since the pair (S,A) are weakly compatible so by definition
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SAu = ASu implies Sz = Az.

Now, we show that z is the fixed point of S .

If Sz 6= z , then, using condition (3), we get

d(Sz, z) = d(Sz, Tv)

≤ αd(Az, Tv) + βd(Bv, Sz) + γd(Az,Bv)

= (α + β + γ)d(Sz, z)

which is a contradiction. So, we have Sz = z.

This implies that Az = Sz = z. Again, the pair (T,B) are

weakly compatible, so by definition TBv = BTv implies Tz =

Bz. Now, we show that z is the fixed point of T.

If Tz 6= z, then using condition (3), we get

d(z, Tz) = d(Sz, Tz)

≤ αd(Az, Tz) + βd(Bz, Sz) + γd(Az, Sz)

≤ (α + β + 2γ)d(z, Tz)

which is a contradiction. This implies that z = Tz.

Hence, we have Az = Bz = Sz = Tz = z. This shows that z is

the common fixed point of the self mappings A, B, S and T.

To prove the uniqueness of fixed point, let u 6= v be two

common fixed points of the mappings A, B, S and T . Then

using condition (3), we have

d(u, v) = d(Su, Tv)

≤ αd(Au, Tv) + βd(Bv, Su) + γd(Au,Bv)

= αd(u, v) + βd(v, u) + γd(u, v)

= (α + β + γ)d(u, v).
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a contradiction. This shows that d(u, v) = 0

Since (X, d) is a dislocated metric space, so we have u = v. This

establishes the theorem.

Example 3.3.11. Let X = [0, 1] and let d be defined by

d(x, y) = |x−y| then d is a dislocated metric. Let the mappings

A,B, S and T be defined by

Sx = 0, Ax =
x

2
, Tx =

x

5
and Bx = x.

Then, for some α =
1

5
, β =

1

6
, γ =

1

8
,

the mappings A,B, S, and T satisfy all conditions of above the-

orem . Since, T (X) ⊂ A(X) and S(X) ⊂ B(X). The pairs

(S,A) and (T,B) are weakly compatible at x = 0, since S0 = A0

implies that SA0 = AS0 and T0 = B0 implies that TB0 = BT0.

The contractive condition holds for any two points of X, so x = 0

is the unique common fixed point of mappings A, B, S and T.
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We have following corollaries:

Corollary 3.3.12. Let (X, d) be a complete dislocated metric

space. Let S, T : X → X be continuous mappings satisfying

d(Sx, Ty) ≤ α d(x, Ty) + β d(y, Sx) + γ d(x, y)

for all x, y ∈ X, where α, β, γ ≥ 0, 0 ≤ (α + β + γ) < 1
2 .

Then S and T have a unique common fixed point.

Proof: Let us take A = B = I an identity mapping in the

theorem (3.3.11). The sequences {xn} and {yn} will reduce to

y2n+1 = Tx2n+1 and y2n = Sx2n. Then, following the procedure

as in the theorem, we can show that {yn} is a Cauchy sequence

and hence converges to a point z in X. Consequently, the subse-

quences converge to z. Since T (X) ⊂ X, so there exists a point

u ∈ X such that z = u. Using condition (3) and letting n→∞
we get Su = z, so Sz = z. Similarly, we show that Tz = z. So,

we have Sz = Tz = z. Hence, z is the common fixed point of

the mappings S and T.

To prove the uniqueness of fixed point, let u and v be two

common fixed points of the mappings S and T. Then, we have

d(u, v) = d(Su, Tv) ≤ αd(u, v) + βd(v, u) + γd(u, v)

= (α + β + γ)d(u, v)

a contradiction. Hence, d(u, v) = 0 implies u = v.

If we take S = T, then the above corollary (3.3.12) reduces

to the following result.
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Corollary 3.3.13. Let (X, d) be a complete dislocated metric

space. Let T : X → X be a continuous mapping satisfying,

d(Tx, Ty) ≤ α d(x, Ty) + β d(y, Tx) + γ d(x, y)

for all x, y ∈ X,where α, β, γ ≥ 0, 0 ≤ α + β + γ < 1
2 .

Then T has a unique fixed point.

Proof:

Let {xn} be a sequence in X such that Txn = xn+1. Then, we

have

d(xn, xn+1) = d(Txn−1, Txn)

≤ αd(xn−1, xn+1) + βd(xn, xn) + γd(xn−1, xn)

≤ αd(xn−1, xn) + αd(xn, xn+1) + 2βd(xn, xn−1)

+ γd(xn−1, xn).

This implies

(1− α)d(xn, xn+1) ≤
α + 2β + γ

1− α
d(xn−1, xn),

where h = α+2β+γ
1−α < 1.

So, we get d(xn, xn+1) ≤ h d(xn−1, xn).

Hence, we have

d(xn, xn+1) ≤ hd(xn−1, xn) ≤ h2d(xn−2, xn−1) ≤ · · · ≤ hnd(x0, x1).

Since 0 ≤ h < 1 ,so for n → ∞, we have d(xn, xn+1) → 0.

Hence, the sequence {xn} is a Cauchy sequence in complete met-

ric space. So, there exists a point z ∈ X such that {xn} → z.

Since T is continuous, we have

T (z) = Limn→∞T (xn) = Limn→∞xn+1 = z.
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To prove the uniqueness of fixed point, let u and v are two

fixed points of T. Then, using contractive condition, we get

d(u, v) = d(Tu, Tv)

≤ αd(u, Tv) + βd(v, Tu) + γd(u, v)

= αd(u, v) + βd(v, u) + γd(u, v)

= (α + β + γ)d(u, v)

which is a contradiction, so d(u, v) implies that u = v.

If we take A = T and B = S in Theorem (3.3.11) then it

reduces to the following corollary.

Corollary 3.3.14. Let (X, d) be a complete dislocated metric

space. Let S, T : X → X be continuous mappings satisfying

d(Sx, Ty) ≤ α d(Tx, Ty) + β d(Sy, Sx) + γ d(Tx, Sy)

for all x, y ∈ X,where α, β, γ ≥ 0, 0 ≤ α + β + γ < 1
2 .

Then S and T have a unique common fixed point.

Remarks:

Since, our theorem (3.3.10) gives the common fixed point of

four mappings so it generalizes the results of A. Isufati [53] and

improves the K. Jha and D. Panthi [60], C. T. Aage and J. N.

Salunke [[1], [2]], R. Shrivastava, Z. K. Ansari and M. Sharma

[149], K. P. R. Rao and P. Rangaswamy [134], K. Jha, K. P. R.

Rao and D. Panthi [63] and similar other results of fixed point

in the literature.
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Now, we prove a common fixed point theorem four mappings

in a complete dislocated metric space.

Theorem 3.3.15. [120] Let (X, d) be a complete dislocated

metric space. Let A,B, S, T : X → X be continuous mappings

satisfying,

1. T (X) ⊂ A(X), S(X) ⊂ B(X)

2. The pairs (S, A) and (T, B) are weakly compatible and

3. d(Sx, Ty) ≤ α [d(Ax, Ty) + d(By, Sx)] + β[d(By, Ty) +

d(Ax, Sx)] + γ d(Ax,By)

for all x, y ∈ Xwhere α, β, γ ≥ 0, 0 ≤ α + β + γ < 1
4 .

Then the mappings A, B, S, and T have a unique common

fixed point.

Proof:

Using condition (1), we define sequences {xn} and {yn} in X

such that,

y2n = Bx2n+1 = Sx2n, and y2n+1 = Ax2n+2 = Tx2n+1, n = 0, 1, 2...

If y2n = y2n+1 for some n, then Bx2n+1 = Tx2n+1. Therefore,

x2n+1 is a coincidence point of B and T. Also, if y2n+1 = y2n+2

for some n, then Ax2n+2 = Sx2n+2. Hence, x2n+2 is a coincidence

point of S and A. Assume that y2n 6= y2n+1 for all n. Then using

condition (3), we have
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d(y2n, y2n+1)

= d(Sx2n, Tx2n+1)

≤ α[d(Ax2n, Tx2n+1) + d(Bx2n+1, Sx2n)]

+ β[d(Bx2n+1, Tx2n+1) + d(Ax2n, Sx2n)]

+ γd(Ax2n, Bx2n+1)

≤ α[d(y2n−1, y2n+1)] + d(y2n, y2n)]

+ β[d(y2n, y2n+1) + d(y2n−1, y2n)] + γd(y2n−1, y2n)

≤ α[d(y2n−1, y2n) + d(y2n, y2n+1) + d(y2n−1, y2n)

+ d(y2n, y2n+1)] + β[d(y2n, y2n+1) + d(y2n−1, y2n)]

+ γd(y2n−1, y2n)

= (2α + β + γ)d(y2n−1, y2n) + (2α + β)d(y2n, y2n+1)

Therefore, we get

d(y2n, y2n+1) ≤
2α + β + γ

1− 2α− β
d(y2n−1, y2n)

= h d(y2n−1, y2n),

where,

h =
2α + β + γ

1− 2α− β
< 1.

This shows that

d(yn, yn+1) ≤ h d(yn−1, yn) ≤ ... ≤ hn d(y0, y1).

For every integer q > 0, we have

d(yn, yn+q) ≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + ...

... ...+ d(yn+q−1, yn+q)

≤ (1 + h+ h2 + ...+ hq−1)d(yn, yn+1)

≤ hn

1− h
d(y0, y1).
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Since, 0 < h < 1, so hn → 0 as n→∞.

So, we get d(yn, yn+q)→ 0. This implies {yn} is a Cauchy

sequence in a complete dislocated metric space. So, there exists

a point z ∈ X such that {yn} → z. Therefore, the subsequences

{Sx2n}, {Bx2n+1}, {Tx2n+1} and {Ax2n+2}

all converge to z. Since T (X) ⊂ A(X), there exists a point

u ∈ X such that z = Au. So, using condition (3), we get

d(Su, z) = d(Su, Tx2n+1)

≤ α[d(Au, Tx2n+1) + d(Bx2n+1, Su)]

+ β[d(Bx2n+1, Tx2n+1) + d(Au, Su)]

+ γd(Au,Bx2n+1)

= α[d(z, Tx2n+1) + d(Bx2n+1, Su)] + β[d(z, Su)]

+ γd(z,Bx2n+1).

Now, taking limit as n → ∞, we get

d(Su, z) < βd(z, Su)

which is a contradiction. So, we have Su = Au = z.

Again, since S(X) ⊂ B(X), there exists a point v ∈ X such that

z = Bv. We claim that z = Tv. If z 6= Tv, then using condition

(3), we get

d(z, Tv) = d(Su, Tv)

≤ α[d(Au, Tv) + d(Bv, Su)] + β[d(Bv, Tv) + d(Au, Su)]

+ γd(Au,Bv)

= α[d(z, Tv) + d(z, z)] + β[d(z, Tv) + d(z, z)] + γd(z, z)

= (3α + 3β + 2γ)d(z, Tv),
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a contradiction. So, we get z = Tv. Hence, we have Su = Au =

Tv = Bv = z. Since the pair (S,A) are weakly compatible so

by definition SAu = ASu implies Sz = Az. Now, we show that

z is the fixed point of S.

If Sz 6= z , then using condition (3), we get

d(Sz, z) = d(Sz, Tv)

≤ α[d(Az, Tv) + d(Bv, Sz)] + β[d(Bv, Tv)

+ d(Az, Sz)] + γd(Az,Bv)

= α[d(Sz, z) + d(z, Sz)] + β[d(z, z) + d(Sz, Sz)]

+ γd(Sz, z)

≤ (2α + 4β + γ)d(Sz, z)

which is a contradiction. So, we have Sz = z.

This implies that Az = Sz = z.

Again, the pair (T,B) are weakly compatible, so by definition

TBv = BTv implies Tz = Bz.

Now, we show that z is the fixed point of T. If Tz 6= z, then

using condition (3) we get

d(z, Tz) = d(Sz, Tz)

≤ α[d(Az, Tz) + d(Bz, Sz)] + β[d(Bz, Tz) + d(Az, Sz)]

+ γd(Az, Sz)

= α[d(z, Tz) + d(Tz, z)] + β[d(Tz, Tz) + d(z, z)]

+ γd(z, Tz)

≤ (2α + 4β + 2γ)d(z, Tz)

which is a contradiction. This implies that z = Tz.

Hence, we have Az = Bz = Sz = Tz = z.

This shows that z is the common fixed point of the self mappings

A, B, S and T.
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To prove the uniqueness of fixed point, let u 6= v be two

common fixed points of the mappings A, B, S and T . Then

using condition (3), we have

d(u, v) = d(Su, Tv)

≤ α[d(Au, Tv) + d(Bv, Su)] + β[d(Bv, Tv) + d(Au, Su)]

+ γd(Au,Bv)

= α[d(u, v) + d(v, u)] + β[d(v, v) + d(u, u)] + γd(u, v)

= (2α + 4β + γ)d(u, v),

which is a contradiction. This shows that d(u, v) = 0. Since

(X, d) is a dislocated metric space, so we have u = v. This es-

tablishes the theorem.

Now we have the following corollaries

Corollary 3.3.16. Let (X, d) be a complete dislocated metric

space. Let S, T : X → X be continuous mappings satisfying

d(Sx, Ty) ≤ α [d(x, Ty) + d(y, Sx)] + β [d(y, Ty) + d(x, Sx)]

+ γ d(x, y)

∀x, y ∈ X, where α, β, γ ≥ 0, 0 ≤ α + β + γ < 1
4 . Then the

mappings S and T have a unique common fixed point.

Proof:

Let A = B = I an identity mapping in the theorem. The se-

quences {xn} and {yn} will reduce to, y2n+1 = Tx2n+1 and

y2n = Sx2n. Then, following the procedure as in theorem, we

can show that {yn} is a Cauchy sequence and hence converges

to a point z in X. Consequently,the subsequences converge to
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z. Since T (X) ⊂ X, so there exists a point u ∈ X such that

z = u. Using condition (3) and letting n → ∞ we get Su = z,

which implies Sz = z. Similarly, we show that Tz = z. So,

Sz = Tz = z. Hence, z is the common fixed point of the map-

pings S and T.

To prove the uniqueness of fixed point, let u and v be two

common fixed points of the mappings S and T. Then, we have

d(u, v) ≤ α[d(u, v) + d(v, u)] + β[d(v, v) + d(u, u)] + γd(u, v)

≤ 2αd(u, v) + 4βd(u, v) + γd(u, v)

= (2α + 4β + γ)d(u, v)

which is a contradiction. So, d(u, v) = 0 implies u = v.

If we take S = T then the above corollary (3.3.16) is reduced

to the following result.

Corollary 3.3.17. Let (X, d) be a complete dislocated metric

space. Let T : X → X be a continuous mapping satisfying

d(Tx, Ty) ≤ α [d(x, Ty) + d(y, Tx)] + β [d(y, Ty) + d(x, Tx)]

+ γd(x, y)

∀x, y ∈ X, where α, β, γ ≥ 0, 0 ≤ α + β + γ < 1
4 .

Then the mapping T has a unique fixed point.

Proof:

Let us define sequence {xn} such that T (xn) = xn+1.
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Then using contractive condition, we have

d(xn, xn+1) = d(Txn−1, Txn) ≤ (α + β + γ)d(xn−1, xn)

+ (3α + β)d(xn, xn+1)

which gives d(xn, xn+1) ≤ α+β+γ
(1−3α−β)d(xn−1, xn),

where h = α+β+γ
(1−3α−β) < 1.

So, we have d(xn, xn+1) ≤ hd(xn−1, xn)

Hence, we get

d(xn, xn+1) ≤ hd(xn−1, xn) ≤ h2d(xn−2, xn−1) ≤ · · · ≤ hnd(x0, x1).

Since, 0 ≤ h < 1 so for n→∞ we have d(xn, xn+1)→ 0.

Therefore, {xn} is a Cauchy sequence in complete metric space.

So there exists a point z ∈ X such that {xn} → z. Since T is

continuous, we have

T (z) = Limn→∞T (xn) = Limn→∞xn+1 = z.

To prove the uniqueness of fixed point, let u and v be two

common fixed points of the mappings S and T. Using contractive

condition, we have

d(u, v) = d(Tu, Tv) ≤ (2α + 4β + γ)d(u, v)

a contradiction. Hence d(u, v) = 0 implies u = v.

If we take A = T and B = S in above Theorem (3.3.15), then

it reduces to the following result.

Corollary 3.3.18. Let (X, d) be a complete dislocated metric

space. Let S, T : X → X be continuous mappings satisfying

d(Sx, Ty) ≤ α [d(Tx, Ty) + d(Sy, Sx)] + β[d(Sy, Ty) + d(Tx, Sx)]

+ γ d(Tx, Sy)
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∀x, y ∈ X, where α, β, γ ≥ 0, 0 ≤ α + β + γ < 1
4 .

Then the mappings S and T have a unique common fixed point.

We prove the following common fixed point theorem for two

pairs of weakly compatible mappings in complete dislocated

metric space.

Theorem 3.3.19. [63] Let (X, d) be a complete dislocated

metric space. Let A, B, S, T:X→ X be continuous mappings

satisfying,

1. A(X)⊆ T(X), B(X)⊆ S(X) and B(X) or A(X) is closed

subset of X.

2. the pairs (A, S) and (B, T) are weakly compatible and

d(Ax,By) ≤ φ
(
max(d(Sx, Ty), d(Ax, Sx), d(By, Ty),

,
d(Sx,By) + d(Ax, Ty)

2
)
)

for all x, y ∈ X where φ : R+ → R+ is monotonically

nondecreasing and,
∞∑
n=1

φn(t) <∞

for all t > 0, then the mappings A, B, S, and T have a unique

common fixed point.

Proof:

Since, φ : R+ → R+ is monotonically nondecreasing and,
∞∑
n=1

φn(t) <∞
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so φ(t) < t and consequently φn(t)→ 0.

Let x0 be an arbitrary point in X. Then, using condition (1), we

define sequences {xn} and {yn} in X such that

y2n = Ax2n = Tx2n+1, and

y2n+1 = Bx2n+1 = Sx2n+2, n = 0, 1, 2, ...

If y2n = y2n+1 for some n, then Tx2n+1 = Bx2n+1. Therefore

x2n+1 is a coincidence point of B and T . Also, if y2n+1 = y2n+2

for some n, then Sx2n+2 = Ax2n+2. Hence, x2n+2 is a coincidence

point of S and A. Assume that y2n 6= y2n+1 for all n. Now, we

consider,

d(y2n, y2n+1)

= d(Ax2n, Bx2n+1)

≤ φ
(
max

(
d(Sx2n, Tx2n+1), d(Ax2n, Sx2n), d(Bx2n+1, Tx2n+1),

,
d(Sx2n, Bx2n+1) + d(Ax2n, Tx2n+1)

2

))
= φ

(
max

(
d(y2n−1, y2n), d(y2n, y2n−1), d(y2n+1, y2n),

,
d(y2n−1, y2n+1) + d(y2n, y2n)

2

))
= φ

(
max

(
d(y2n−1, y2n), d(y2n, y2n+1)

))
If, max (d(y2n−1, y2n), d(y2n, y2n+1)) = d(y2n, y2n+1)

then, d(y2n, y2n+1) ≤ φ
(
d
(
y2n, y2n+1

))
which is a contradiction. So, we have

max (d(y2n−1, y2n), d(y2n, y2n+1)) = d(y2n−1, y2n)

Hence, we get

d(y2n, y2n+1) ≤ φ
(
d(y2n−1, y2n)

)
(3.1)
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Again, using contractive condition (2), we get

d(y2n−1, y2n)

= d(Ax2n−1, Bx2n)

≤ φ
(
max(d(Sx2n−1, Tx2n), d(Ax2n−1, Sx2n−1), d(Bx2n, Tx2n),

,
d(Sx2n−1, Bx2n) + d(Ax2n−1, Tx2n)

2
)
)

= φ
(
max(d(y2n−2, y2n−1), d(y2n−1, y2n−2), d(y2n, y2n−1),

,
d(y2n−2, y2n) + d(y2n−1, y2n−1)

2

)
Hence, we get

d(y2n−1, y2n) ≤ φ
(
d(y2n−2, y2n−1)

)
(3.2)

Therefore, using relations (3.1) and (3.2), we have

d(yn, yn+1) ≤ φ
(
d(yn−1, yn)

)
≤ φ2

(
d(yn−2, yn−1)

)
...

≤ φn
(
d(y0, y1)

)
Now, for n,m ∈ N with n < m, from the triangle inequality, we

have

d(yn, ym) ≤ d(yn, yn+1) + d(yn+1, yn+2) + ...+ d(ym−1, ym)

≤ φn
(
d(y0, y1)

)
+ φn+1

(
d(y0, y1)

)
+ ...+ φm−1

(
d(y0, y1)

)
=

m−1∑
i=n

φi
(
d(y0, y1)

)
converge to 0 as n , m tend to ∞ as φ(t) < t for t > 0. So, {yn}
is a Cauchy sequence in the complete dislocated metric space
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X. Hence, there exists a point z in X such that {yn} → z.

So, the subsequences

{Ax2n} → z, {Bx2n+1} → z, {Tx2n+1} → z and {Sx2n+2} → z.

Now, assume that A(X) is a closed subset of X, and we have

A(X) ⊆ T (X), then there exist v ∈ X such that Tv = z.

If Bv 6= z then,using contractive condition (2), we get

d(Ax2n, Bv)

≤ φ
(
max

(
d(Sx2n, T v), d(Ax2n, Sx2n), d(Bv, Tv),

,
d(Sx2n, Bv) + d(Ax2n, T v)

2

))
= φ

(
max

(
d(y2n−1, T v), d(y2n, y2n−1), d(Bv, Tv),

,
d(y2n−1, Bv) + d(y2n, T v)

2

))
Letting n→∞, we get

d(z, Bv) ≤ φ
(
max

(
(d(z, Tv), d(z, z), d(Bv, Tv),

,
d(z,Bv) + d(z, Tv)

2

))
< d(z,Bv)

therefore, we have Bv = z = Tv.

Since B and T are weakly compatible so by definition we have

BTv = TBv implies Bz = Tz

Also if, z 6= Bz then using contractive condition (2), we have
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d(Ax2n, Bz)

≤ φ
(
max

(
d(Sx2n, T z), d(Ax2n, Sx2n), d(Bz, Tz),

,
d(Sx2n, Bz) + d(Ax2n, T z)

2

))
= φ

(
max

(
d(y2n−1, T z), d(y2n, y2n−1), d(Bz, Tz),

,
d(y2n−1, Bz) + d(y2n, T z)

2

))
.

Letting n→∞, we have

d(z,Bz) ≤ φ
(
max

(
d(z, Tz), d(z, z), d(Bz, Tz),

,
d(z,Bz) + d(z, Tz)

2

))
< d(z,Bz).

So, we get Bz = z. Since B(X) ⊆ S(X) there exists w ∈ X such

that Sw = z.

If Aw 6= z, then using contractive condition (2), we have

d(Aw,Bz) ≤ φ
(
max

(
d(Sw, Tz), d(Aw, Sw), d(Bz, Tz)

,
d(Sw,Bz) + d(Aw, Tz)

2

))
.

Hence, we get

d(Aw, z) = φ
(
max

(
d(z, Tz), d(Aw, z), d(z, Tz),

,
d(z, z) + d(Aw, z)

2

))
< d(Aw, z)
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This implies that Aw = z. So, we have Aw = z = Sw.

Since the pair (A, S) is weakly compatible so, ASw = SAw

implies Az = Sz.

If Az 6= z, then we have

d(Az, z) = d(Az,Bz)

≤ φ
(
max

(
d(Sz, Tz), d(Az, Sz), d(Bz, Tz),

,
d(Sz,Bz) + d(Az, Tz)

2

))
< d(Az, z)

which is a contradiction. Thus, we have Az = z. Therefore

we have Az = Sz = Bz = Tz = z. This shows that z is the

common fixed point of the mappings A,B, S and T .

To prove the uniqueness of fixed point, let z and u be the

common fixed point of the mappings A,B, S, T . Then, using

contractive condition (2), we have

d(z, u) = d(Az,Bu)

≤ φ
(
max

(
d(Sz, Tu), d(Az, Sz), d(Bu, Tu),

,
d(Sz,Bu) + d(Az, Tu)

2

))
= φ

(
max

(
d(z, u), d(z, z), d(u, u),

,
d(z, u) + d(z, u)

2

))
= φ

(
max

(
d(z, u), d(z, z), d(u, u)

))
.

Now, replacing u by z, we get

d(z, z) ≤ φ
(

max
(
d(z, z), d(z, z), d(z, z)

))
.

since φ(t) < t, so we have a contradiction.
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Hence, d(z, z) = 0. Similarly, we can get d(u, u) = 0.

In the same way, we can show that

d(z, u) ≤ φ
(
d(z, u)

)
implies d(z, u) = 0.

This shows that z is the unique common fixed point of the

mappings A,B, S and T .

This completes the proof of the theorem.

Remarks:

Since the condition on φ and on mappings in theorem (3.3.19)

are improved, so our result generalizes the result of of K. P. R.

Rao and P. Rangaswamy [134] and improves the results of C.

T. Aage and J. N. Salunke [2], A. Isufati [53] and other similar

results of fixed points in dislocated metric space.
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Chapter 4

Fixed Point Results in

Dislocated Quasi Metric Space

In this chapter, we introduce dislocated quasi metric space and

prove fixed point theorems which generalize, extend and unify

some well-known similar results in literature.

4.1 Introduction

In 2006, F. M. Zeyada, G. H. Hassan and M. A. Ahmed [162]

introduced various definitions and generalized the result of P.

Hitzler and A. K. Seda [49] in dislocated quasi- metric space. In

2008, C. T. Aage and J. N. Salunke [1] proved some results in

dislocated and dislocated quasi-metric spaces. In 2010,

A. Isufati [53] has also proved some results in these spaces.

4.2 Basic Definitions

We start with the following definitions.
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Definition 4.2.1. [162] Let X be a nonempty set and let

d : X×X → [0,∞) be a function satisfying following conditions:

(i) d(x, y) = d(y, x) = 0, implies x = y, and

(ii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

Then, d is called a dislocated quasi-metric (or simply dq-metric)

on X.

In this metric, the symmetric property of dislocated metric

space has been relaxed.

Definition 4.2.2. [162] A sequence {xn} in dislocated quasi-

metric space( dq-metric space) (X , d) is called Cauchy sequence

if for given ε > 0, there corresponds n0 ∈ N, such that for all

m, n > n0, we have d(xm, xn) < ε; or d(xn, xm) < ε.

Definition 4.2.3. [162] A sequence {xn} in a dislocated quasi

metric space (X, d) is said to be dislocated quasi convergent

(for short dq-convergent) to x if limn→∞ d(xn, x) = limn→∞

d(x, xn) = 0.

In this case, x is called a dq-limit of {xn} and we write xn → x.

Definition 4.2.4. [162] A dislocated quasi metric space (X, d)

is called complete if every Cauchy sequence in it is a dq- con-

vergent.

Definition 4.2.5. [162] Let (X, d1) and (Y, d2) be dislocated

quasi metric spaces and let T : X → Y be a function. Then T

is continuous if for each sequence {xn} which is d1q-convergent

to x0 in X, the sequence {Txn} is d2q-convergent to Tx0.

We state the following lemmas without proof.
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Lemma 4.2.6. [162] Every subsequence of dq-convergent se-

quence to a point x0 is dq-convergent to x0.

Lemma 4.2.7. [162] Let (X, d) be a dislocated quasi metric

space. If T :X→ X is a contraction function, then {T n(x0)} is a

Cauchy sequence for each x0 ∈ X.

Lemma 4.2.8. [162] dq-limits in a dislocated quasi metric

space are unique.

Definition 4.2.9. [162] Let (X, d) be a dislocated quasi metric

space. A map T : X → X is called contraction if there exists

0 ≤ λ < 1 such that d(Tx, Ty) ≤ λ d(x, y).

4.3 Fixed Point Theorems in Dislocated Quasi

Metric Space

In 1975, B. K. Dass and S. Gupta [32] generalized Banach Con-

traction Mapping Theorem through rational expressions in met-

ric space. In 1977, D. S. Jaggi [57] established the Theorem in

complete metric space.

In 2006, F. M. Zeyada, G. H. Hassan and M. A. Ahmed [162]

established the following fixed point theorem in dislocated quasi

metric space.

Theorem 4.3.1. [162] Let (X, d) be a complete dislocated met-

ric space. Let T : X → X be a continuous mapping satisfying

d(Tx, Ty) ≤ λd(x, y), 0 ≤ λ < 1.

Then, T has a unique fixed point.
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In 2008, C. T. Aage and J. N. Salunke established the follow-

ing theorem in dislocated quasi metric space.

Theorem 4.3.2. [1] Let (X, d) be a complete dislocated quasi

metric space. Let T : X → X be continuous mapping satisfying

the condition

d(Tx, Ty) ≤ α[d(x, Tx) + d(y, Ty)]

for all x, y ∈ X,, 0 ≤ α < 1
2, then T has a unique fixed point.

Theorem 4.3.3. [1] Let (X, d) be a complete dislocated quasi

metric space.

Let T : X → X be continuous mapping satisfying the condition

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty)

+ δ[d(x, Ty) + d(y, Tx)]

for all x, y ∈ X, α, β, γ, δ ≥ 0 which may depend on both x and

y such that sup{α+β+γ+2δ} < 1. Then, T has a unique fixed

point.

In 2010, A. Isufati established the following theorem in dis-

located quasi metric space.

Theorem 4.3.4. [53] Let (X, d) be a complete dislocated quasi

metric space.Let T : X → X be continuous mapping satisfying

the condition

d(Tx, Ty) ≤ αd(x, Ty) + βd(y, Tx) + γd(x, y)

for all x, y ∈ X, α, β, γ ≥ 0 which may depend on both x and

y such that sup{2α + 2β + γ} < 1. Then, T has a unique fixed

point.
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R. Shrivastava, Z. K. Ansari and M. Sharma proved the fol-

lowing fixed point theorems in 2012.

Theorem 4.3.5. [149] Let T be a continuous self map defined

on a complete dislocated quasi metric space (X, d). Further, let

T satisfies the contractive condition (1.2) for all x, y ∈ X, x 6= y

for some α, β ∈ [0, 1) with α+ β < 1, then T has a unique fixed

point.

Theorem 4.3.6. [149] Let (X, d) be a complete dislocated quasi

metric space.Let T : X → X be continuous mapping satisfying

the condition,

d(Tx, Ty) ≤ αd(x, y) + β
d(x, Tx).d(y, Ty)

d(x, y)

+ γ[d(x, Tx) + d(y, Ty)] + δ[d(x, Ty) + d(y, Tx)]

for all x, y ∈ X, α, β, γ, δ > 0, with 0 ≤ α + β + 2γ + 2δ < 1,

then T has a unique fixed point.

K. Zoto, E. Hoxha and A. Isufati established the following

fixed point theorem in 2012.

Theorem 4.3.7. [163] Let (X, d) be a complete dislocated quasi

metric space. Let T : X → X be continuous mapping satisfying

the condition,

d(Tx, Ty) ≤ αd(x, y) + β
d(x, Tx).d(y, Ty)

d(x, y)

+ γ[d(x, Tx) + d(y, Ty)] + δ[d(x, Ty) + d(y, Tx)]

+ η[d(x, Tx) + d(x, y)]
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for all x, y ∈ X, α, β, γ, δ, η ≥ 0,

with 0 ≤ α + β + 2γ + 2δ + 2η < 1, then T has a unique fixed

point.

Now, motivated with above theorems we establish the follow-

ing fixed point theorem which unifies and generalizes the above

mentioned theorems in dislocated quasi metric spaces.

Theorem 4.3.8. [121] Let (X, d) be a complete dislocated quasi

metric space. Let T : X → X be continuous mapping satisfying

the condition

d(Tx, Ty) ≤ αd(x, y) + β
d(x, Tx).d(y, Ty)

d(x, y)

+ γ[d(x, Tx) + d(y, Ty)]

+ δ[d(x, Ty) + d(y, Tx)] + η[d(x, Tx) + d(x, y)]

+ κ[d(y, Ty) + d(x, y)]

(4.1)

for all x, y ∈ X, α, β, γ, δ, η, κ ≥ 0, with

0 ≤ α + β + 2γ + 4δ + 2η + 2κ < 1, then T has a unique fixed

point.

Proof:

Let us define a sequence {xn} as follows:

T (xn) = xn+1, for n = 0, 1, 2, ....

Also, let x = xn−1, and y = xn, Then, by condition (4.1) and
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using triangle inequality, we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ αd(xn−1, xn) + β
d(xn−1, Txn−1).d(xn, xn+1)

d(xn−1, xn)

+ γ[d(xn−1, Txn−1) + d(xn, Txn)]

+ δ[d(xn−1, Txn) + d(xn, Txn−1) + η[d(xn−1, Txn−1)

+ d(xn−1, xn)] + κ[d(xn, Txn) + d(xn−1, xn)]

= αd(xn−1, xn) + β
d(xn−1, xn).d(xn, xn+1)

d(xn−1, xn)

+ γ[d(xn−1, xn) + d(xn, xn+1)]

+ δ[d(xn−1, xn+1) + d(xn, xn)] + η[d(xn−1, xn)

+ d(xn−1, xn)] + κ[d(xn, xn+1) + d(xn−1, xn)]

≤ (α + γ + 2δ + 2η + κ)d(xn−1, xn)

+ (β + γ + 2δ + κ)d(xn, xn+1).

Hence, we have

d(xn, xn+1) ≤
α + γ + 2δ + 2η + κ

1− (β + γ + 2δ + κ)
d(xn−1, xn).

Thus, we have

d(xn, xn+1) ≤ λd(xn−1, xn),

where

λ =
α + γ + 2δ + 2η + κ

1− (β + γ + 2δ + κ)
, 0 ≤ λ < 1.

Similarly, we get d(xn−1, xn) ≤ λd(xn−2, xn−1).

Hence, we have

d(xn, xn+1) ≤ λnd(x0, x1),

so, for n → ∞, we get d(xn, xn+1) → 0. Similarly, we get

d(xn+1, xn)→ 0.
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Hence, {xn} is a Cauchy sequence in complete dislocated quasi

metric space (X, d). So, there exists a point u ∈ X such that

{xn} → u. Since T is continuous, so we have

T (u) = T ( lim
n→∞

xn) = lim
n→∞

T (xn) = lim
n→∞

xn+1 = u.

To prove the uniqueness of fixed point, let u and v are two

fixed points of T so that, by definition, Tu = u and Tv = v. Let

u be fixed. Then, the condition (4.1) gives

d(u, u) = d(Tu, Tu)

≤ αd(u, u) + βd(u, u) + 2γd(u, u) + 2δd(u, u) + 2ηd(u, u)

+ 2κd(u, u)

= (α + β + 2γ + 2δ + 2η + 2κ)d(u, u)

which implies that d(u, u) = 0,

since, 0 ≤ α + β + 2γ + 4δ + 2η + 2κ < 1.

Thus, we have d(u, u) = 0.

Similarly, we can get d(v, v) = 0, for v fixed. Again, from

(4.1), we have

d(u, v) = d(Tu, Tv)

≤ αd(u, v) + β
d(u, u).d(v, v)

d(u, v)
+ γ[d(u, u) + d(v, v)]

+ δ[d(u, v) + d(v, u)] + η[d(u, u) + d(u, v)]

+ κ[d(v, v) + d(u, v)]

= (α + δ + η + κ)d(u, v) + δd(v, u).

Similarly, we get

d(v, u) ≤ (α + δ + η + κ)d(v, u) + δd(u, v).
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Hence, we obtain

|d(u, v)− d(v, u)| ≤ (α + η + κ)|d(u, v)− d(v, u)|,

which is a contradiction. So, we have d(u, v) = d(v, u).

Again, by (4.1), d(u, v) ≤ (α + 2δ + η + κ)d(u, v).

which implies that d(u, v) = 0. Hence, we have d(u, v) =

d(v, u) = 0.

Therefore, we have u = v.

This completes the proof of theorem.

Remarks: In our theorem (4.3.8),

1. If we put κ = 0, we get the Theorem 3.1 of K. Zoto, E.

Hoxha and A. Isufati [163].

2. If we put η = κ = 0, we obtain the Theorem 3.5 of R.

Shrivastav, Z. K. Ansari and M. Sharma [149].

3. If we put γ = δ = η = κ = 0, we obtain Theorem 3.3 of

[149].

4. If we put β = η = κ = 0, we obtain the Theorem 3.5 of C.

T. Aage and J. N. Salunke [1].

5. If we put β = γ = η = κ = 0, we get Theorem 3.2 of A.

Isufati [53].

6. If we put β = γ = δ = η = κ = 0, we get the Theorem 2.1

of F. M. Zeyada, G. H. Hassan and M. A. Ahmed [162].

Thus, our result extends and unifies the results of [1],[53],[149],

[162],[163] and other similar results.
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Again, we have obtained the following fixed point theorem in

dislocated quasi metric space.

Theorem 4.3.9. Let (X, d) be a complete dislocated quasi met-

ric space. Let T : X → X be continuous mapping satisfying the

condition

d(Tx, Ty) ≤ αd(x, y) + β
d(x, Tx).d(y, Ty)

d(x, y)
+ γ[d(x, Tx) + d(y, Ty)]

+ δ[d(x, Ty) + d(y, Tx)] + η[d(x, Tx) + d(x, y)]

+ κ[d(y, Ty) + d(x, y)] + µ
d(x, Ty).d(x, Tx)

d(x, y)

(4.2)

for all x, y ∈ X, α, β, γ, δ, η, κ, µ ≥ 0,

with 0 ≤ α+β+2γ+4δ+2η+2κ+2µ < 1, then T has a unique

fixed point.

Proof:

Let us define a sequence {xn} as follows:

T (xn) = xn+1, for n = 0, 1, 2, ....

Also, let x = xn−1, and y = xn, Then, by condition (4.2) and
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using triangle inequality, we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ αd(xn−1, xn) + β
d(xn−1, Txn−1).d(xn, xn+1)

d(xn−1, xn)

+ γ[d(xn−1, Txn−1) + d(xn, Txn)]

+ δ[d(xn−1, Txn) + d(xn, Txn−1) + η[d(xn−1, Txn−1)

+ d(xn−1, xn)] + κ[d(xn, Txn) + d(xn−1, xn)]

+ µ
d(xn−1, Txn).d(xn−1, Txn−1)

d(xn−1, xn)

= αd(xn−1, xn) + β
d(xn−1, xn).d(xn, xn+1)

d(xn−1, xn)

+ γ[d(xn−1, xn) + d(xn, xn+1)]

+ δ[d(xn−1, xn+1) + d(xn, xn)] + η[d(xn−1, xn)

+ d(xn−1, xn)] + κ[d(xn, xn+1) + d(xn−1, xn)]

+ µ
d(xn−1, xn+1).d(xn−1, xn)

d(xn−1, xn)

≤ (α + γ + 2δ + 2η + κ+ µ)d(xn−1, xn)

+ (β + γ + 2δ + κ+ µ)d(xn, xn+1)

hence,

d(xn, xn+1) ≤
α + γ + 2δ + 2η + κ+ µ

1− (β + γ + 2δ + κ+ µ)
d(xn−1, xn), 0 ≤ λ < 1.

Thus, we have

d(xn, xn+1) ≤ λd(xn−1, xn).

where

λ =
α + γ + 2δ + 2η + κ+ µ

1− (β + γ + 2δ + κ+ µ)
.

Similarly, we get d(xn−1, xn) ≤ λd(xn−2, xn−1).

Hence, we have

d(xn, xn+1) ≤ λnd(x0, x1).
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Now, for any m,n with m > n and using triangle inequality, we

get

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ λnd(x0, x1) + λn+1d(x0, x1) + · · ·+ λm−1d(x0, x1)

≤ (λn + λn+1 + λn+2 . . . )d(x0, x1)

=
λn

1− λ
d(x0, x1).

For any ε, we choose N ≥ 0 such that λN

1−λd(x0, x1) < ε.

Then, for any m > n ≥ N , we have

d(xn, xm) ≤ λN

1−λd(x0, x1) ≤ λn

1−λd(x0, x1).

Similarly, we can show that d(xm, xn) < ε.

Hence, the sequence {xn} is a Cauchy sequence in complete

dislocated quasi metric space (X, d). So, there exists a point

u ∈ X such that {xn} → u. Since T is continuous, so we have

T (u) = T ( lim
n→∞

xn) = lim
n→∞

T (xn) = lim
n→∞

xn+1 = u.

To prove the uniqueness of fixed point, if possible, let u and

v are two fixed points of T so that, by definition, Tu = u and

Tv = v. Let u be fixed. Then, the condition (4.2) gives

d(u, u) = d(Tu, Tu)

≤ αd(u, u) + βd(u, u) + 2γd(u, u) + 2δd(u, u)

+ 2ηd(u, u) + 2κd(u, u) + µd(u, u)

= (α + β + 2γ + 2δ + 2η + 2κ+ µ)d(u, u)
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which implies that d(u, u) = 0,

since 0 ≤ α + β + 2γ + 4δ + 2η + 2κ+ 2µ < 1.

Thus, we have d(u, u) = 0

Similarly, we can get d(v, v) = 0, for v fixed. Again, from (4.2),

we have

d(u, v) = d(Tu, Tv)

≤ αd(u, v) + β
d(u, u).d(v, v)

d(u, v)
+ γ[d(u, u) + d(v, v)]

+ δ[d(u, v) + d(v, u)] + η[d(u, u) + d(u, v)]

+ κ[d(v, v) + d(u, v)] + µd(u, u)

= (α + δ + η + κ)d(u, v) + δd(v, u).

Similarly, we get

d(v, u) ≤ (α + δ + η + κ)d(v, u) + δd(u, v).

Hence, we obtain

|d(u, v)− d(v, u)| ≤ (α + η + κ)|d(u, v)− d(v, u)|,

which is a contradiction. So, we have d(u, v) = d(v, u).

Again, by (4.2) with substitutions, we obtain

d(u, v) ≤ (α + 2δ + η + κ)d(u, v).

which implies that d(u, v) = 0. Hence, we have d(u, v) =

d(v, u) = 0. Therefore, we have u = v.

This completes the proof of theorem.
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Future Research Scope

Some of the future aspects of fixed point results in dislocated

and dislocated quasi metric spaces are as follows:

1. To ensure the fixed point results for rational type contrac-

tive conditions in dislocated and dislocated quasi-metric

spaces.

2. Dislocated and dislocated quasi metric spaces are open wide

areas of research activities for the establishment of fixed

point results under weaker contractive definitions like com-

patible, semicompatible, weakly compatible, occasionally

weakly compatible and non compatible mapppings etc.

3. There is a wide scope to study common fixed point theo-

rems for pairs of mappings and even for sequence of map-

pings in these spaces.
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