
 
 



MODELS OF FINSLER SPACES   
 
 

 
 

THESIS 

 SUBMITTED FOR THE DEGREE  

OF  

Doctor of Philosophy  

IN  

 MATHEMATICSMATHEMATICSMATHEMATICSMATHEMATICS            

 

By 

Dhirendra Thakur        Dhirendra Thakur        Dhirendra Thakur        Dhirendra Thakur            
 

FACULTY OF SCIENCE 

DEPARTMENT OF MATHEMATICS & STATISTICS 

D.D.U. GORAKHPUR UNIVERSITY 

GORAKHPUR- 273009 (U.P),  

INDIA  

2012 



 

 

 

 

Dedicated 

To 

My Reverend Late Grand-mother 

Shrimati Sita Devi 

 

 

 



 

 

 

 



 

D. D. U. Gorakhpur University, Gorakhpur,IndiaD. D. U. Gorakhpur University, Gorakhpur,IndiaD. D. U. Gorakhpur University, Gorakhpur,IndiaD. D. U. Gorakhpur University, Gorakhpur,India    

    

Candidate’s DeclarationCandidate’s DeclarationCandidate’s DeclarationCandidate’s Declaration    

  

I hereby declare that the work which is being presented in the thesis entitled 
“ MODELS OF FINSLER SPACES” in fulfillment of the requirement for the 
award of the degree of Doctor of Philosophy in Mathematics of  D.D.U. 
Gorakhpur University, Gorakhpur is an authentic record of my own work 
carried out during a period from April 2009 to January 2012 under the 
supervision of Dr. T. N. Pandey, Professor in Mathematics, Department of 
Mathematics & Statistics, D.D.U. Gorakhpur University, Gorakhpur,India. 

 The matter presented in this thesis has not been submitted by me for the 
award of any other degree of this or any other Institute/University. 

 

(Dhirendra Thakur)   

This is to certify that the above statement made by the candidate is correct to 
the best of my knowledge. 

 
Dated:    2nd February, 2012     

                                                                                              (Prof. T. N. Pandey) 

Forwarded 

 
 
Prof. R. S. Srivastava 
Professor & Head  
Department of Mathematics & Statistics 
D. D. U. Gorakhpur University, Gorakhpur, India  



 

 ACKNOWLEDGEMENTS 

I am extremely grateful to my supervisor Professor T.N. Pandey, 

Department of Mathematics and Statistics, D.D.U. Gorakhpur University, 

Gorakhpur, India who has been a constant source of inspiration and support. He is 

not only my supervisor but also my local guardian who always took care of my 

personal problems .He motivated me to do whatever I can achieve academic 

excellence in Mathematics. I can never forget the long hours in night at his place 

when I had to stay back to work on my thesis. It was precisely during these 

tireless periods that Mrs. Rajkumari Pandey and the members of her family stood 

me in good stead. It was a relief from serious work. But for her motherly care, it 

would have been difficult for me to stand that ordeal. This is an obligation, I shall, 

I know, will never be able to repay.   

Dr R. S. Srivastava Professor of Statistics and currently Head of the 

Department of Mathematics and Statistics has been kind enough to make it 

convention for me to go through all the technicalities of research involve in 

submission of thesis.   

To Prof. A. A. Ansari and Prof. H.S. Shukla I am grateful for the valuable 

assistance they give me during their period as Head of Department for helping me 

to get through the initial stage of my registration as a research student. Needless to 

say ,  but for that I would have been at sea , I shall never forget their kind and 

loving concerned  for me to the date .   



 I offer my sincere gratitude to Finslerian B. N. Prasad, C-10, Surajkund 

Colony, Gorakhpur, U.P., India, whose advice, suggestions during sittings for 

hours on end with him at his place. It went a long way in shaping my thesis.   

 I am thankful to the teaching and non- teaching staff of the Department 

of Mathematics and Statistics, D.D.U. Gorakhpur University, Gorakhpur for their 

cooperation and help.  

 I shall remain indebted to eminent Mathematicians   Prof. (late) M. 

Matsumoto, Prof. H. Rund.   Prof. (late) R. S. Mishra, Prof. H. Shimada , Prof. Z. 

Shen,  Prof. H. S. Park, Prof.  I. Y.  Lee, Prof.  Alkou Tadashi, Prof.  P. L. 

Antonelli, whose research papers proved very useful for my research work.  I am 

deeply obliged to my friends  Dr. Vinit Kumar Chaubey, Dr. Desh  Deepak 

Tripathi, Dr. Kirti  K. Jaiswal , Shravan  K. Singh, Manis  Nath Tripathi, O. P. 

Pandey  and  P. Shukla for their regular cooperation and supports  for my research 

work .  I always remember the moments enjoyed during the stay with my Nepalese 

friends S. K. Jha, N.P. Pahari and M.L. Sharma. 

  I wish to acknowledge my indebtedness to my parents Shri Surya Narayan 

Thakur  and  Smt. Ram Kali Devi,  my brothers Dr. Rabindra K. Thakur ,Gajendra 

Thakur  and  my wife  Gita . It would be unjust and unkind if I do not remember 

the relief the innocent prattle my little son Yogesh provided to get over the tedium 

of my serious academic work. 

I am also conscious of the joy  my lovely kids Amit,  Ajit, Rakhi, Rachna, Nidhi,  

Kalpana  and  Niva gave me during my research . I am also indebted to my father-

in-law Dr. R .N.Thakur and mother-in-law Smt. Urmila Devi for their constant 

supports and encouragement. 

Last but not the least; I would like to express my sincere gratitude to faculty 

members and nonteaching staff of   Kailali Multiple Campus, Dhangadhi, Nepal 



for their invaluable co-operation. I place on record my sense of gratitude to 

U.G.C., Nepal for financial assistance to carry out the research. 

Finally, my thanks are also due to all those who helped me directly or indirectly for 

the completion of the work. 

                                                                       

 

  (Dhirendra Thakur) 

 

 

 

 

 

 

 

 

 

 



 

 

PREFACE 

 

The present thesis is an outcome of my investigations in the Department of 

Mathematics and Statistics, D.D.U. Gorakhpur University, Gorakhpur under the 

supervision of Prof. T.N.Pandey. The purpose of the present thesis is to study 

models of Finsler spaces . 

The whole thesis is divided into seven chapters and each chapter is 

subdivided into various sections. Throughout this thesis ordered -3 tuples of 

positive integers ( a.b.c) are used to locate equations ,lemmas, theorems etc .The 

first integers  a  locates the chapter , b  locate the section , c tell you the number of 

the equation, proposition,  lemma or theorem .The array   a.b  indicates the section 

. For instance, Theorem 2.6.3 is the third theorem of section 2.6, but there is also 

equation 2.6.3 , it is the third equation of section 2.6  .The numbers in the square 

bracket in a chapter correspond to the references given at the end of the chapter. 

 The symbols  ∂  and 
.

∂ denote the partial derivative with respect to xi and yi 

respectively. Small and long vertical lines (I and |) stands for h and v- covariant 

derivative respectively. 

First chapter is an introductory in nature and consists of preliminary details.  

Some useful results and definitions such as Finsler space, some connections like 

the Berwald, Carton and Runds have been mentioned therein.  



The second chapter deals with the relation between Carton’s connections of 

two Finsler spaces (Mn, L) and (Mn, L) where L obtained from L by h-Randers 

change. It has been obtained the conditions under which this change is projective. 

It also deals the conditions under which Douglas space, Landsberge space or 

Weakly Berwald space becomes invariant. 

The third chapter is devoted to study for Finsler spaces 
−

nF  obtained by 

Randers Conformal change of Finsler spaces Fn of Douglas type to be also of 

Douglas type and vice versa .It has been also worked out the condition under 

which the said transformation is projective.    

 In the fourth chapter we discuss the Finsler space 
−

nF = ( Mn , 
_

L (α, β))  

obtained by Conformal Randers change of Finsler space Fn = ( Mn , L(α, β)  ) of  

Douglas type remains to be Douglas type and vice versa . 

   The fifth chapter is devoted to investigate the Berwald connection, condition 

for projectively flatness of Finsler space with 2nd approximated exponential (α, β ) 

metric L = α α
β

e + β and the conditions under which said space is Douglas type. 

In the sixth chapter, we investigate condition that the Finsler space with 

( , )α β −metric like Randers metric, Kropina metric and Matsumoto metric become 

Weakly Landsberg space. We also give an example for Weakly Landsberg space 

which is not Landsberg space.  

 The seventh chapter is the last chapter of my thesis and is devoted to study 

the S4- likeness of Quartic Rander’s change of a Finsler space and the relation 

between V-curvature tensor of Quartic Rander’s changed Finsler space. 
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TABLE OF SYMBOLS IN FINSLER GEOMETRY 

For easy reference, the below table lists symbols in Finsler geometry, 

their definitions and homogeneity. 

Name Notation Homogeneity  

in directional 
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Chapter 1 

Introduction 

 

1.1   A brief historical of development of Finsler Geometry 

Finsler geometry is a kind of differential geometry, which was originated by P. 

Finsler [13] in 1918. Main focus of Finsler in his dissertation was to geometrize 

calculus of variation the idea given by his teacher Caratheodory. The creator of 

this geometry is really L. Berwald in 1925. The germs of Finsler geometry were 

present in the epoch-making lecture of B. Riemann which he delivered in June 

1854, at Gottingen University. In the lecture Riemann had discussed various 

possibilities by means of which an n-dimensional space may be equipped with the 

metric before coming to the square root metric. He has thought over cubic and 

quartic also, but he give up it ,due to the difficulty of geometrical meaning to 

various differential invariants, furthermore the computation is very complicated. 

Consequently he concludes that the theory of such generalized metrics (Cubic and 

Quartic) would hardly contribute to the progress of geometry. It is usually 

considered as a generalization of the Riemannian geometry in which the space 

consists of tangent bundles instead of collection of points. Finsler spaces differ 

from Riemannian spaces by the fact that metric depends on direction also. Finally 



Riemannians main attention was on a metric, where the distance ds between two 

neighbouring points represented by the co-ordinates  and  defined by, 

             (I,  j =  1, 2, 3,……,n) 

 where the coefficients  are functions of coordinates  and  

det 0 .This quadratic differential form is called a Riemannian metric and 

space with such metric called Riemannian space.  

 There are two approaches of Finsler Space out of which one is considered as 

Riemannian metric generalization. Finsler Space is a Space where metric function 

has been taken as  

           ds =  L( x1 ,x2,  x3 , …..  xn , dx1 ,dx2,dx3,……. ,dxn) =  L( x,y )  (y  = dx )  . 

We are concerned with the generalized metric ds = L(x, y) which gives the distance 

between two points ) and  .  Riemann has also discuss that the 

positive fourth root of a fourth order differential form (ds4 = gijmn dxi dxj dxm dxn )   

might serve as a metric .These functions have three properties in common  

(i)  they are positive definite; 

(ii)  they are homogeneous of first degree in differential;  

(iii)  they are convex in differentials. 

It would seem natural Therefore, to introduce a further generalization to the affect 

that the distance between two neighbouring points) and   be defined 

by some function L( xi,dxi ) ,where 

                                            ds = L( xi,dxi ) 



and it satisfies above three properties. Riemann asserted that the differential 

geometry based on such generalized metric will be able to develop in a way similar 

to the case of Riemannian metric. It will be difficult to give suitable geometrical 

meanings to differential invariants and further the computation for it will be very 

complicated. Consequently he concluded that the theory of such generalized metric 

will hardily contribute to the progress of geometry. He put it in the following 

words.  

 “Investigation of this more general class would actually require no essential 

different principles but it would be rather time consuming and throw relatively no 

light on the study of space, especially since results cannot be expressed 

geometrically.” 

Due to Riemann’s comments, mathematicians did not try to study such 

spaces for more than 60 years. In 1918, 24 years old German, Paul Finsler [9] tried 

to study such spaces and submitted his thesis to Gottingen University. His 

approach of study this geometry was based on calculus of variation. He put the 

idea of calculus of variation with special reference to new geometrical background, 

which was given by his teacher Caratheodory .Finsler geometry is a kind of 

differential geometry which is usually considered as a generalization of 

Riemannian geometry. The history of development of Finsler geometry can be 

divided into four periods. 

         1. 1924 – 1933 

         2.1934 – 1950 

         3.1951 – 1963 

         4.1963 – up to now  

    1.  1924 – 1933  



 The first period of the history of Finsler geometry began in 1924, when the 
three geometrician, J. H. Taylor [32], J. L. Synge [31] and L. Berwald [4], [5] 
simultaneously started the work in this field. Berwald is the first man who has 
introduced the concept of connection in the theory of Finsler spaces. He was the 
creator of Finsler geometry and, what was more, the founder. He had developed a 
theory with particular reference to the theory of curvature in which the Ricci 
lemma does not hold. J. H. Taylor and J. L. Synge introduced a special parallelism. 
In 1928 Taylor gave the name ‘Finsler Space’ to the manifold equipped with this 
generalized metric. 

    2.  1934 – 1950 

 The second period began in 1934, when E. Cartan [6] published his thesis on 

Finsler geometry. He showed that it was indeed possible to define connection 

coefficients and hence covariant derivatives such that the Ricci lemma is satisfied. 

On this basis Cartan developed the theory of curvature and torsion. All subsequent 

investigations considering the geometry of Finsler spaces were dominated by this 

approach. Several mathematicians such as E. T. Devise [7], S. Golab [10], H. 

Hombu [12], O. Varga [33], V. V. Wagner [34] have studied Finsler geometry 

along Cartan’s approach. They expressed the opinion that the theory attained his 

final form. This theory made certain devise, which basically involves the 

consideration of a space, whose elements are not the points of the underlying 

manifold, but the line element of latter, which forms a (2n-1) dimensional variety. 

This facilitates the Cartan called “Euclidean connection” which by means of 

certain postulates may be derived uniquely from the fundamental metric function. 

   3.  1951 – 1963 

The third period of the history of Finsler geometry began in 1951, when H. 

Rund [27] introduced a new process of parallelism from the stand point of 

Minkowskian geometry. Cartan introduced parallelism from the stand point of 

locally Euclidean geometry. Latter on E. T. Devies and A. Deicke have indicated 



that Rund’s and Cartan’s parallelism were the same. Several Mathematicians such 

as W. Barthel [3], A. Deicke [8], D. Laugwitz [16], R. Sulanke [30] have studied 

Finsler spaces on Rund’s approach.  

   

 

 4.  1963 – up to now 

 The fourth period of history of development of Finsler geometry began in 

1963, when H. Akabar Zadeh [2] developed the modern theory of Finsler spaces 

based on the geometry of connections of fibre bundles. The reason of 

modernization is to establish a global definition of connections in Finsler spaces 

and to reexamine the Cartan’s system of axioms; Mathematicians and Physicists 

began to study special Finsler spaces from the symposium organized by M. 

Matsumoto on the development of Finsler geometry since 1970. The aim of this 

symposium was to find real models of Finsler spaces. The contribution of Prof. M. 

Matsumoto on the development of Finsler geometry is worth records. He correlate 

Cartan’s connections, Berwald connection and Rund’s connections by the process 

called C-process and P-process. His various research papers (1992-1996) on the 

theory of Finsler space with (α, β)-metric has great contribution in the development 

of special Finsler spaces. 

 The study of Finsler spaces in India was started around 1960 under the 

leadership of Prof. R. S. Mishra, Prof. R. N. Sen and Prof. K. S. Amur. Some 

important mathematicians in this fields are as follows: - Prof. U. P. Singh, Prof. H. 

D. Pandey, Prof. R. B. Mishra, Prof. M. D. Upadhaya, Prof. R. S. Sinha, Prof. B. 

B. Sinha, Prof. Ram Hit, Dr. B. N. Prasad, Prof. T. N. Pandey, Prof. H. S. Shukla, 

Prof. P. N. Pandey, Prof. S. C. Rastogi, Prof. C. S. Bagewadi, 



S.K.Narasimhamurthi and some Finslerian are Prof. Z. Shen, H. S Park,. I. Y   Lee, 

Alkou Tadashi, P.L Atonally , Xiaohuan Mo,R.Miran ,H. Akbar-Zadeh  etc.  

 Now, we I will discuss some preliminary concepts of Finsler geometry 

which have been used in the present thesis. 

 

 

1.2.   Homogeneous function, Curve , Line Element & Tangent bundle 

Homogeneous function is a function with multiplicative scaling behavior if the 

argument is multiplied by a factor, then the result is multiplied by some power of 

this factor. More precisely, if   f : TM → W  is a function between two vector 

spaces over a field F, and k is an integer, then f is said to be homogeneous of 

degree k if f (x,cy ) = ck f (x, y) for all nonzero c F and y  V.  

 Let R be a region of n-dimensional differentiable manifold Mn which is 

covered completely by a co-ordinate system, such that any point P of R is 

represented by a set of n-real independent variables xi (i = 1, 2, 3,……..n), called 

the co-ordinates of the point. A transformation of co-ordinates is represented by a 

set of n-equations, 

(1.2.1)             ( ) 

 which shows that the co-ordinates xi of a point P of Mn are represented in the 

new co-ordinate system by new variables. We assume that the functions  of 

(1.2.1) are at least of class C2 and, 

(1.2.2)  det  



 A set of points of R, whose co-ordinates may be expressed as functions of a 

single parameter‘t’ is regarded as a curve of  Mn. Thus the equations, 

(1.2.3)  xi = xi(t) 

defines a curve C of Mn. If the functions (1.2.3) are class C1, we shall regard the 

entity whose components are given by, 

(1.2.4)   

          as, the tangent vector to C. We called the combination ( xi, yi ) a line element 

of C. 

Tangent bundle: The tangent bundle [3] of a differentiable manifold Mn  is the 

union of the tangent spaces of Mn , that  is     TM =  ∪
Mx∈

TxM = ∪
Mx∈

{x} x TxM  where 

TxM denotes the tangent space to Mn  at the point x. So, an element of TM can be 

thought of as a pair (x, y), where x is a point in Mn  and y is a tangent vector to Mn 

at x.The set of coordinates  (,
kx∂

∂
) define a basis of the tangent space.  

The infinitesimal distance between two points P(xi) and Q(xi ,dxi ) of curve 

(1.2.3) lies on Manifold Mn is define by ds = L(xi ,dxi) =  . The 

arc PQ become tangent at x on Manifold Mn .    

 

1.3.   Finsler space 



  Let  Mn  be n- dimensional Manifold ,TM tangent bundle of Mn  , { 
ix∂

∂  } is 

basis of tangent spaces at (x) and y = (yi) =
dt

dxi

. A function  of the 

line elements    defined on Mn   is called fundamental function if it satisfies  

 (a) The function L ( ) is positively homogeneous of degree one in  i. e., 

(1.3.1)                         L( ) = kL( ),         k > 0 

That is, the arc length of curve is independent of the choice of parameter t. 

(b) The function L( ) is positive if not all  vanish simultaneously, i.e., 

      (1.3.2)             L ( ) > 0      with      

That is, the distance between two distinct points is positive. 

(c)  The quadratic form, 

      (1.3.3)  

    is assumed to be positive definite for any variable . 

That is, L ( ) is a convex function in .   

The manifold Mn equipped with the fundamental function L is called a Finsler 

space [3] .It is denoted by Fn or (Mn, L). 

  Some example of Finsler spaces are Normed vector spaces, Euclidean spaces, 

Riemannian spaces, Randers spaces,...  

From Euler’s theorem on homogeneous functions, we have 



(1.3.4)    

and 

(1.3.5)    

We put, 

(1.3.6)    

Using the theory of quadratic form and the Condition-c, we deduce from (1.3.4) 

that 

(1.3.7)    

                     for all line elements  . 

If the function L is of particular form 

(1.3.8)   L ( ) =  

where, the coefficients  are independent of , the metric defined by this 

function is called Riemannian metric and the manifold Mn is called a Riemannian 

space. Throughout the present thesis, the n-dimensional Finsler space will be 

denoted by Fn or (Mn, L), where as n-dimensional Riemannian space will be 

denoted by Rn. 

1.4.   Physical motivation  

In a perfectly homogeneous and isotropic medium, geometry is Euclidean, and 

shortest paths are straight lines. In an inhomogeneous space, geometry is 

Riemannian and the shortest paths are geodesics. If a medium is not only 

inhomogeneous, but also anisotropic 1, i.e. has innate directional structure, the 



appropriate geometry is Finslerian [13] [14] and the shortest paths are 

correspondingly Finsler-geodesics. As a consequence the fundamental metric 

tensor depends on both position and direction. This is also a natural model for high 

angular resolution diffusion images. 

Finsler geometry has its genesis in integral of the form x, y) dt, where  

x = (xi), y = (yi) =
dt

dxi

.Let us find out some contexts in which this integral arises. 

(a). Suppose x stands for position, y for velocity. Then L(x, y) would have the 

meaning of speed and t would play the role of time, in this case the integral    

x, y) dt  measures distance traveled. 

 (b). In an anisotropic medium (rays and wave fronts are not orthogonal to each 

other)   the speed of light depends on its direction of travail. At each location  x, 

visualize y as an arrow that emanates from x  .We denote the time that light takes 

to trivial from x to the top of y call the result L(x , y) . The integral x, dx) dt  

represents total time that light takes to traverse is given path in this medium. 

(c). It is well-known that the time taken by man in climbing up and going down on 

same length of the slope of mountain are distincts. It means   time measures 

function L(x (t), y (t)) also depends  on direction .This fundamental function L 

together with slope of mountain TM (Tangent bundle) is Finsler space. 



(d). Cost of transportation function not only depend on distance but also on 

direction, except some other physical perturbation such as friction, air resistance 

e.t.c . This function can be regarded as fundamental function of Finsler space. 

(e) . (Mathematical ecology )   Suppose x   stands for the state of coral reef , and y 

displacement vector from the state x to new state x+dx , L (x ,dx ) represents the 

energy one needs in order to develop from the state x  to the neighboring state  

x+dx . Hence the integral x, dx) dt represents the total energy cost of a given 

path of evolution.  

So from above we see that the world is Finslerian and it has wide application in 

theory of relativity, control theory, thermodynamics, optics, ecology, and 

mathematical biology .   

1.5.   Tangent space, Indicatrix and Cotangent spaces  

 We consider a change of local co-ordinates as represented by the equation 

(1.2.1), along the curve (1.2.3) referred to an invariant parameter t; the new 

components of the tangent vector  are obtained by differentiating the 

relation,  

(1.5.1)    

With respect to t, which gives, 

(1.5.2)    



Or in terms of differentials, 

(1.5.3)    

Here  is interpreted as the components of a displacement in Mn from a point P 

( ) to a point Q( ). 

If the point P( ) is fixed, i. e. the coefficients  of the transformation (1.4.2)' are 

fixed, this relation represents a linear transformation of the  onto the . The 

same is true for the variables  and  in the transformation (1.4.2). Therefore,, 

the n-entities of this kind may be taken to define the elements of an n-dimensional 

linear vector space. 

 A system of n-quantities  whose transformation law under (1.2.1) is 

equivalent to that of the  is called a contravariant vector attached to the point 

P( ) of Mn. Such contravariant vectors constitute the element of vector space. The 

totality of all contravariant vectors attached to P( ) of Mn is the tangent space 

denoted by Tn(P) or Tn(x
i). 

 

Indicatrix 

 We consider the function  defined for all line elements  

over the region R of Mn. The equation, 

 ,      (  fixed,  variable) 



Represent an (n - 1)-dimensional locus in Tn (P) i. e., a hypersurface. This 

hypersurface plays the role of unit sphere in geometry of the vector space Tn(P) 

and is called Indicatrix [28]. 

Cotangent space 

 Let Mn be a smooth manifold and let x be a point in Mn. Let TxM be the tangent 

space at x. Then cotangent space at x is defined as the  dual space of TxM  denoted 

by  Tx
*M  or  (TxM)*. Concretely, elements of the cotangent space are linear 

functional on TxM. That is, every element f ∈ Tx
*M  is a linear map f: TxM → R + 

,where R +   set of positive real numbers. The elements of Tx
*M are called cotangent 

vectors 

1.6. Pull- back tangent bundle,  Non-linear connection, Decomposition of 

T(TM – 0 ) and    T*(TM – 0 ). 

Pull- back tangent bundle (π∗∗∗∗T M):  Let Mn be an n-dimensional manifold. 

Suppose Tx M the tangent space at x ∈ M, and TM = ∪
Mx∈

TxM = ∪
Mx∈

{x} x TxM  the 

tangent bundle of M. Each element of T M has the form (x, y), where x ∈ M and y ∈ 

TxM . Let TM0 =T M \ {0}. The natural projection π : T M → M  is given by π(x, y) 

= x. 

The pull-back tangent bundle π∗TM is a vector bundle over T M0 whose fiber 

πv
∗T M at v ∈ T M0 is TxM , where π(v) = x. Then  

                   π∗ T M = {(x, y, v) | y ∈ Tx M0 , v ∈ Tx M }. 

 The natural basis for  πv
∗T M  is  { i = (v,

ix∂
∂ ) } for all i =1,2,……n.  

Non-linear connection 



 A non- linear connection on a manifold Mn is a collection of locally defined 1- 

homogeneous function  Nj
i  on (TM -0)  satisfying transformation rules 

(1.5.4)      
−
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(1.5.5)           Nj
i =

j

i

y

G

∂
∂ .  

Decomposition of T(TM – 0)  

 The vector spaces span { 
ix∂

∂ : i = 1,2,……n} depend on local coordinates. 

Therefore, we can not say about “ 
ix∂

∂  ‘’ direction in T(TM – 0 ). However, when 

Mn is equipped with a non – linear connection Nj
i  ,    let  

(1.5.6)                ∈ T(TM – 0 ), 

 whence  = i

_

xδ
δ

i

r

x

x

∂
∂  . Thus 2n – dimentional vector spaces Tp(TM – 0 ) has 

2n- dimensional subspaces,          VpTM = span {      and  

HpTM = span {  and these are independ of local coordinates. Let us define 

VTM = ∪
0−∈TMp

VpTM  and HTM = ∪
0−∈TMp

HpTM hence   T(TM – 0 ) = VTM ⊕  HTM . 

The vectors in VTM are called vertical vectors and victors in HTM are called 

horizontal vectors. The tangent of a geodesics is always a horizontal vectors 

geodesic spray G(x, y) is horizontal for all (x, y) ∈ (TM – 0). 

Decomposition of T*(TM – 0)  



 On TM the 1- forms dxi and dyi  satisfying law of transformation 

 (1.5.7)           dxi  = r

i

x

x
_

∂

∂  d
r

x
_

y                        

  (1.5.6)             dyi  = r

i

x

x
_

∂

∂  d
r

y
_

y + sr

xx

xi
__

2

∂∂

∂  
r

y
_

d
s

x
_

 .    

Let δ yi
y = dyi y + (x,y)dxj

y ,  in whence δ yi
y  = r

i

x

x
_

∂

∂  δ
r

y
_

y . The 2n – 

dimensional vector spaces, T*(TM – 0) has two n- dimensional subspaces, Vp
*TM = 

span {δ yi
p } and,  Hp

*TM = span { dxj
p } and these are independent of local 

coordinates. Then point wise  T*(TM- 0 ) = V*TM ⊕   H*TM  . Co-vectors in V*TM 

are called vertical co-vector and co-vectors in H*TM  are called horizontal co-

vectors. 

1.7.   Metric Tensor & Cartan torsion 

From equation (1.4.2)´ we can easily see that the quantities  defined by the 

equation (1.3.7) from the components of the covariant tensor of rank 2, also 

 are positively homogeneous of degree zero in  and symmetric in their 

indices. Due to homogeneity condition – (a) of section 3 for the function , 

we have, 

(1.7.1)           

By condition- (c) of section 3 it follows that inverse of matrix  exist. Thus, if 

 denote the inverse of , then 



(1.7.2)  

 where,  is well known kronecker delta. Therefore,, the tensor whose 

covariant and contravariant components are  and  is called the 

metric tensor or the first fundamental tensor of the Finsler space Fn. 

Cartan torsion tensor:  

Let x ∈ M , y ∈ TxM and L fundamental function on Manifold Mn, define 

 cy :  TxM   TxM  TxM → R  by cy (u,v,w ) = cijk u
i vj wk . The family c = { cijk } for 

all  y ∈ TxM , is called Cartan torsion.  The tensor   defined by 

(1.7.3)     

 is positively homogeneous of degree -1 in  and is symmetric in all their 

indices. This tensor is called Cartan’s C-tensor and satisfies 

(1.7.4)     

(1.7.5)    

 

1.8.   Magnitude of a vector. The Notion of Orthogonality 

 The metric tensor  may be used in two different ways, in defining 

the magnitude of a vector and also the angle between two vectors. 

         Let  be a vector, then the scalar X given by 

(1.8.1)  



is called the magnitude of this vector. 

         If  is another vector, then the ratio, 

(1.8.2)  

is called the ‘Minkowskian cosine’ corresponding to the (ordered) pair of 

directions (Rund [27]). It is obvious from (1.7.2) that Minkowskian cosine is 

non-symmetric in . 

Let  be a vector and  an arbitrary fixed direction, then the scalar 

(1.8.3)  

is called the square of magnitude of the vector  for the preassigned direction 

.If  is another vector, then the ratio, 

(1.8.4)  

is called the cosine of  for the direction . 

 It is to be noted that the concepts of magnitude of vector and the cosine 

between two vectors given by (1.8.3) and (1.8.4) stands at each point of the space 

in a pre-assigned direction  which has been called the element of support. Also 

the cosine given by (1.8.4) is symmetric in  (Berwald [4], Synge [31]) 

 To distinguish between the two magnitudes we call the magnitude given by 

(1.8.1) as the Minkowskian magnitude of   and that given by (1.8.3) the 

magnitude of . 



The equations (1.8.2) and (1.8.4) are used to define the Orthogonality in Fn. 

The vector  is said to be orthogonal with respect to  if 

(1.8.5)  

Thus according to this definition if  is orthogonal with respect to  then it is not 

necessary that  is also orthogonal with respect to . 

The vector  and  are said to be orthogonal (for a pre-assigned) if  

(1.8.6)  

This definition of Orthogonality is symmetric in  and . 

1.9. Connections and Covariant Differentiations 

 Any quantities in a Finsler space is function of line element (x, y). If  

S(x, y) is a scalar field in a Finsler space then    are not components of a 

covariant vector. If we have a non-linear connection , we can obtain the 

covariant vector field of the components 

 ,   where    . 

 Further, if we have quantities  which obey the transformation rule 

similar to Christoffel symbol the covariant derivatives  of a Finsler tensor field 

of (1, 1)-type is defined by 

(1.9.1)  



On the other hand, the partial derivatives of components of a tensor field  with 

respect to  gives a new tensor field, but we shall modify them as, 

(1.9.2)  

Where,  are components of a tensor field of (1, 2)-type. The collection 

( , , ) constitute a Finsler connection, and covariant derivatives given by 

(1.9.1) and (1.9.2) are called h- and v-covariant derivatives of  respectively.  

Finsler connection :  Suppose   is is a non-linear connection on Mn and ,  

are 0 & -1 degree  homogeneous function respectivelyin yi  from (TM – 0 ) to 

R+,  (M) the set of vector field on manifold Mn . A Finsler connection is a 

mapping 

             : Tp(TM – 0) (M)  (M), (Y, X) Y(X)  

Satisfying the properties 

1 -  is linear over R in X and Y (but not necessarily in y). 

2 – If f ∈ ∞C  (M) and y ∈ TxM – 0 . then in local coordinates 

         (f 
jx∂

∂ ) = df (
ix∂

∂ )
 

jx∂
∂ ) + f (y)

 
mx∂

∂ ) , 

(f 
jx∂

∂ ) = f  (y)
mx∂

∂ . 

For all X ∈ (M) and  does not depend on the local coordinates. 



For any Finsler connection ( , , ) we have five torsion tensors and three 

curvature tensors  hh, hv and vv-curvatures [Riemannian curvature (R), Beraldian 

Curvature (B) and third curvature (Q)]  which are given by, 

(1.9.3) (h)h-torsion:     

(1.9.4) (v)v-torsion:     

(1.9.5) (h)hv-torsion:   as the vertical connection   

(1.9.6) (v)h-torsion:   

(1.9.7) (v)hv-torsion:        

(1.9.8)  h-curvature:          

                                                                

(1.9.9)  hv- curvature:        

(1.9.10)  v- curvature:          

 The deflection tensor field  of a Finsler connection F� is given by 

(1.9.11)  

when a Finsler metric is given, various Finsler connections are determined from 

the metric. The well known examples are Cartan’s connection, Rund’s connection 

and Berwald’s connection. 



Cartan’s Connection 

 We are concerned with a Finsler space Fn = (Mn, L) which is to be endowed 

with the Cartan’s connection C� = ( ) constructed from the 

fundamental function . According to the theory of Finsler connections due 

to M. Matsumoto ([17], [18]), the C� is determined from the axiomatic stand point 

as follows:- 

 There exists a unique Finsler connection F�= ( , , ) which satisfies 

the following five conditions: 

(C1)  

(C2) (h)h-torsion:      

(C3) Deflection tensor field  

(C4)  

(C5) (v)v-torsion:      

This connection is called the Cartan’s connection and is denoted by  

        C� = ( ). 

The last two condition C4 and C5 give, 

(1.9.12)  

This shows that vertical connection of C� and Cartan’s C-tensor is identical. 

The first three conditions C1, C2 and C3 give, 



(1.9.13)  

(1.9.14)  

where,  

(1.9.15)  

and 

(1.9.16)  

is the Christoffel symbol of (Mn, L). Here ‘0’ denote contraction with . 

It is easy to verify from the axioms C1, C3 and equation (1.5.1), that 

(1.9.17) a).  ,        b).   ,       c).    

where,  is a unit vector in the direction of element of support , i.e. 

                   

Since,  is an indicatory tensor, Therefore, from (1.6.12) we have . Thus 

in view of (1.5.1) and condition C1, we have  where . It 

may also be verified that, 

(1.9.18)  

where,  is the angular metric tensor defined by 



(1.9.19)  

and  

Round’s Connection 

 The Rund’s connection of a Finsler space Fn = (Mn, L) is a Finsler 

connection which is obtained from Cartan’s connection C� by the C-process [18]. 

The C-process is characterized by expelling the torsion tensor . Thus the first 

two connection coefficients of the Rund’s connection R� are the same with those 

of the Cartan’s connection C�, while the third is equal to zero. Thus the Rund’s 

connection R� of the Finsler space Fn is given by R� = ( ). The torsion 

tensors of R� are such that, 

(1.9.20)  

 

The curvature tensors of R� are as follows 

(1.9.21)  

 While, the v-curvature tensor  of R� vanishes identically. We note that 

h-covariant differentiations with respect to C� and R� coincide with each other. 

Furthermore  in (1.9.21) is the Carton’s C-tensor  which is not the 

vertical connection of R� as it vanishes for R�. 



 The h-curvature K and hv-curvature F of R� may be given in terms of 

connection coefficients as, 

(1.9.22)  

 

Bernard’s Connection 

The Bernard’s connection of a Finsler space Fn = (Mn, L) is a Finsler connection 

which is obtained from Round’s connection R� by the P1-process [18]. The P1-

process is characterized by expelling the torsion tensor . The Berwald’s 

connection of Finsler space Fn is denoted by B�=( ) where 

(1.9.23)  

The Berwald’s connection B� is uniquely determined from metric function 

 of Fn by the following five axioms:- 

 (B1)  

 (B2) (h) h-torsion:   

 (B3) Deflection:   

          (B4) (v) hv-torsion:  

(B5) (h)hv-torsion:  

Thus the tensors of B� are such that 



(1.9.24)  

The v-connection coefficients  of B� are related to those of C� by 

(1.9.25)  

The curvature tensors of B� are as follows 

(1.9.2)  

The v-curvature tensor   of B� vanishes identically. 

The simpler forms of   and  of  B� may be given by, 

(1.9.27) ,                

 It is to be noted that B� is neither h-metrical nor v-metrical in general:- 

  ,               

where h- and v-covariant derivatives with respect to B� is denoted here by ( ) and 

‘.’ respectively. 

 

1.10.   Geodesics and paths in a Finsler space 



 The geodesic of a Finsler space are the curves of minimum or maximum arc-

length between any two points of the space. The differential equations of a 

geodesic in a Finsler space is given by [18] 

(1.10.1)     

where, s is the arc length of the curve  and  

(1.10.2)                 or 

(1.10.3)  

 Here Lagrangian function L is defined on TM by F(x, y) = 
2
1  L2(x, y),  

Where F: TM →R is the Finsler function 

Let Mn be a manifold with a Finsler connection F� = ( , , ). A curve 

C of the tangent bundle T(M) over Mn is called on h-path, if C is the projection of 

an integral curve of an h-basic vector field Bh(v), corresponding to a fixed v  Vn 

[18]. 

(1. 10.4)  

Geodesic spray  

Geodesic spray G ∈  (TM - 0) the set of vector field on (TM- 0) is locally defined 

as 



  (1. 10.5)            G  = yi 
ix∂

∂  -2Gi(x,y)   

Here G does not depend on local coordinate and Gi is defined by (1. 10.3). It is also 

called path space 

1.11.   Special Finsler Spaces 

 In Riemannian geometry we have many interesting theorems such that if a 

Riemannian space is assumed to have special geometrical properties, or to satisfy 

special tensor equations, or to admit special tensor fields, then the space reduces to 

one of well-known space forms, for instance, Euclidean space, spheres, topological 

spheres, projective spaces and so on. 

 On the other hand, in Finsler geometry we have special Finsler spaces, 

namely, Riemannian spaces and Minkowskian spaces, but there are various kinds 

of Riemannian spaces and Minkowskian spaces. As a consequence we have an 

important problem to classify all the Minkowskian spaces. It is easy to write down 

concrete forms of fundamental functions L(x, y) which are interesting as a function, 

for instance, a Randers metric, Kropina metric, generalized Kropina metric, 

Matsumoto metric and cubic metric. 

 It is essential for the progress of Finsler geometry to find Finsler spaces, 

which are quite similar to Riemannian spaces, but not Riemannian and 

Minkowskian spaces, which are analogous to flat spaces, but not flat. In the present 

section, we are mainly concerned with special tensor equations satisfied by torsion, 

curvature and other important tensors. In the following, we give some definitions 

of special Finsler spaces and their corresponding result. 

 



 

(A). Riemannian space 

 A Finsler space Fn = (Mn, L(x, y)) is said to be a Riemannian space, if its 

fundamental function L(x, y) is written as, 

  L(x, y )=  

 Among Finsler spaces, the class of all the Riemannian spaces is 

characterized by  i.e. vertical connection Gv of the Cartan’s connection CG 

is flat. 

(B). Locally Minkowskian space 

 A Finsler space Fn = (Mn, L(x, y)) is called locally Minkowskian space, if 

there exists a co-ordinate system (xi) in which L is a function of yi only [18]. 

A Finsler space is locally Minkowskian if and only if 

For CG:  

For RG:  

For BG:  

(C). Berwald space 

 If the connection coefficient  of the Berwald’s connection BG given by, 

   

are function of position alone, the space is called a Berwald space [18]. 



A Finsler space is Berwald space if and only if 

For CG:  

For RG:  

For BG:  

 

(D). Landsberg space 

 A Finsler space is called a Landsberg space [18] if the Berwald connection 

BG is h-metrical i.e. . 

In terms of the Cartan’s connection CG, a Landsberg space is characterized by, 

(a). ,   or    (b).     

(E). C-reducible Finsler space 

 A Finsler space of dimension n, more than two, is called C-reducible if  

is written in the form [18]:- 

   

where,  is the torsion vector,  is the angular metric tensor given by 

 and  is the sum of cyclic permutation of i, j, k. 

(F). Semi C-reducible Finsler space 



 A Finsler space of dimension n, more than two, is called semi C-reducible if 

 is written in the form [18]:- 

   

 where,  and p + q = 1. 

 

(G). Quasi C-reducible Finsler space 

 A Finsler space of dimension n, more than two, is called quasi C-reducible if 

there exists a symmetric Finsler tensor field, satisfying , in terms of 

which  is written in the form [18]:- 

   

(H). P-reducible Finsler space 

 A Finsler space of dimension n, more than two, is called P-reducible if 

(v)hv-torsion tensor   of CG is written in the form ([12], [22]):- 

   

(I). C2-like Finsler space 

 A Finsler space is called C2-like Finsler space [23] if 

   

(J). C3-like Finsler space 

 A Finsler space is called C3-like Finsler space [25] if 



   

where,  and  are components of arbitrary indicatory tensors. 

(K). S3-like Finsler space 

A Finsler space Fn  with fundamental function L(x, y) is called S3-like Finsler space 

[18] if v-curvature tensor  of CG is written in the forms:- 

   

where, S is a scalar and function of position alone. 

(L). S4-like Finsler space 

 A Finsler space Fn is called S4-like Finsler space [25] if v-curvature tensor 

 of CG is written in the form:- 

   

where,  are components of a symmetric covariant tensor of second order and 

are (-2)p-homogeneous in yi satisfying . 

(M). R3-like Finsler space 

A Finsler space of dimension more than three, is called R3-like Finsler space 

[20] if h-curvature tensor  of CG is written in the 

forms:- 

   

where,  are components of a covariant tensor of second order. 



(N). Finsler space of scalar curvature 

 A Finsler space of scalar curvature K is characterized by [18]:- 

    

where,  are components of (v)h-torsion tensor of CG defined by (1.8.6) 

 (O) One – form  

A one-form on a differentiable manifold is a smooth section of the cotangent 

bundle. It is a smooth mapping of the total space of the tangent bundle of M to R 

whose restriction to each fiber is a linear functional on the tangent space. 

Symbolically, 

 : TM → R ,  x =  : TxM → R  where  x is linear.  

 In a local coordinate system, a one-form is a linear combination of the differentials 

of the coordinates: x = bidxi    where the bi  are smooth functions  

(Fibers over x).  It is an order-1 covariant tensor field 

Examples 

1 - The second element of a three-vector is given by the one-form [0, 1, 0]. That is, 

the second  element of [x ,y ,z] is  [0, 1, 0] · [x, y, z] = y. 

2-The mean element of an n-vector is given by the one-form [1/n, 1/n, ..., 1/n]. 

That is, mean    (v) = [1/n, 1/n, 1/n].v 

(P). Finsler space with ( )-metric 



 In the paper [26] concerned with the unified field theory of gravitation and 

electromagnetism Randers wrote, “Perhaps the most characteristic property of the 

physical world is the unidirectional of time like interval. Since there is no obvious 

reason why this asymmetry should disappear in the mathematical description it is 

of interest to consider the possibility of a metric with asymmetrical property. It is 

known that many reasons speak for the necessity of a quadratic induction. The only 

way of introducing an asymmetry while retaining the quadratic indicatrix, is to 

displace the center of the indicatrix. In other words we adopt as indicatrix an 

eccentric quadratic hypersurface. This involves the definition of a vector at each 

point of space determining the displacement of the center of the indicatrix. The 

formula for the length ds of a line element dxi must necessarily be homogeneous of 

first degree in dxi. The simplest “eccentric” line element possessing this property 

and of course being invariant is 

(1.11.1)  

where,  is the fundamental tensor of the Riemannian affine connection and  is 

a covariant vector determining the displacement of the center of the indicatrix.” 

 After sixteen years, in the monograph [13] concerned with electron 

microscope Ingarden wrote:- 

 “In arbitrary curvilinear co-ordinate systems the Lagrangian function of 

electron of electron optics may be written in the form 

  



where,  is an isotropic tensor reducing in Lorentz systems to the constant unit 

tensor . According to their physical interpretation, we shall call  the 

gravitational tensor and  the electromagnetic vector. 

The special kind of Finsler space with the metric (1.10.1) we shall call a 

Randers space, since Randers (1941) seems to have been the first consider this 

kind of spaces, although he regarded them not as Finsler space but as “affinely 

connected Riemannian spaces” which is rather confusing notion. Randers could not 

use, Therefore, the methods of Finsler’s geometry and tried to reduce the study of 

(1.9.1) to a sort of 5-dimensional Kalza-Klein geometry, where Riemannian 

method plus a method of special projecting of tensors are used. Spaces with metric 

of the form (1.9.1) were also considered by Stephenson and Kilmister [29] in 1953, 

but in investigations of these spaces they simply use pure Riemannian methods, 

which are obviously erroneous.” 

On the other hand, in 1959-1961 Kropina considered protectively flat Finsler 

spaces equipped with the metrics 

(1.11.2)   

(1. 11.3)  

Generalizing these special Finsler metrics of Randers type (1.10.1) and Kropina 

type (1.10.2), Matsumoto defined in 1972, the notion of -metric as follows:- 

Definition-1: A Finsler metric  [18] is called an -metric, when L is 

positively homogeneous function  of first degree in two variables 



      and   

It is usual to suppose that  is a Riemannian metric, i.e. non-degenerate (regular) 

and positive definite, but there are some cases for applications where these 

restrictions are relaxed. Further, we shall have to confine our discussions to 

suitable domain of (x, y) on account of special form of the function . 

Definition-2: The -metric  [18] is called a Randers metric and 

Finsler space with this metric is called a Randers space. 

 In 1980 Hashiguchi and Ichijyo gave the following interesting remark on 

Randers metric. 

Proposition-11.1: A Randers metric  [11] is positive valued, if and only 

if  is positive-definite, provided that  is positive-definite. 

Definition-3: The -metric  [18] is called Kropina metric and Finsler 

space with this metric is called a Kropina space. 

 Wrona [35] has given the interesting example of Kropina metric. For a 

Kropina space the direction  belonging to the hyperplane 

 of the tangent space at any point x must be obviously 

excluded. The indicatrix is to extend asymptotically along this hyperplane. 

Therefore, a Kropina metric is never positive definite. 

Although Kropina herself seems to have played attention to such a metric 

from a pure mathematical standpoint, there are close relation between this kind of 

metric and Lagrangian function of analytic dynamics. 



Definition-4: The -metric  ( ) [18] is called a 

generalized m-Kropina metric. 

 The Finsler metric given by (1.9.3) is called a cubic metric and was 

considered by Wegener (1935) and also by Kropina. It is regarded as a direct 

generalization of Riemannian metric in a sense. 

 In the astronomy we measure the distance in a time, in particular, in the light 

year. When we take a second as the unit, the unit surface (indicatrix) is a sphere 

with radius of 300,000 km. To each point of our space is associated such a sphere, 

this defines the distance (measured in a time) and the geometry of our space is the 

simplest one, namely, the Euclidean geometry. Next, when a ray of light is 

considered as the shortest line in the gravitational field, the geometry of our space 

is Riemannian geometry. Furthermore, in an isotropic medium the speed of the 

light depends on its direction, and the unit surface is not any longer a sphere. 

 Now, on the slope of the earth surface we sometimes measure the distance in 

a time namely, the time required such as seen on a guidepost. Then the unit curve 

(indicatrix) taken a minute as the unit, will be general closed curve without center, 

because we can walk only a shortest distance in an uphill road than in downhill 

road. This defines a general geometry (Finsler geometry), although it is not exact. 

The shortest line along which we can reach the goal, for instance, the top of a 

mountain as soon as possible will be a complicated curve. 

 The exact formulation given by Matsumoto is as follows:- 

Proposition-1.1.2. A slope, the graph of a function , [21] of the earth 

surface is regarded as a two-dimensional Finsler space with fundamental function, 



    

where, v and w are non-zero constants and  

   

   

This  is the usual induced Riemannian metric and  is a derived form  

   

The two constants v and w are such that one can walk v meters per minute on the 

horizontal plane and 2w is equal to the acceleration of falling. Aikou, Hashiguchi 

and Yamauchi generalized and normalized the above metric as follows:- 

Definition-5: An n-dimensional -metric  [1] is called a slope metric 

or Matsumoto metric and a Finsler space equipped with this metric is called a 

Matsumoto metric. 

Definition-6 projective: If any geodesic of Fn coincides with a geodesic of 
_

F n as a 

set of points and vice versa, then the change L→
_

L of the metric is called projective 

and Fn is said to be projective to 
_

F n 

Definition-7 Conformal change : Let Fn = (Mn , L ) and 
_

nF  = (M
n , 

_

L ) be two 

Finsler spaces on a same underlying manifold Mn . If the angle in Fn is equal to 

that in  
_

nF   for any tangent vectors, then Fn is called conformal to 
_

nF  and the 

change L → 
_

L  of the metric is called a conformal change of Finsler metric. 



Definition-8  - change : Let Rn be associated Riemannian spaces with a Finsler 

spaces Fn  with ( ,  ) – metric ,the  - change is a change from Rn to Fn . Randers 

change ,Kropina change .Matsumoto change are  – change . 

Definition—9 Mean Cartan torsion : Mean Cartan torsion Iy : TxM → R defined 

by Iy (u) = Ii(y) ui , 

 where Ii = gkj cijk  and  u = ui 
ix∂

∂ .  

Definition—10 Landsberg Curvature:  The h- covariant derivative of cartan 

tensor along geodesics gives rise to the landsberg curvature Ly : TxM   TxM  

TxM → R by Ly (u,v,w ) = Lijk(y) u
i vj wk  , where     

L ijk = cijk|0 = cijk|s y
s  .The family L = { Ly } for all y ∈ TxM are called Landsberg 

curvature .  

Definition-11 Mean Landsberg Curvature:  The h- covariant derivative of Mean 

cartan tensor along geodesics gives rise to the Mean landsberg curvature Jy : TxM 

→ R ,defined by Jy (u) =Ji(y) ui where Ji = Ii|s y
s , u = ui 

ix∂
∂ . 

Definition-12 Landsberg Metric and Weakly Landsberg Metric: A metric 

Landsberg Curvature and Mean Landsberg Curvature are veins i.e. L = 0 and J = 0 

are respectively called Landsberg Metric and Weakly Landsberg Metric. 

Berwald curvature : For y ∈ TxM0 ,define By : TxM   TxM  TxM →  TxM  by By 

(u,v,w) = Bi
jkl(y) uj vkwl

ix∂
∂  where Bi

jkl(y) = 
lkj

i

yyy

G

∂
∂3

(y) . B is called Berwald 

curvature ,a Finsler metric is called  Berwald metric if B = 0 ,  that is  
lkj

i

yyy

G

∂
∂3

= 0 . 



1.12. Intrinsic fields of Orthonormal frames  

 Berwald theory of two-dimensional Finsler space is developed based on the 

intrinsic field of orthonormal frame which consists of the normalized supporting 

element  and unit vector orthonormal to . Following idea Moor introduced, in a 

three-dimensional Finsler space, the intrinsic field of orthonormal frame which 

consists of the normalized supporting element, the normalized torsion vector 

 and a unit vector orthogonal to them and developed a theory of three-

dimensional Finsler spaces. Generalizing the Berwald’s and Moo’s ideas, Miron 

and Matsumoto ([18], [20], [24]) developed a theory of intrinsic orthonormal frame 

fields on n-dimensional Finsler space as follows. 

          Let L(x, y) be the fundamental function of an n-dimensional Finsler space 

and introduce Finsler tensor fields of (0, 2-1) type,  = 1,2,…..,n by 

                      

 Then we get a sequence of covariant vectors 

          

Definition-1: If (n-1) covariant vectors ,  = 1, 2,….., n-1 are linearly 

independent, the Finsler space is called strongly non-Riemannian. 

Assuming above n-covectors  are linearly independent and put 

. Here and in following we use raising and lowering of indices as 

. 



Further putting  and matrix  is of rank (n-1). 

Second vector  is introduced by 

,  

where,  is the length of  relative to . Next we put , 

=  and so third vector  is defined by, 

 ,  

where,  is the length of  relative to . The repetition of above process gives a 

vector , r = 1, 2,……, n-1 defined by 

  

where, =   is the length of  relative to  and 

. 

Definition-2: The orthonormal frame { },  = 1, 2,….., n as above defined in 

every in every co-ordinate neighborhood of a strongly non-Riemannian Finsler 

space is called the ‘Miron Frame’. 

 Consider the Miron frame { }, If a tensor  of (1, 1)-type, for instance, is 

given then 

   

where, the scalars  are defined as 



  

These scalars  are called the scalar components of  with respect to Miron 

frame. 

Let  be scalar components of the h-covariant derivatives  and  

be scalar components of the v-covariant derivatives  with respect to CG of the 

vector  belonging to the Miron frame. Then 

  , 

 , 

where, the scalars  and  satisfying the following relations [18]. 

      , 

 ,    

Definition-3: The scalars  and  are called connection scalars. 

 If  be the scalar components of the (h)hv-torsion tensor  i.e., 

            

then [13], we have 

Proposition-1:[18]  

 



 for , where C is the length of . 

Now, we consider scalar components of covariant derivatives of a tensor field, for 

instance, . Let  and  be the scalar components of h-and v-covariant 

derivatives with respect to CG respectively of a tensor  i.e., 

(1.12.1)  and 

(1.12.2) , then we have [34] 

(1.12.3)  and 

(1.12.4) . 

 The scalar components  and  are called h-and v-scalar derivative 

of  respectively. 

Two-dimensional Finsler space 

 The Miron frame { } is called the Berwald frame. The first vector  

is the normalized supporting element  and the second vector  is 

the unit vector orthogonal to . If  has non-zero length C, the . The 

connection scalars  and  of a two-dimensional Finsler space are such 

that [18], 

            , which implies 

(1.12.5)  



There is only one surviving scalar components of  namely . If we put 

. Then  

             

 The scalar I is called the main scalar of a two-dimensional Finsler space. 
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Chapter 2 

 

H-RANDERS CHANGE OF FINSLER METRIC  

 

2.1     Introduction  



Let Fn = (Mn, L) be n-dimensional Finsler space, where Mn is n-dimensional 

differentiable manifold and L(x, y) is the Finsler fundamental function. In 1974, M. 

Matsumoto ([1], [7]) introduced the transformation of Finsler metric  

(2.1.1).  L*(x, y) = L(x, y) + bi(x) yi, 

and obtained the relation between the imbedding class numbers of tangent 

Riemannian spaces to (Mn, L) and (Mn, L*). In 1980 he [8] obtained the relation 

between the Cartan’s connections of (Mn, L) and (Mn, L*). Assuming L(x, y) as a 

Riemannian metric, he obtained various important tensors of Finsler space  

(Mn,L*). The Finsler space equipped with metric  

L*(x, y) = iy)x(ibjyiy)x(ija +
 

is called Randers metric. This metric has been introduced by G. Randers in 1941 

[11], from the stand-point of general theory of relativity and applied to the theory 

of electron microscope.  R. S. Ingarden [4] named it as Randers metric. The 

geometrical properties of this space have been studied by various authors ([3], [9], 

[10], [12]). In all these theories bi has been considered as functions of coordinate’s 

xi only. 

 In 1980, H. Izumi [5], while studying the conformal transformation of 

Finsler spaces introduced the h-vector bi which is v-covariantly constant with 

respect to Cartan’s connection CΓ (i.e. bi|j = 0) and satisfies the relations LCi
h
j bh = 

ρ hij, where Ci
h
j  are the components of (h)hv- torsion tensor and hij are components 

of angular metric tensor. Thus the h-vector is not only a function of coordinates xi, 

but also a function of directional arguments satisfying ijhibiL ρ=∂ɺ . 

 In this chapter we consider the transformation of Finsler metric given by  



(2.1.2)                               L(x, y) = L(x, y) + β(x, y) 

where β = bi(x, y)yi  and bi(x, y) are components of h-vector in (Mn, L). The Finsler 

space with metricL(x, y) will be denoted byFn   whereas the metric 

 L(x, y) will be denoted by Fn. The quantities corresponding toFn will be written 

by putting bar (i.e. − ) on the top of that quantities.  

2.2  Cartan’s Connection of Fn.  

Let the Cartan’s connection of Finsler space Fn be denoted by 

 CΓ = )i
jkC,i

jG,i
jkF( . Since bi(x, y) are components of h-vector, we have 

(2.2.1) (a) bi|j = h
ijChbibj −∂ɺ = 0  

                    (b) LCi
h
j bh = ρ hij. 

Hence we obtain, 

(2.2.2)  1Libj
−=∂ɺ ρ hij. 

Since hij are components of an indicatrx tensor i.e. hij  yj = hij yi = 0, we have 

ibi =β∂ɺ . Therefore differentiating (2.1.2) with respect to yi, we get 

(2.2.3)L i = Li + bi, 

where Li = Li∂ɺ . Since the normalized element of support li of Fn is given by li = 

Li∂ɺ , equation (2.2.3) may be written as l i = li + bi.  



Differentiating (2.2.3) with respect to yj, using (2.2.2) and the fact that 

ijh1Lilj
−=∂ɺ , we get 

(2.2.4)       hij = σ hij,  

where σ = L−1L(1 + ρ). Since hij = gij − li lj, from (2.2.4) and (2.2.5), we get 

(2.2.5)       gij = σ gij + (1− σ) li lj +(li bj +lj bi) + bi bj. 

The contravariant componentsgij of the fundamental tensorgij ofFn, are 

obtained from   

gijgjk = δi
k, and is given by 

(2.2.6)         gij = σ−1 gij − σ−3(1+ρ)2(1 − b2− σ)l i lj − σ−2(1 + ρ)(l i bj +lj bi), 

where b is the magnitude of the vector bi in Fn and bi = gij bj. Now we establish the 

following: 

 

 

 

Lemma 2.2.1. For  a Finsler Space of dimention n (n > 2 ) the scalar ρρρρ in h-

vector is a function of coordinate’s xi only. 

Proof. Since  

(2.2.7)  )ikhjljkhil(
1LijkC2ijhk +−−=∂ɺ , 

 Differentiating (2.2.1) (b) with respect to yk and using (2.2.2) we get 



  )]ikhjljkhil(
1LijkC2[ijh)k(hkhh

ijChb)h
ijCk(Lhbh

ijCkl +−−ρ+ρ∂=ρ+∂+ ɺɺ , 

which after using (2.2.1) (b) and the fact that  mijCk
hmgh

mkCm
ijC2h

ijCk ∂+−=∂ ɺɺ , we 

obtain 

(2.2.8)     )ikhjljkhil(
1LijkC2ijh)k(nbmijCk(LijkCijhkl

1L +ρ−−ρ+ρ∂=∂+ρ−ρ− ɺɺ . 

Taking skew symmetric part in j and k in the above equation, we get 

  )ikhjlijhkl(
1Likh)j(ijh)k()ikhjlijhkl(

1L −ρ−+ρ∂−ρ∂=−ρ− ɺɺ  . 

Hence  ikh)j(ijh)k( ρ∂−ρ∂ ɺɺ = 0, which after contraction with gij gives (n − 2) 

)k( ρ∂ɺ = 0. Hence ρ is independent of yk for n≠2 and we have the lemma (2.2.1). 

 From equations (2.1.1), (2.2.4) and lemma (2.2.1) we get 

(2.2.9)  im)1(1Li ρ+−=σ∂ɺ , 

where  

(2.2.10)  il)
1L(ibim β−−=  

Differentiating (2.2.5) with respect to yk and using (2.2.4), (2.2.5), (2.2.8) and 

(2.2.9) we get 

(2.2.11)    Cijk = σ Cijk + 
L2

)1( ρ+ (hij mk +hjk mi + hki mj). 

From the definition of mi, it is evident that  

(2.2.12) (a) mil
i = 0, (b) mi b

i = b2 − β2/L2 = mi m
i.  



                 (c) hij m
i = hij b

i = mj,  (d)  Cihj m
h = L−1 ρ hij. 

From (2.2.1), (2.2.7), (2.2.11) and (2.2..12), we get 

(2.2.13)  )jmh
ihimh

jhhmijh(
L2

1h
ijC

h
ijC +++=  

   hljmim
L

L
ijh

2L

2
2b

L2

L

L

1













+

























 β−+ρ− . 

 From equations (2.2.2) and (2.2.3) we obtained 

(2.2.14)    
_

L
ij
 = (1 + ρ) Lij, 

(2.2.15)    L ijk = (1 +ρ) Lijk, 

where Lij = Lji∂∂ ɺɺ , Lijk = Lkji ∂∂∂ ɺɺɺ . From equation (2.2.14) we obtained 

(2.2.16)       ∂kL ij = (1 + ρ) ∂kL ij + Lij ρk, 

where ρk = ∂ρ/∂xk. Since h-covariant derivative of Lij andL ij with respect to CΓ 

vanishes, we have 

(2.2.17)  r
jkFirLr

ikFrjLr
kGijrLijLk ++=∂ , 

(2.2.18)  r
jkFirL

r
ikFrjL

r
kGijrLijLk ++=∂ . 

The equation (2.2.14) and lemma (2.2.1) serve the purpose to find the 

relation between v-connection components of Fn andFn with respect to CΓ. For 

this purpose we put  



(2.2.19)  i
jkF

i
jkFi

jkD −= ,      i
kG

i
kGi

k0D −= . 

Here 0 in index, denote the contraction with yj, for instance jyi
jkDi

k0D = . 

The difference i
jkD  is obviously a tensor of type (1,2). Substituting the 

values of ∂kL ij and ijLk∂  from (2.2.17) and (2.2.18) in (2.2.16) and using (2.2.14), 

(2.2.15), (2.2.19), we get 

(2.2.20)  kijLr
jkDirLr

ikDrjLr
k0DijrL)(1( ρ=++ρ+ . 

In order to find the difference tensor ijkD , we had to constructed supplementary 

equation to (2.2.20). From (2.2.3), we obtain ∂jL i = ∂jL i + ∂jbi. Since the h-

covariant derivative of Li with respect to CΓ vanishes and bi|j = ∂jbi − r
ijFrbibr

r
jG −∂ɺ ,  

this equation may be written as  

(2.2.21)  r
ijFrbibr

r
jGj|ibr

ijFrLr
jGirL

r
ijFrL

r
jGirL +∂+++=+ ɺ . 

Since irLibr ρ=∂ɺ , in the light of equations (2.2.14) and (2.2.19), we have 

(2.2.22)  j|ibr
ijD)rbrl(

r
j0DirL)1( =++ρ+ . 

The difference tensor ijkD  is now found from equation (2.2.20) , (2.2.22) and the 

lemma given below. 

Lemma [7] 2.2.2. The system of algebraic equations  

 (i)  L ir  A
r = Bi (ii) (l r + br)A

r = B 



has a unique solution Ar for given B and Bi such that Bi l
i = 0. The solution is 

given by  

(2.2.23)       Ai = L Bi +
L

1 (B −−−− L Br b
r)yi. 

It is obvious that (2.2.22) is equivalent to the two equations 

(2.2.24)  ijE2r
ijD)rbrl(2)r

i0DjrLr
j0DirL)(1( =+++ρ+  

(2.2.25)  ijF2)r
i0DjrLr

j0DirL)(1( =−ρ+  

where, we put  

(2.2.26)  2Eij = bi|j + bj|i, and 2Fij = bi|j − bj|i. 

Applying Christoffel process to (2.2.20), we get 

(2.2.27) 

 jkiLijkLkijL)r
j0DkirLr

i0DjkrLr
k0DijrLr

ikDrjL2)(1( ρ−ρ+ρ=−++ρ+ . 

Contraction of (2.2.24), (2.2.25) and (2.2.27) by yj gives 

(2.2.28)  0iE2r
i0D)rbrl(2r

00DirL)1( =++ρ+  

(2.2.29)  0iF2r
00DirL)1( =ρ+  

(2.2.30)  ryrkiL)r
00DkirLr

i0DkrLr
k0DirL)(1( ρ=++ρ+ . 

Moreover contraction of (2.2.28) by yi gives 

(2.2.31)  00Er
00D)rbrl( =+ . 



Applying lemma (2.2.2) to the equations (2.2.29) and (2.2.31), we obtain  

(2.2.32)  iy]rb0rF
)1(

L2
ooE[

L

1i
0F

)1(

L2i
00D

ρ+
−+

ρ+
=  

where we put 0jFijgi
0F = . After replacing k by j in equation (2.2.30) and adding it 

in equation (2.2.25), we get 

(2.2.33)  ijAr
j0DirL =  

where 

(2.2.34)  .r
00DijrL

2

1
]ijLryr2

1
ijF[1)1(ijA −ρ+−ρ+=  

The equation (2.2.28) can be written as  

(2.2.35)  iAr
i0D)rbrl( =+  

where  

(2.2.36)  r
00DirL

2

)1(
0iEiA

ρ+−= . 

Substituting the value of r00D  from (2.2.32) in (2.2.34), we obtain 

(2.2.37)  r
ijrij

r
rijij FLLLyFA 0

1

2

1
)1( 

 −++= − ρρ
 
                                   

ij
r

roo LbLFE
L

})1(
2

1
{

1
0−++ ρ ] . 

Substituting the value of 0iF  from (2.2.29) in (2.2.36), we get 

(2.2.38)                       Ai = Ei0 − Fi0. 



Applying lemma (2.2.2) to equations (2.2.33) and (2.2.35) , we get 

(2.2.39)  iy)rbrjLAjA(
L

1i
jLAi

j0D −+= . 

Finally we deal with (2.2.27) and (2.2.24), we obtain 

(2.2.40) (a) ijkHr
ikDjrL =  (b) ikHr

ikD)rbrl( =+  

where  

(2.2.41) 

 )jkiLijkLkijL(1)1(r
i0DjkrLr

k0DijrLr
j0DkirLijkH2 ρ−ρ+ρ−ρ++−−=

 

       and
 

(2.2.42)  )r
i0DjrLr

j0DirL(
2

)1(
ikEikH +ρ+−= . 

Hence Hijk and Hij are written in terms of known quantities. Applying lemma 

(2.2.2) to the equations (2.2.40), we can find the concrete value of  

(2.2.43)  iy)rbjrkLHjkH(
L

1i
jkLHi

jkD −+= , 

                                           where jrkHirgi
jkH = . 

 

 

Theorem 2.2.1. The cartan’s connection CΓΓΓΓ = ( i
jkC,

i
jG,

i
jkF ) of the Finsler 

spaceFn are completely determined by the equations (2.2.13), (2.2.39) and 

(2.2.43) in terms of the Cartan’s connection of Fn. 



 

 

 

2.3. Relationship of Randers change with projective change:  

  

We consider the Berwald connection BΓ = ( )i
jG,i

jkG which is given by  

 ),FjFrj
ry(ijg)y,x(iG2 ∂−∂∂= ɺ where F=L2/2, iGj

i
jG ∂= ɺ  and i

jGk
i
jkG ∂= ɺ . 

Since iG2jyi
jG = , therefore from (2.2.19) we get iG2

i
G2i

00D −= . Hence from 

(2.2.32), we obtain 

(2.3.1)  += iG2
i

G2 iy]rb0rF
)1(

L2
ooE[

L

1i
0F

)1(

L2

ρ+
−+

ρ+
. 

From this equation ,we have 

(2.3.2)  )iyj0Fjyi
0F(

)1(

LiyjGjyiGiy
j

Gjy
i

G −
ρ+

+−=− . 

Now let Fn be a Douglas space. Then iyjGjyiG −  is homogeneous polynomial of 

degree three in yi  [8]. From (2.3.2) we may state the following: 

Theorem 2.3.1. Let Fn be a Douglas space andFn is obtained from Fn by h-
Randers change of its metric. TheFn is a Douglas space if and only if 

         L )iyj0Fjyi
0F( −  is homogeneous polynomial of degree three in yi. 

 Now let us suppose that the h-Randers change of Finsler metric given by 

(1.1.2) is projective. Then [8] 



(2.3.3)  Gi = Gi + P(x, y) yi, 

where P(x, y) a scalar function and is called the projective factor. Comparing 

equation (2.3.3) with (2.3.1) we get 

  iy]rb0rF
)1(

L2
ooE[

L2

1i
0F

)1(

L

ρ+
−+

ρ+
= P(x, y) yi 

which may be written as  

(2.3.4)  iyi
oF λ= , 

where λ = rb0rF2}00E
L2

1
)y,x(P{

L

1 +




 −ρ+ . Since 0hyihgi
0F = , equation (2.3.4) 

gives λ = 0. Consequently, we have i
0F  = 0. 

 

Theorem 2.3.2. The h-Randers change of Finsler metric is projective if and 

only if  i
0F  = 0. 

 In view if theorem (2.3.1) and (2.3.2) we have the following: 

Theorem 2.3.3. Let h-Randers change of Finsler metric is projective. Then a 

Douglas space is transformed to a Douglas space.  

 

 We are concerned with the Berwald connection BΓ = )i
jG,i

jkG(  which  

is given by  ),FjFrj
ry(ijg)y,x(iG2 ∂−∂∂= ɺ

 
where  F =  L2/2,  iGj

i
jG ∂= ɺ

 



                            
and i

jGk
i
jkG ∂= ɺ . 

The Douglas tensor of Finsler space is defined by  

(2.3.5)  )h
jkiGh

ijkGh
kijGhyijkG(

1n

1h
ijkGh

ijkD δ+δ+δ+
+

−=  

where h
ijk

h
ijk GG ∂= ɺ  is the hv-curvature tensor of Berwald connection BΓ,  

Gij  = r
ijrG and ijGkijkG ∂= ɺ  [9]. If the Finsler space Fn ,is projective toFn then 

h
ijkDh

ijkD = [9]. Thus from equation (2.2.5), we obtain 

(2.3.6)                            α
α=α

α
ρ+

ijkDhh
L

1
ijkDhh

L

)1( . 

Since the hv-torsion tensor of Cartan connection is given by h
ijkGhy

2

1
ijkP −= , 

therefore from equation (2.3.5), we have 

(2.3.6),  )kiGjhhjkGihhijGkhh(
)1n(

1
hlijkP

L

2
hijkGijkDhh ++

+
−+=α

α  

where Ghijk = gαh
α
ijkG . Using equation (2.3.6)′ to the equation (2.3.6), we have 

(2.3.7)  







++

+
−+ρ+ )kiGjhhjkGihhijGkhh(

)1n(L

1
hlijkP

2L

2
hijkG

L

1
)1(  

   = )kiGjhhjkGihhijGkhh(
)1n(L

1
hlijkP

2
L

2
hijkG

L

1 ++
+

−+ . 

Now suppose that the Finsler spaces Fn andFn are Landsberg spaces. Then 

 Pijk =Pijk = 0 [1-721p.]. Under this condition (2.3.7) becomes 



 

(2.3.8)  







++

+
−ρ+ )kiGjhhjkGihhijGkhh(

)1n(L

1
hijkG

L

1
)1(  

   = )kiGjhhjkGihhijGkhh(
)1n(L

1
hijkG

L

1 ++
+

− . 

Moreover, for Landsberg space [1- 721p] Ghijk – Gihjk = 0 andGhijk –Gihjk = 0. 

This leads to 

(2.3.9)       hij(Ghk −Ghk) + hik(Ghj −Ghj) − hjh(Gki −Gki) −hkh(Gij −Gij) = 0 

Contracting (2.3.9) with gij, we get 

(2.3.10) Ghk −Ghk = )y,x(shkh
1n

1

+
 

where s(x, y) = gij (Gij −Gij). Therefore we have 

Theorem 2.3.3. Let Fn andFn be Landsberg spaces andFn is obtained by 

projective h-Randers change, then Ghk −−−−Ghk = )y,x(shkh
1n

1

+
, where 

 s(x, y) = gij (Gij  −−−−Gij ). 

 If a Finsler space satisfies the condition Gij = o, we call it a Weakly-

Berwald space [6]. If Fn andFn are Weakly-Berwald spaces then equation (2.3.7) 

becomes 

(2.3.11)  







+ρ+ hlijkP

2L

2
hijkG

L

1
)1( = hlijkP

2
L

2
hijkG

L

1 + . 



But α
α=+ ijkGhh

L

1
hlijkP

2L

2
hijkG

L

1 , therefore in view of equation (2.2.5), above 

equation reduces to 

(2.3.12)  0)ijkGijkG(hh =α−α
α . 

Now if Fn is projective to Fn, then from (2.3.3) ,we get 

(2.3.13)  αδ+αδ+αδ+α+α=α
jkiPijkPkijPyijkPijkGijkG , 

where Pij = Pji∂∂ ɺɺ , PkjiijkP ∂∂∂= ɺɺɺ . Substituting (2.3.13) in (2.3.12) we get 

(2.3.14)          hhk Pij + hih Pjk + hhj Pki = 0. 

Contraction of  (2.3.14) with ghk gives (n + 1) Pij  = 0. This equation shows that Pi 

(= Pi∂ɺ ) does not depend on yi. Thus we have 

Theorem 2.3.4. Let Fn andFn be Weakly Berwald spaces andFn is obtained 

by projective h-Randers change. Suppose P(x, y) denote the projective factor 

of this change. Then Pi does not depend on yi. 
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Chapter 3 



 

RANDERS CONFORMAL CHANGE OF A FINSLER SPACE 

OF DOUGLAS TYPE 

 

                      

3.1   Introduction  

          In 1941 ,G.Randers ([1], [7], [10]) introduced a special metric 

 ds = iy)x(ibjyiy)x(ija +  in a view point of General theory of Relativity. Since 

then many Physicist had developed the General theory of Relativity. By this time 

Finsler space has already been coined. This metric was first recognized by , as a 

kind of Finsler metric in 1957 by R.S.Ingarden , M .Matsumoto introduced the 

(α,β ) – metric by generalizing Randers Metric [2]. The theory of Finslar space   

with (α, β ) - metric has been developed into fruitful branch of Finsler Geometry. 

            From stand point of  Finsler Geometry  itself  Randers metric is very 

interesting because its form is simple and properties of Finsler spaces equipped 

this metric can be  looked as  Riemannian  spaces  equipped  with  the  metric 

L(x,y) = ji
ij yyxa )(  together with one form β = i

i yxb )( . The curvature tensors of 

Randers metric Rhijk , P
h
ijk , S

h
ijk  , of  Finsler spaces can be written in terms of 

Riemannian curvature tensors of metric α , bi and its covariant derivative with 

respect to Riemannian connection RΓ .A change  of Finsler  metric L(x ,y ) goes to 
_

L (x ,y ) is called Randers change of L(x ,y ) if  
_

L (x ,y ) =  L(x ,y ) + β  .The 

concept of Douglas space ([1], [8], and [10]) has been introduced by M. 



Matsumoto and S. Bacso as a generalization of Berward space from stand point of 

view of geodesic equation. Finsler space is said to be of Douglas space if   Dij = Gi 

yj - Gj yi are homogeneous polynomial in yi   of   degree 3. It has been shown by M 

. Matsomoto in   papers ( [1], [7], [8], [9], [10]) that 

  Fn = ( Mn, L ) is   a Douglas  type iff   the  Douglas  tensor  

   ( )ij
h
kik

h
jjk

h
i

h
ijk

h
ijk

h
ijk GGGyG

n
GD δδδ +++

−
−=

1

1    vanishes identically, where Gh
ijk 

is hv – curvature tensor of Berward connection BΓ . Douglas curvature is a non-

Riemannian projective invariant constructed from the Berwald curvature. The said 

transformation is generalization of conformal as well as Randers change because 

writing β = 0 it reduces to Conformal change and when σ(x) = 0 it reduces to 

Randers change .It is compositions of conformal change and Randers change. The 

conformal theory of Finsler metrics based on the theory of Finsler spaces by M . 

Matsomoto ([3], [7]).Hashiguchi [3] in 1976 studied the conformal change of a 

Finsler Metric namely = e
x)(σ

 L( x,y ) 

                  In the present paper we shall  investigate  the condition under which a 

change of  Finsler metric  L (x, y ) goes to =e
x)(σ  L(x, y)+β(x,y),  where σ 

is a function of position xi only, and β a differentiable one-form ([1],[6] ), is the 

Randers Conformal change of Finsler spaces of Douglas type. We have also 

worked out the condition under which the said changes are Projective also.  

     

3.2. Preliminaries.    



           The geodesic of an n-dimensional Finsler space Fn = (Mn, L) are given by 

the system of the differential equation [1]  

                        
i

dt

xd
2

2

 yj -   
j

dt

xd
2

2

yi  +2{Gi(x,y)yj -  Gj(x,y)yi } = 0   

     where   yi = 
i

dt

dx
in a parameter t . The function Gi(x,y) are given by     

),FjFrj
ry(ijg)y,x(iG2 ∂−∂∂= ɺ

     
 where 

.

∂ i =  ,  ∂i =   ,   F = L2/2,   

  and gij (x,y)  are inverse of Finsler metric tensor  gij  [8] . Let   Li = 
.

∂ iL , 

                                Lij = 
.

∂ j

.

∂ iL , Lijk= 
.

∂ k

.

∂ j

.

∂ iL . Then we have  

                                           
−
L i = eσ (x) Li + bi ,  

       (3.2.1)                          
−
L ij = eσ (x) Lij   

                                          
−
L ijk = eσ (x) Lijk  

where   Li = li , L Lij = hij    and we shall use the notation     2 Eij = bi / j + b j / i     and  

2Fij =   bi / j - b j / i  , where (/) denote the h- covariant derivative with respect to the 

Cartan connection CΓ = )i
jkC,i

jG,i
jkF( .  Throughout the paper we say 

homogeneous polynomials in yi of degree r as hp( r ) for brevity. The Finsler 

spaces with metric = will be denoted by 
−

nF ,
  where as with metric L(x,y) 

will be denoted by Fn . The quantities corresponding to 
−

nF will be written by 

putting bar i.e. ( - )   on the top of that quantities.     

 



 

3.3 - RANDERS CONFORMAL CHANGE OF DOUGLAS TYPE   

    

   For Randers conformal change     L→  
_

L  = e
x)(σ  L +  β     

    We put                                  
_

G
i = Gi + Di     

              (3.3.1)                       
_

G
i
j = Gi j+ Di

j ,  

                                                
_

G
i
jk = Gi

jk + Di
jk  

  Where   Di
j = 

.

∂ j D
i   &   Di

jk = 
.

∂ k D
i
j . The tensor Di, Di

j , D
i
jk, are positively 

homogeneous in yi  of degree 2, 1 & 0 respectively. To find the value of   Di, we 

deals with the equation 

           Li/j  = 0 which implies   ∂jL i = LirG
r
j + LrF

r
ij     where Lij/k  is  h – covariant 

derivative of   Lij = hij /L in CΓ . Then   

             (3.3.2)                                   ∂kL ij = L ijr G
r
k + Lrj F

r
ik + LirF

r
jk  . 

              (3.3.3)                                  ∂k

_

L IJ = 
_

L ijr

−
G

r
k + 

_

L rj 
−
F

r
jk + 

_

L ir 
−
F

r
jk    .  

also        (3.3.4)                                  ∂k

_

L IJ =  e
x)(σ (σk(x) Lij + ∂k Lij ) .  

In view of (3.3.3), the equation (3.3 .4) can be written as 

             (3.3.5)                                   L ijr D
r
k + Lrj D

r
ik + Lir D

r
jk  = σk(x) Lij .  

 Next we deal with Li/j = 0   which implies 



             (3.3.6)                                     ∂jL i = Lir G
r
j + Lr F

r
ij   

This shows that   (3.3.7)              ∂j

−
L

i = 
−
L

ir

−
G

r
j + 

−
L

r

−
F

r
ij . 

Also bi/j  = 0   implies  

                (3.3.8)                            ∂jbi = bi/j   + br F
r
ij  

In view of (3.2.1) , (3.3.1 ) & (3.3.8),  the equation (3.3.7) gives  

                 (3.3.9)                    bi/j = e
x)(σ [L ir D

r
j + lr D

r
ij – Li σj(x) + br D

r
ij    

 Therefore we have, 

(3.3.10)            2 Eij =  e
x)(σ [ L ir D

r
j + Ljr D

r
i + 2 lr D

r
ij - Liσj - Ljσi ] +2  br D

rij  

    (3.3.11)          2 Fij =  e
x)(σ [ L ir D

r
j – Ljr D

r
i - Li σj(x) + Ljσi(x) ]  

 

Proposition   3.3.1:  The tensors   Eij  & F ij   of Randers Conformal change are 

given by     (3.3.10) and (3.3.11). 

 

  Applying Christoffel process to (3.3.5), we get  

    (3.3.12)                  Lijr D
r
k + 2  Lrj D

r
ik  + L jkr D

r
0i - Lkir D

r
0j = Lij σk + Ljk σi - kiσj . 

 Transvection   of   (3.3.10) , (3.3.11) & (3.3.12) by yj  gives  

           (3.3.13)                 2 Ei0 =  e
x)(σ [ 2Lir D

r +2 lr D
r
i  -  Liσj y

j - Lσi ] +2 br D
ri  

   (3.3.14)                  2 Fi0 =  e
x)(σ [ 2Lir D

r - Li σj y
j + Lσi(x) ] 



               (3.3.15)                 Lir D
r
k +  Lkr D

r
i  +2 L kirD

r = Lki σ0 . 

  Again transvection of (3.3.13) by yi  gives 

              (3.3.16)                 E00 = e
x)(σ [ 2 lr D

r
 - Lσ0 ] +2 br D

ri . 

   

Lemma 3.3.1         The system of algebraic equations  

           (3.3.17)                    (1)    Lir A
r  = Bi 

                                           (2)     P lr A
r + Q br A

r = B   

 has a unique solution    Ai = L Bi + li τ -1  ( B - QL Bββββ) ,  
  for given B and Bi 

such that       Bi l
i = 0 .  

   

 It follows from (3.2.1) that 1-(3.3.17) is written in the form   hir A
r = L Bi , where 

hij is angular metric tensor .This implies 

        (3.3.18-a)                       Ai = L Bi + li (lr A
r) . 

 Contraction by   br    gives  

         (3.3.18)                              br A
r = L Bβ +

L

β
 (lr A

r)   

                                              where Bibi = Bβ and  bi l
i = 

L

β
 .  

      In view of (3.3.18) ,  Lemma-(3.3.1) - 2   is written as 

         (3.3.19)                         lr A
r =   τ -1  ( B - QL Bβ) ,  where  τ  = P + Q 

L

β
 . 



In view of (3.3.12) & (3.3.19), the equation (3.3.18-a)  is written in the form          

         (3.3.20)                           Ai = L Bi + li τ -1  ( B - QL Bβ)    

which is the solution of Lemma (3.3.1) . Comparing (3.3.14) & (3.3.17) to Lemma 

3.3.1 (2) & (1) respectively,we get   

                     Ar = Dr ,    P =2 ,         Q  = 2e
x)(σ−  ,      B = E 00e

x)(σ−   + L σ0,  

                                                                 B
i  = e

x)(σ− Fi
o + 

2

1
L i σj y

j - 
2

1
gij σj . 

 Using these results together with equation   (3.3.20)   we get  

(3.3 .21)              Di = L[e
x)(σ− Fi

o + 
2

1
 liσ0 -

2

1 σrg
ri ] +τ -1 (E 00e

x)(σ− + L σ0  

                                                       – 2 L e
x)(σ− Bβ) l

i . 

  where    τ  = 2(1 + 
L

β
e

x)(σ− )  , Bβ = Bi b
i  . 

Propositions 3.3.2   The tensor Di of the equation 
−
G i = Gi + Di arising  

      from Randers Conformal change in Finsler spaces are given by  

      equation (3.3 .21). 

   From equation (3.3 .21)   we have     

 

 
−
G

i yj - 
−
G

j yi  = Gi yj  - G jyi + L e
x)(σ−  (Fi

0 y
j – Fj

0y
i ) +   

2

1
( Liyj – Ljyi) σry

r    



                                                               -  
2

1
L σr ( g

riyj – grjyi ) . 

This equation is rewritten in the form  

 

−
G

i  jk -  
−
G

j  ik  = Gi  j
k
 - G j  i k+ L e

x)(σ−  (Fi
0  j k– Fj

0  ik)  

                                    +   
2

1
( Li  j

k – Ljy  i
k) σry

 r   - 
2

1
L σr ( g

riy  j k– grj  i
k ) .  

Thus we have     

Theorem 3.3.1         Let   Fn be a Douglas space and   _

F
n   a Finsler space 

obtained by Randers Conformal change.    Then 
_

F n is  Douglas  spaces  if and 

only if  

 L e
x)(σ− ( Fi

0
j
k – Fj

0
i
k)+

2

1 (L i j
k – Lj i

k)σσσσry
r   - 

2

1 L σσσσr ( g
ri  j k –  grj  i

k )   

      is   homogeneous polynomial in yi of degree 2  .                                                                        

                                                                    

     The  change is Projective if every geodesics of (Mn, L) is also a geodesics of   

(Mn,
−
L )   and vice versa. We are going to find out a condition for a Conformal 

Randers Change to be Projective. The Euler –Lagrange equation for the metric 
−
L   

in terms of arc length s is given by [2]  



                                             
ds

d
(

y
i

L

∂

∂
−

) - 
x

i

L

∂
∂

−

 = 0                which gives  

    (3.3.22)               
ds

xd )(σ
 Li   + 

ds

dLi  + e
x)(σ− ( 

ds

dbi  - 
i
i

x

b

∂
∂

s

xr

∂
∂ ) - 

ix

x

∂
∂ )(σ

-  ∂iL = 0 . 

The Euler –Lagrange equation for the metric L is  

      (3.3.23)                                 
ds

dLi -  ∂iL = 0 . 

 In view of   (3.3.23), equation (3.3.22) becomes 

                         
i

x

x
e
∂

∂ )(σ

(   
s

L

∂
∂

 - 1) + b[ij]  
ds

dx j

= 0  

                              where    b[ij]   = 
j
i

x

b

∂
∂

- 
i

j

x

b

∂
∂

.       

Thus we have 

Theorem 3.3.2.    Randers Conformal change is Projective   iff   

                                 
i

x

x
e
∂

∂ )(σ

(   
s

L

∂
∂  - 1) + b[ij]  

ds

dx j

= 0 . 

 Now let us suppose that the Randers Conformal change of Finsler metric given by 

(3.1.1) is Projective.   Then [10]   

         (3.3.24)                         
−
G

i = Gi + P(x,y) yi       

where P(x,y) is a scalars function and is called the Projective factor.  Comparing 

equation    (3.3.24) and (3.3.21), we get  



p(x,y) yi = L [e
x)(σ− Fi

o +
2

1
 liσ0 - 

2

1 σrg
ri ] +τ -1  (E 00e

x)(σ− + L σ0 – 2 L e
x)(σ−  Bβ) l

i 

,which   may be written as  

                           

   L e
x)(σ− Fi

o -
2

1
 L2  σi

 = [ p (x,y)  -  τ -1  (E 00e
x)(σ−   +  

                                                       L σ0 – 2 L e
x)(σ−  Bβ) L

-1]  yi. 

               Since   Fi0 gih y
h = 0 .     So we get   

  (3.3.25)            P(x,y) = τ -1  L-1 e
x)(σ−   ( E00 -  2L Bβ )  + σ0 (τ -1 -  

2

1
L-1 

 
+ 

2

1
 ) . 

  

 

Theorem 3.3.3.       Randers Conformal change of Finsler metric given by 

(3.1.1) is Projective if    

 P(x,y) = τ -1  L -1 e
x)(σ−   (E00 -  2L Bββββ ) + σσσσ0 (τ -1 -  

2

1 L -1 
 
+ 

2

1  ) .                                                        

             where  , τ  = 2 ( 1 +  L
β

   e
x)(σ−
  ) ,  

                              Bββββ  = Bi b
i  , 

                             σσσσ0    =  σσσσi  y
i . 
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Chapter 4 

 

CONFORMAL RANDERS CHANGE OF A FINSLER 
SPACE WITH (αααα,ββββ) METRIC OF   DOUGLAS TYPE 

 

4.1   Introduction  



 The conformal theory of Finsler metrics based on the theory of Finsler spaces by 

M. Matsomoto, M. Hashiguchi ([3], [7]) in 1976 studied the conformal change of a 

Finsler metric namely  

 (x ,y ) = e
x)(σ

 L(x, y) . 

G.Randers ([6], [7],) in the year 1941 introduced a special metric 

 ds = iy)x(ibjyiy)x(ija +  in a view point of General theory of Relativity. Since 

then many Physicist had developed the General theory of Relativity. This metric 

was first recognized by  R.S.Ingarden and M .Matsumoto ([1], [4], [6],) in 1957, 

produced the (α, β ) – Metric by generalizing Randers Metric [2]. The theory of 

Finsler space with (α,β) - metric has been developed into abundant  

branch of Finsler Geometry.  From stand point of  Finsler Geometry  itself   

 

Randers metric is very interesting because its form of simple and properties of  

Finsler spaces equipped this metric can be  looked as  Riemannian  spaces  

equipped  with  the  metric 

                                         L(α,β) =  α + β  .  

The concept of Douglas space ([1], [8], [9], [10], and [11]) has been 

introducing by M. Matsumoto and S. Bacso as a generalization of Berward spaces 

from stand point of view of geodesic equation. Finsler space is said to be of 

Douglas space if   



                                     Dij = Gi yj - Gj yi  

are homogeneous polynomial in yi   of   degree – 3. It has been shown by M 

. Matsomoto  in   papers ( [1], [7], [8], [9], [10] ) that  Fn = ( Mn,L ) is   a Douglas  

type iff   the  Douglas  tensor  

                      ( )ij
h
kik

h
jjk

h
i

h
ijk

h
ijk

h
ijk GGGyG

1n

1
GD δ+δ+δ+

−
−=   

 vanishes identically, where Gh
ijk is hv – curvature tensor of Berward connection 

B Γ . The Conformal Randers change can be consider as  generalization of 

Conformal as well as Randers change because writing β = 0 it reduces to 

Conformal change and when σ(x) = 0 it reduces to Randers change .It is 

compositions of  Randers change and Conformal change.  

 In present chapter we shall  workout  the condition under which a change of 

Finsler metric   L(α, β) →  (α, β) = e
x)(σ  { L(α, β) + β }      is that  Conformal  

Randers change of Finsler spaces of Douglas type remains  to be Douglas type. 

 

4.2. Preliminaries.  

 Let α(x, y) = jyiy)x(ija  be Riemannian metric and  

β(x, y) = bi(x)yi be a differentiable one-form in an n-dimensional 

differentiable manifold Mn. If a fundamental metric function L (α,β) is 

positively homogeneous of degree one in α and β in Mn, then  



Fn = (Mn, L (α,β)) is called a Finsler space with (α,β)-metric [5]. The 

space Rn = (Mn,α) is called a Riemannian space associated with Fn [5], 

Christoffel symbols of  Rn  are indicated by γj
i
k, and covariant 

differentiation with respect  to γj
i
k (x) by ∇. We shall use the symbols as 

follows: 

(4.2.1)                  )jbiibj(
2

1
ijr ∇+∇=   , )(

2

1
jiijij bbs ∇−∇=

  
,   

                                     rjsiraj
is =

   
,      j

rsrbjs = . 

It is to be noted that )(
2

1
jiijij bbs ∂−∂= . Throughout the paper the symbols 

∂j and j∂ɺ stand for 
jx∂

∂  and 
jy∂

∂  respectively.  We are concerned with 

the Berwald connection BΓ = )i
jG,i

jkG(  which is given by  

 ),FjFrj
ry(ijg)y,x(iG2 ∂−∂∂= ɺ where F = L2/2, iGj

i
jG ∂= ɺ  

and i
jGk

i
jkG ∂= ɺ . 

The    Finsler   space  Fn    is  said  to be  of  Douglas type   (or Douglas  

space)  [1]  if   Dij  = Gi(x, y) yj − Gj(x, y) yi are homogeneous polynomial 

in yi of degree three. we shall denote the “homogeneous polynomials in 

yi of degree r” by hp(r).   

For a Finsler space Fn with (α, β)-metric ([3], [5]), we have 

              (4.2.2)             iB2i
00

iG2 +γ= ,  



          where       

               (4.2.3)            














β
α−

αα
ααα

−
α

βα
+

α
= ib

iy
*C

L

Li
0s

L

Liy
EiB ,                

E = *C
L

Lββ
,      

)(2

)2(
* 22

000

ααα

βα

αγβ
ααβ

LL

LsLr
C

+
−

= ,  bi = aij bj,                     
2 = b2 α2 

− β2,         b2 = aij bi bj  

and the subscript α and β in L denote the partial differentiation with 

respect to α and β respectively. Since kji
jk

i
00 yy)x(γ=γ is homogenous 

polynomial in (yi) of degree two, we have  

Proposition [7].4.2.1. A Finsler space with (αααα, ββββ)-metric is a Douglas 

space if and only if 

                             Bij  = Bi yj −−−− Bj yi are hp(3). 

Equation (4.2.3) gives 

(4.2.4)  )iyjbjyib(*C
L

L2
)iyj

0sjyi
0s(

L

LijB −
αβ
ααα+−

α
βα

=  

 

Lemma [8] 4.2.1. If α2  0 (mod - β ) that is aij (x) yi yj contains bi (x)yi 

as a factor then the dimension is two and b2 = 0 .In this case ,we have  

= di(x)yi satisfying α2 = β  and di(x)bi = 2. 

 



4.3. Conformal Randers change of Finsler spaces with 

                 (αααα, ββββ)-metric of  Douglas type 

 

Let Fn = (Mn, L) and Fn = (Mn,L(α, β) = eσ [ L(α, β) + β ] )be 

two Finsler spaces on the same underlying manifold Mn. If we have a 

function σ(x) in each coordinate neighborhoods of Mn such that  

                                    L(α, β) = eσ   [ L(α, β) + β ]  

 then Fn is called conformal  Randers  to Fn, and change L→ L of        

metric    is called    conformal  Randers  change  of  (α, β)  metric .   For  

(α,β) metric 

              (α,β) =  eσ [L(α,β) + β ] =  L (α,β) ,  

(by homogeneity). Therefore, a Conformal Randers change of (α,β) 

metric is expressed as (α,β) →  (α,β) where  α = eσα,   β = eσ β, 

Therefore, we have yi = yi  , yi = e2σ yi  , aij = e2σ aij  ,  bi = eσ bi  ,       

aij = e−2σaij  ,  b i = e−σ bi  and  
_

b 2  = b2 . 

Proposition 4.3.1: In a Finsler spaces with (αααα,ββββ) – metric the length 

b of  bi with respect to the    Riemannian αααα is invariant under 

conformal Randers change.    

     The Conformal Randers change (α, β) →  (α,β) gives rise to 

the conformal change of     Rn : α → α = eσ α and hence we get the 



Conformal Randers change of Christoffel symbols  i
jkγ  are same as 

Conformal change of Christoffel symbols i
jkγ  . So it follows [1] as  

      (4.3.3)                               jkaij
i
kk

i
j

i
jk

i
jk σ−σδ+σδ+γ=γ   

where σ∂=σ jj and j
ijai σ=σ . 

 From (4.3.2) and (4.3.3) we have the following conformal Randers 

change 

(4.3.4) (a) )( ijijijij abbeb ρσσ +−∇=∇    

          (b)  ])(
2

1
[ ijijjiijij abbrer ρσσσ ++−=   

          (c) )](
2
1

[ ijjiijij bbses σσσ −+=
 

 (d) )](
2

1
[ i

jj
ii

j
i
j bbses σσσ −+= −

   

          (e) ).(
2

1 2
iijj bbss ρσ −+=  where ρ = brσr,  

 

From (4.3.3) and (4.3.4) we can easily obtain the following: 

(4.3.5) (a) γ0
i
0 = γ0

i
0 + 2σ0 y

i − α2 σi  

                   (b)         0000 (rer σ=  + ρ α2 − σ0 β ) 



          (c)   )](
2

1
[ 000

iiii bses βσσσ −+= −
   

                    (d)  )(
2

1
0

2
00 ρβσ −+= bss       

To find the Conformal Randers change of Bij  given in (4.2.3), we first 

find the Conformal Randers change of C* given in (4.2.3).  

Since    (α, β) = eσ   [L(α, β) + β ] , we have (4.3.6)  

 Lα = Lα,    Lαα = e−σ Lαα,    

                                 = Lβ + 1        2 = e2σ 2. 

 From (4.2.3), (4.3.4) and (4.3.5), we have   

 (4.3.7)           C* = eσ(C* + D*), 

where 

(4.3.8) D* = )(2

}]1)((2{)[(
22

0
2

00
2

ααα

βα

αγβ
ρβσαβσρααβ

LL

LbsL

+
+−+−−

 

Hence Conformal Randers change of Bij is written in the form 

(4.3.9)               Bij = Bij + Cij, 

where 



(4.3.10) 

 −−++−= )({)()(2[
2

1
2 000

ijjiijjiij ybybeLysyse
L

C σαα σ
β

σ

α
 

)}]( ijji yy σσβ −   +
α

αα

β
α

L

ybybLD ijji )(* 2 −
 

Theorem 4.3.1. A Douglas space with (αααα,ββββ) –metric transformed to a 

Douglas space with (αααα,ββββ) –metric under Conformal Randers change 

if and only If     Cij     defined in equation (4.3.10) is homogeneous 

polynomial in yi of 3.  

 

4 .4.    Conformal Randers Change of  some  particular  

                                 (αααα,ββββ)  metric                                       

 

For a Randers metric  

we have , L = αααα+ββββ    

 so that  Lα  = 1 ,    Lβ =1 and  Lαα = 0 .Then we have  

  (4.4.1)      

)}]()(
0

){1()00(2[2 iyjjyiiyjbjyibeiyjsjyiseijC σσβσσσα −−−++−= . 



We know that [6] Finsler spaces with Randers metric is Douglas space 

iff   sij = 0 . Under this condition equation (4.4.1) becomes        

)}()(
0

){1(2 iyjjyiiyjbjyibeijC σσβσσα −−−+= . 

Since α is irrational function in yi , from  above it follows that Cij  

      are hp(3) if and only if 

  (4.4.2)                         0)()(0 =−−− ijjiijji yyybyb σσβσ
 

The equation (4.4.2) may also be written as , 

(4.4.3)                    ji
kh

i
hk

ij
kh

j
hk

ij
kh

j
hk bbbb )()()( δσδσσδδδσδσ +−+−+      

0)( =++ ji
kh

i
hk bb σδδ

 

Contracting (4.4.3) by j and h we get biσj - bjσi = 0 which gives 

                                       σi = ib
b2

ρ
. 

Conversely, if  Sij = 0 and  σi = ib
b2

ρ

 
then(4.4.1) gives Cij = 0 .Hence 

equation  (4.3.9) gives  Bij = Bij .  

             Thus we have 

   Theorem - 4.4.1. The Douglas space with Randers metric 

transformed to a Douglas space  under Conformal Randers change 

if and only if    Sij  = 0 and σσσσi = ib
b2

ρ

, where ρρρρ = brσσσσr . 

For a Kropina metric ,  



we have L = 
β

α2
,  

so that
β
α=α

2
L ,   

β
=αα

2
L ,   

2

2
L

β

α−=β . Hence the value of   D* given 

by (4.3.7) reduces to 

(4.4.4) 

 )}])((2{)([
4

1
* 22

0
22

00
22

22
σσ αβρβσβαβσραβ

α
−−−+−−= ebse

b
D  

Therefore, the value of Cij given by (4.2.10) reduces to, 

(4.4.5)            

)}()(){
44
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ijjiijjiijjiij yyybyb

e
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α
βσρβ σ
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3
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)(
2
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b
ybybyyybyb

e
ysyse ijjiijjiijjiijji ρβσσβσββ

σ
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)(
2 0

2
2

ρβσα +− b
b

]    are hp (3).These terms may be neglected in our 

future discussion and we treat only 

              Hij  = )   (b
2

)[()(
4 0

2

2

2

0

2

βσσ
α

βσ
β

α σ

+−−−−
b

e
ybybybyb ijjiijji ]

 
 

Above equation may be written as  



(4.4.6 )          4b2α2βHij = - (biyj – bjyi ) [α4b2
0σ - 2 0σ β4- 4 eσs0αβ3 +2 

eσb2
0σ β3-2ρ eσαβ4] 

Equating rational and irrational terms we get 

 (4.4.7)           4b2α2βHij = - (biyj – bjyi ) (α4b2
0σ - 2 0σ β4)    and   

(4.4.8)           2eσβ3(biyj – bjyi ) (2s0 +b2
0σ + ρ β) = 0 . 

Take n > 2 , α2  0 (mod - β ) [8]  . If (biyj – bjyi ) = 0 ,by transvection 

of biyj we  get b2α2 - β2 = 0 which gives rise to  contradiction. So we 

must have , 

     (4.4.9)             (2s0 + b2
0σ + ρ β) = 0  

Also from equation (4.4.7)   

                 b2α2 [ 4βHij + (biyj – bjyi ) α2
0σ ] + 2 0σ  β4(biyj – bjyi ) = 0  

 which implies  4βHij + (biyj – bjyi ) α2
0σ = 0 and 0σ = 0  

Therefore from equation (4.4.9)     2s0 = - ρ β. 

Thus we have , 

   

Theorem 4.4.2. A Finsler spaces 
−

nF (n > 2) which is obtained by 

conformal Randers change of a Kropina space Fn with b2  0 is of 

Douglas type if and only if 0σ = 0 and  2s0 + ρ ββββ = 0 ,  

         where ρρρρ = brσσσσr,.       



 

 For a Finsler spaces with metric  

       (4.4.10)                    L= αααα +
α
β 2

 . 

  Under Randers change it become  

         (4.4.11)                        L* = α + β + 
α
β 2

 . 

   The (α, β) –metric (4.4.11) is called an Approximate Matsumoto       

metric. 

 

Lemma[10] 4.4.1.– A Finsler spaces with an Approximate 
Matsumoto metric is a Douglas spaces if and only if αααα2  0  

(mod - ββββ ) ,  b2  1 , j∆ bi = k { (1+ 2b2) aij  – 3 bibj } where  

  k  = 
12 −b

h  , h(x) is scalar function, that is bi is gradient vector. 

(1) α2  0 (mod - β ) : n =2  ,  

                    j∆ bi = 
2
1 { v i(dj +3bj) + vj(di +3bi)}where v0 = vi (x) yi . 

Also Conformal change of an Approximate Matsumoto metric is 

approximate Matsumoto metric.  Take  

(4.4.12)                        Aij = j∆ bi - k { (1+ 2b2) aij – 3 bibj }= 0  



Assume ( F
n
,  = e

σ
(α +β+ 

α
β 2

) ) is Douglas Spaces .Then 
_

A ij  = 0  This can be 

expressed as  

(4.4.13)                        eσσσσ (Aij + ij – i bj ) =  0   

In view of equation (4.4.10), the equation (4.4.13) become   

                                   ij  =  i bj,  

contracting by yj gives  

 (4.4.14)                          i  = i
σ β 

Again if n = 2,   α2  0 (mod - β ) assume  

      (4.4.15)                        wij = j∆ bi - 
2
1 { v i(dj +3bj) + vj(di +3bi)}  =0  

              The 
ijw

_

= 0 implies  

     (.4.4.16)                    eσ (Wij + ij – i bj )  = 0  ,     

    we note that            iv
_

= e
σvi . 

        In view of (.4.4. 14), the equation (4.4.16) becomes   (ρaij – σibj) = 0. 

After contacting by yj ,    ρY i =   σiβ.
 

Thus in both cases we see that , 



Theorem 4.4.3.  A Finsler space 
−

nF (n > 2) which is obtained by 

conformal Randers change of  Fn  =  (M n , L= αααα +
α
β 2

 ) with b2  0 is 

of Douglas type , remains to be Douglas type if and only if 

                                        ρY i =   σiβ
   where ρρρρ = brσσσσr . 

  

 Lemma [11] 4.4.2.  Let Fn be a Dauglas space with (αααα,ββββ) metric 

 L = (c1αααα +c2ββββ+
β

α 2

) for which  b2  0 and if αααα2  0 (mod - ββββ ), then 

there exists a scalar function u(x) and a tensor function Vij (x) such 

that   ijb∇ = ( rij  + Sij ) is given by   

                  Sij  =   2

1
b

 ( bi Sj – bj Si ) - ( )1
1
−n

 Vij 

                     rij   = 
1

2

2c

c ( bi Sj + bj Si ) – 4aij.    

For a Finsler space with metric  L = (α+
β

α 2

). 

Under Randers change above metric becomes 

 (4.4.17)        L* = (α +β+ 
β

α 2

) .       

 The conformal change of fundamental metric (4.4.17) is a metric of 

same type . Take 



 (4.4.18)                  Aij = Sij  - 2

1
b

 ( bi Sj – bj Si ) + ( )1
4
−n

 Vij  = 0        and   

 (4.4.19)                  Wij  = r ij - 
2

1 ( bi Sj + bj Si ) + 4aij   = 0 . 

Assume ( Mn, 
_

L  = eσ(α +β+
β

α 2

) )  is Douglas type. Then 
_

A ij   = 0 and 

_

W ij= 0 .But 
_

A ij  = eσ Aij ,  

_

ijV  = eσ Vij  so we get 
_

A ij  = 0 if Aij = 0 . Also  

(4.4.19)            
_

W ij  = Wij + e
σ( ρ aij + 2

1  bi bj  - 
4

2 2b+  (bi σj + bj σi ) 

In view of (4.4.19 ) , 
_

W ij= 0 implies  

 (4.4. 20)     ρ aij + 2

1  bi bj  = 
4

2 2b+  (bi σj + bj σi ) 

Contracting by bj we get  ρ  bi = σi b
2 . 

 Thus we have, 

   

Theorem 4.4.4.  A Finsler space  
−

nF (n > 2 ) which is obtained by 

Conformal Randers change of a (Mn , L= αααα +
β

α 2

 ) of Douglas type 

remains to be Douglas type if and only if ρ  bi = σσσσi b
2    , where 

                       ρρρρ = brσσσσr  . 
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Chapter 5 

                

EXPONENTIAL ( αααα,ββββ)-METRIC 



5.1. Introduction 

The theory of Finsler space with (α, β ) - metric has been developed into 

faithful branch of Finsler Geometry by M. Matsumoto( [3],[4]) .A Finsler metric 

L( x,y) defined on differentiable manifold  Mn is called an (α, β ) -  metric, if  L is 

a positively homogeneous function of degree one of a Riemannian metric α 

= ji
ij yyxa )(   and a one form β = i

i yxb )( . A Finsler space is a Berwald space [7], if 

the Berwald connection is linear. 

 The concept of Douglas space ([2], [8], and [9]) has been introduced by M. 

Matsumoto and S. Bacso as a generalization of Berward spaces from stand point of 

view of geodesic equation. Finale space is said to be of Douglas space if   Dij = Gi 

yj - Gj yi are homogeneous polynomial in yi   of   degree 3. It has been shown by M. 

Matsomoto   that  Fn = ( Mn, L ) is   a Douglas  type iff   the  Douglas  tensor    

 ( )ij
h
kik

h
jjk

h
i

h
ijk

h
ijk

h
ijk GGGyG

1n

1
GD δ+δ+δ+

−
−=    

 vanishes identically, where Gh
ijk is hv – curvature tensor of Berward connection 

B Γ . A Finsler space Fn = ( Mn, L) is a locally Minkowski space ([5], [6]) if Mn  is 

covered by a coordinate neighbourhood system ( xi) in each of -which L is a 

function of yi only. A Finsler space is projectively flat if it is projective to a locally 

Minkowski spaces . The Exponential (α, β ) metric  

(5.1.1)                                      L = α α
β

e +β  

was firstly  introduced by Yu Yao Yong ([11], [12]). It is expressed as  

                              L = α +2β + 
α

β
2

2

 +
2

3

6α
β +….. 



for || β < ||α .If we regard )(xbi as very small numerically and neglect all the power 

greater than two of β , then L(α, β ) is called 2nd approximated to exponential (α, β 

) metric .So we use 

(5.1.2)                               L = α +2β +
α

β
2

2

  . 

  In this chapter, we have worked out the Finsler space with second 

approximate exponential (α, β) metric in which all powers greater than 2 of  β are 

neglected,to be a Berwald space ,Douglas space &Protectively flat space . We also 

investigate the Berwald connection of  this metric. 

Throughout the chapter we shall effectively use the following expressions. 

The derivatives of approximate exponential (α,β) metric L with respect to  α & β 

are :- 

(5.1.3)                          ,               

                                              Lββ = 1/ α,         Lαβ = - β/ α2

 

 

 

5.2  Berwald Connection of Fn 

 Throughout the chapter the symbols ∂j and j∂ɺ stand for 
jx∂

∂  and 
jy∂

∂  

respectively.  We are concerned with the Berwald connection BΓ = )0,,( i
j

i
jk GG  

which is given by  



  ),FjFrj
ry(ijg)y,x(iG2 ∂−∂∂= ɺ

 

where  F = L2/2, iGj
i
jG ∂= ɺ  and i

jGk
i
jkG ∂= ɺ . 

we shall denote the “homogeneous polynomials in yi of degree r” by hp(r).   

 For a Finsler space Fn with (α, β)-metric ([3], [5]), we have 

(5.2.1) iB2i
00

iG2 +γ= ,  

where  

(5.2.2) 














β
α−

αα
ααα

−
α

βα
+

α
= ib

iy
*C

L

Li
0s

L

Liy
EiB ,  

                      E = *C
L

Lββ
,       

)(2

)2(
* 22

000

ααα

βα

αγβ
ααβ

LL

LsLr
C

+
−

= ,   

                           bi = aij bj,   γ 2 = b2 α2 − β2, b2 = aij bi bj  

and the subscript α and β in L denote the partial differentiation with respect to 

α and β respectively. Since kji
jk

i yyx)(00 γγ = is homogenous polynomial of degree 

two in (yi). 

 

 

Proposition 5.2.1. The Geodesic coefficient Gi  of exponential (αααα, ββββ) metric 

(5.1.1) is given by 



(5.2.3)                2Gi (x,y) =
i
00γ + 2 2

)1(
δ

α
β

L

ye i+
 [r00 α(α- β) - α3 2δ (1 + α

β
−e )s0] +        

2

2
00 )(

δ
βα ii ybr −

   - 2

-
2

0 ) e+ (12s 
δ

α α
β

+ 
βα

α α
β

−
) e+ (12s 

-
2

0
i

 , 

                      where 2δ  = α2(1+b2 ) - αβ - β2. 

 

Berwald connection [4] satisfying the following axiomatic  system: 

B1 -   L-metrical: L|i = 0 

B2 -   (h) h- torsion tensor T
i
jk = Gi

jk – Gi
kj = 0 , 

B3 -   deflection tensor Dij = yk Gkj
i – Gi

j  = 0 

      B4 – (v) hv – torsion tensor Pi
jk = k∂ɺ  Gi

j – Gi
kj = 0 

      B5 - (h) hv – torsion tensor Cijk = 0 , 

Where the symbol (|) in B1 – denotes the h – covariant differentiation with respect 

to the Finsler connection.  We have from (5.2.1) in view of B2, B3  & B4 , we get  

         (5.2.4)                        Gi
j =   j∂ɺ Gi  = i

j0γ + Bi
J  

                              and          Gi
jk = j∂ɺ Gi

k =   i
jkγ + Bi

Jk 

where we put BiJ  = j∂ɺ Bi   & B i
Jk = j∂ɺ Bi

j . 

The axiom    B1 : L|i = ∂i L – Gr
i r∂ɺ L = 0 is written as  

(5.2.5)     Lα Bk
ji y

jyk +αLβ(B
r
ji br - )ijb∇ yj = 0 . 



Where yk = akiy
i and j∇ is the differentiation with respect to ijkγ  . 

 In view of (5.1.3) ,the (5.2.5) becomes  

(5.2.4)                ( 222 βα − )Bk
ji y

jyk + 2α2(2α+β) (Br
ji br - )ijb∇ yj = 0 

Equating rational and irrational terms we get 

(5.2.5)                     ( 222 βα − )Bk
ji y

jyk + 2α2β (Br
ji br - )ijb∇ yj = 0 

(5.2.6)                             4α3 (Br
ji br - )ijb∇ yj = 0  

In view of (5.2.6), equation (5.2.5) becomes ( 222 βα − )Bk
ji y

jyk =0 . 

If 222 βα − = 0 implies 222 βα =  which contradicts to our assumption || β < ||α  

So 222 βα − ≠ 0. Therefore, Bkji y
jyk =0   &     (Br

ji br - )ijb∇ yj = 0 . 

Which implies     Bkji akh + Bk
hiakj = 0    and           Brji br - ijb∇ = 0 . 

Thus we get , Bkji = 0 & ijb∇ = 0 .Therefore,the Finsler space [3] with metric (5.1.2) 

is Berwald space. 

 

Theorem 5.2.1.   Approximated exponential  (αααα, ββββ) metric (5.1.2) is a Berwald 

space iff  ijb∇ = 0 and Berwald connection is ( i
jkγ , i

j0γ , 0 ). 

 

The h-curvature tensor Gi
jkh of Berwald connection concides with the 

curvature tensor Rijkh of  Riemannian connection .So we have Ri
jkh = 0 . Therefore 

according to Kikuchi theorem if  Rijkh =  0   = ijb∇ , 



 ( Mn ,L ) is locally Minkowski. 

 

Theorem 5.2.2.  Approximated second order exponential  (αααα, ββββ) metric (5.1.2) 

Space is a  locally Minkowski space iff  Rijkh  = 0 & ijb∇ = 0 . 

 

5.3.  Projective flat Finsler space with Approximated second      
order exponential (αααα,ββββ) metric 

 

A Finsler space (Mn ,L ) is called Projectively flat [5] with rectangular 

geodesic  if for any point p of  Mn there exists a local coordinate neighborhood 

 ( U,x ) of P in which the geodesics can be represented by (n-1) linear equations of 

xi .Here we shall find that  Approximated second order exponential  (α, β) metric 

(5.1.2) be Projectively flat . 

We define          )jbiibj(
2

1
ijr ∇+∇=      )jbiibj(

2

1
ijs ∇−∇= ,  

rjsiraj
is = ,    j

rsrbjs = ,       

  ijkγ = ajr 

r
ikγ  . 

A Finsler spaces Fn with an (α, β) metric is projectively flat ([5],[6]) if  

 

 



(5.3.1)                      
α

ββ

α
βα

L

bL )(1 222 −+
{( i

00γ - 000γ yi /α2)/2 + 
α

βα
L

L
 si

0 + 

                                        α
αα

L

L

β
α
2

(r00 - 2
α

βα
L

L
 s0 )}.( α2bi/β - yi ) = 0 , 

                                           Provided 
α

ββ

α
βα

L

bL )(1 222 −+
 ≠ 0. 

In view of (5.1.2), equation (5.3.1) becomes,  

(5.3.2)              (4 α4c - 2α2β2(c-1) -β4 ) (α2 i
00γ - 000γ yi) + (16 α7 - 8α5β2 + 8α6β -   

4 α4β3) si
0   + { r00 ( 4 α4 - 2α2β2) - 2α2 ( 8α3 +4α2β ) s0}(α2bi -βyi ) = 0 . 

Equating rational and irrational terms,we get 

(5.3.3)                        (2α2 - β2 )si
0 – 2 s0(α2bi -βyi ) = 0  

(5.3.4)              (4 α4c - 2α2β2(c-1) -β4 ) (α2 i
00γ - 000γ yi) + r00 ( 4 α4 - 2α2β2)(α2bi -

βyi )  + 4α4β[ ( 2α2 - β2) si
0 – 2 s0(α2bi -βyi )] = 0  

In view of (5.3.3), (5.3.4) becomes 

(5.3.5)                   (2α2 c+ β2) (α2 i
00γ - 000γ yi) + 2α2 r00(α2bi -βyi ) = 0 . 

From (5.3.3)   

(5.3.6)                2α2( si
0 – s0 b

i) - β (si
0β – 2s0y 

i) = 0 .   

The terms ( si0 – s0 b
i) must be factor of β ,so there exists λ i

0 (x) such that  

(5.3.7)                   si
0 – s0 b

i =β λ i  



Transvecting (5.3.6) by yi we get λ i = si . 

 Thus (5.3.7) becomes 

(5.3.8)                    Sij = sibj + sjbi 

Again from (5.3.5) we see that  000γ  must have a factor α2 , so there exists 1-form 

V0 = Vi(x)yi such that   

(5.3.9)           000γ = V0 α
2 

In view of (5.3.10), equation (5.3.5) becomes 

(5.3.10 )         2α2[( i
00γ -V0y

i)c + r00b
i ] = β[2r00 y

i – ( i
00γ -V0y

i) β] 

So there exists Vi0 of hp (1) in yi such that  

(5.3.11)                 (i
00γ -V0y

i)c + r00b
i = β Vi

0 

In view of (5.3.11) , equation (5.3.10) gives 

(5.3.12 )         2α2 Vi
0 = 2r00 y

i – ( i
00γ -V0y

i) β 

Transvecting it by yi and using (5.3.9) we get  

(5.3.13)          2r00 = Vi
0 yi . 

In view of (5.3.13) , equation (5.3.11) gives  

(5.3.14 )            (i
00γ -V0y

i)c = β Vi
0 – V00b

i   

Eliminating ( i
00γ -V0y

i) from (5.3.14) &(5.3.11) we get  

(5.3.15)          Vi0(2α2c + β2) = V00 (biβ +2c yi ) . 

We define           Eij = 2aij c + bibj  



Then (5.3.15) becomes               Vi0 Eij = V00 Ei0 .  

Which implies  

(5.3.16)    Ehj Vik + Ejk Vih +Ekh V ij = Eik Vhj + Eih Vjk +Eij Vkh .  

The reciprocal of tensor Eij is given by  

                Eij = 
c2

1  (aij - 
22 bc

bb ji

+
).  

Transvecting (5.3.16) by     Ehj  we  get    Vik  =  E Eik  ,  

                    where  we put         E = 
n

VE hj
hj

  . 

Therefore we have , 

(5.3.17)          Vij = E (2 aij c + bibj ) 

and   (5.3.13)  becomes   

(5.3.18)        rij = 
2
E ( 2aij c + bi bj) 

 In view of equation (5.3.18) ,the equation (5.3.14) become  

(5.3.19)       2
i
jkγ = Vi k

iδ + Vk j
iδ + 

c

E (bj δ
i
k + bkδ i

j – 2ajkb
i ) 

Conversely, it can be easily verified that (5.3.7) is a consequence of (5.3.8) , 

(5.3.18) & (5.3.19).  

Thus we have , 

Theorem 5.3.1. A Finsler space with second approximated exponential   



(αααα, ββββ) metric is Projectively flat  iff  we have (5.3.8),( 5.3.18) ,  and the spaces 

is covered by coordinate  neighbored  in which the Christoffel symbol of 

associated Riemannian space with the metric  αααα are written in the form  

(5.3.19). 

 

5.4 - Douglas type  

 

A Finsler space is of Douglas type ([2],[8],[9]) if and only if Douglas tensor 

vanishes identically. It is generalization of the Berward spaces from the view 

point of Geodesic equations .A Finsler spaces with (α, β) metric is a Douglas 

space if and only if ([2],[8])   

(5.4.1)         )iyjbjyib(*C
L

L2
)iyj

0sjyi
0s(

L

LijB −
αβ
ααα+−

α
βα

= .
 

  
 Here

   )(2

)2(
*

22
000

ααα

βα

αγβ
ααβ

LL

LsLr
C

+
−

=
    

,
   

bi = aij bj,     

                              2 = b2 α2 − β2,   b2 = aij bi bj  

In view of (5.1.3)  , (5.4.1) become  

(5.4.2)                Bij (2α2 − β2)(2kα2 −3β2) = 2α2 (2α + β))(2kα2 −3β2)     

( si
0y

j
 – Sj

0 y 
i)  + α2 [(2α2 − β2) r00  - 4α2s0 (2α + β) ] (biyj – bjyi ) . 

Suppose that Fn is a Douglas space, that is Bij   are hp(3). Separating 

(5.4.2), in rational & irrational terms of yi ,we have  



(5.4.3)                   (2kα2 −3β2) ( si
0y

j
 – Sj

0 y 
i) - 2α2s0 (b

iyj – bjyi ) = 0  

 & (5.4.4)                              (2kα2 −3β2)  Bij -  α2 r00 (b
iyj – bjyi ) = 0. 

The term 3β2Bij of equation (5.4.4) seemingly does not contain α2.  

Hence there exists Vij in yi of degree 3 such that -3β2Bij = α2 Vij
(3)    i.e    

Bij = α2 Vij
(1) . Here we divide the following discussion in the two cases  

(1) α2 ≠ 0 (mod - β)                   (2)  α2≡ 0 (mod - β)    

 

Case – 1          In this case   Bij = α2 Vij
(1)  &    (5.4.4) leads to 

  (2kα2 −3β2)  α2 Vij
(1)   -  α2 r00 (b

iyj – bjyi ) = 0 .  

 Transvecting it by biyj     we get     (2kα2 −3β2)  Vij
  biyj  =  r00 (b

2α2 −β2). 

If (2kα2 −3β2)   contains (b2α2 −β2) then there exists a scalar function 

λ (x) such that  

                        (2kα2 −3β2)  =  λ (x) (b2α2 −β2) . 

 This implies λ = 3 and b2 = 2 . Thus  for  b2 ≠  2 , (2kα2 −3β2)  is a 

factor of r00 . 

 So there exists a scalar function h(x) such that  

                                     h(x)(2kα2 −3β2)  =  r00 ,                              i.e  

(5.4.5)                            rij = h(x) (2k aij- 3bi bj ) 

Also (5.4.3) can be rewritten as 



(5.4.6)                    (2kα2 −3β2) ( si
hδ j

k   + si
kδ j

h - s
j
hδ i

k - s
j
kδ i

h)  

                             - 2α2 [(shδ j
k   + skδ j

h )b
i – (shδ i

k + skδ i
h )b

j] = 0. 

Contracting (5.4.3) with ahk ,we get  

(5.4.7)          (2kα2 −3β2)sij  = 2α2 (bisj – bjsi ) 

Contracting (5.4.6) by with bh ,we get   

(5.4.8)         (2kα2 −3β2) ( si
kb

j  - s
j δ i

k + sj δ i
k - s

j
kb

i) = 0 

Contracting j & k , we get   (2kα2 −3β2)si = 0. 

But α2 ≠ 0 (mod - β) , so si = 0 . Thus from (4) ,  Sij  = 0 . That is  

 (5.4.9)                 si = 0 = Sij . 

From (5.4.5) and (5.4.9) ,we have  

(5.4.10)            ijb∇  =  rij  =  h(x) (2k aij – 3bibj)  

Conversely, if (5.4.8) holds,then it follows that      

2)(  h(x) αijjiij ybybB −=    which is h(p)- 3 . 

  So Fn is Douglas  space  .      Therefore we have, 

 

Theorem 5.4.1. A Finsler spaces Fn with second  Approximated exponential  

(αααα, ββββ) metric is Douglas space  if and only if there exists a scalar function h(x) 

such that ijb∇  = h(x) (2k aij  – 3bibj) . In particular if  

 h( x) = 0 ,then Fn is Berwald spaces. 
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Chapter 6 

  

ON A WEAKLY-LANDSBERG SPACE OF SOME 

(αααα,ββββ) METRIC 

 

 

6.1.  Introduction  

Let M n be n-dimensional differentiable manifold and Fn = (M n, L) be 



n-dimensional Finsler space, where L is a fundamental function. Let gij = 
2

i j

L

2
∂ ∂ɺ ɺ  

be the fundamental tensor, where the oprator i∂ɺ  means 
iy

∂
∂

 .  Now we define 

geodesic coefficient Gi as ([8], [9]) 

     Gi = 
1

4
yr ( 2

r i L∂ ∂ɺ  � i∂ɺ L2)  

and Gi = gij  Gj, where the symbol  i∂  means 
ix

∂
∂

 and gij the inverse of metric of gij. 

The equation of geodesics (Canonically parameterized), of Fn is given by 

                        

2 i i

2
i idx

2G (x, y) y
dt

d x

dt

 
= − = 

 
. 

The Berwald connection of Finsler space is defined by ([5], [8])  

( i i
jk jG ,G ,0), where the connection coefficients are defined by 

ii
j jG G= ∂ɺ , i

k j
i
jkG (G )= ∂ɺ . Let x M∈ , xy T M∈ and L is fundamental metric on M, 

TM = x
x M

T M
∈
∪ , the non-Riemannian quantity y x x xC : T M T M T M R⊗ ⊗ →  defined 

by  

         Cy(u, v, w) = Cijk u
i vj wk, where  Cijk = ij

1
g

2 k

∂
∂

.   

The family {Cijk} is called Cartan tensor. It is well known that Cijk = 0 iff L 

is Riemannian. In late 20th century, defined Berwald space  as given bellow. 

For x 0y T M∈  define By  :  x x x xT M T M T M T M⊗ ⊗ →  by 



By (u, v, w) = j k
i

x

i
jkG u v w

x

∂
∂

l
l

    
 

where 
3 i

j k
i

jk

G
G

y y y

∂=
∂ ∂ ∂l l

 is hv-curvature tensor of BΓ 

B is called the Berwald curvature. A Finsler metric is called a Berwald 

metric[13] if B = 0. In this space Gi (x, y) are quadratic in i
i

x

y y
x

∂=
∂ xT M∈ . It is 

single norm space [5] i.e., all the tangent space TxM with induced norm L is 

linearly isometric to each other. 

A Finsler space is called a Weakly Berwald space if Gmijk g
ij = Gmk=0 

i.e.(Ricci curvature tensor) vanishes.  It is also known as Mean hv-curvature 

tensor BΓ. 

We are going to investigate the characteris of Finsler Space whose 

Phijk = 0. The condition Phijk = 0 are equivalent to [9] Chij|0 = 0. Such a space 

of two dimension was first considered by G. Landsberg.  Now, we shall investigate 

in general Landsberg Space,  i.e., a non-Riemannian quantity defined on [13] the 

slit tangent bundle TM – {0} as y x x xL : T M T M T M R⊗ ⊗ →  by Ly (u, v, w) = Cijk|0 

ui vj wk where  i
i

x

u u
x

∂=
∂

,  i
i

x

v v
x

∂=
∂

, i
i

x

w w
x

∂=
∂

. The family {Cijk|0} are called 

Landsberg curvature. But for Landsberg space in BΓ, ym
m
jkhG = 0 implies that Cjkh|0 

= 0. So we conclude that the Finsler space with ym
m
jkhG = 0 (BΓ) are called 

Landsberg space.    

Now we define mean Cartan torsion as Iy (u) = Ci u
i where  



     Ci = gjk Cijk,     
i

i
x

u u
x

∂=
∂

,      y ∈ Tx M – {0}.  

The h-covariant derivative of Mean Cartan torsion along geodesics gives rise 

to the Mean Landsberg curvature τy : Tx M → R defined by τy (u) = Ci|0 u
i. The 

families {Ci|0} are called Mean Landsberg curvature. A Finsler metric is called 

Weakly Landsberg metric if Ci|0 = 0. This space was first introduced by Z. Shen 

([1], [11], [12], and [13]). But for Landsberg space in BΓ Cijk|0 = 0 implies ym
m
ijkG = 

0. So for Weakly Landsberg space ym
m
ijkG gij  = 0. Also ym

m
ijkG gij = 0 implies G0k = 0. 

Thus a Finsler space is called a Weakly Landsberg space if G0k = 0. This space also 

called Mean Landsberg space. Several Finslerian like M. Matsumoto, M. 

Hashiguchi, Z. Shen, A. Teyebi, G. S. Asanov have studied about Weakly 

Landsberg space. 

 The purpose of the present chapter is to investigate the condition that the 

Finsler space with some (α,β)-metric like Randers, Kropina and Matsumoto metric 

to be Weakly-Landsberg type. 

 

 

6.2. Weakly-Landsberg space of (αααα,ββββ)-metric 

In the present section, we deal with the condition that a Finsler space with an 

(α,β)-metric be a Weakly Landsberg space.Let (Mn, L) be a Finsler space with an 

(α,β)-metric, where α = (aij (x) yi yj)1/2 and β = bi(x) yi. Here, the symbol (/) stands 

for h-�covariant derivative with respect to the Riemannian connection in space 



(M,α) and i
jkγ  stand for the Christoffel symbols in the space (M,α). Let us list the 

symbols for the later use  

bi = air br,   b2 = ars br bs,  2rij = bi|j + bj|i, Si = br r
iS   

2Sij = bi|j – bj|i,  
i
jr  = air rrj,    i

jS  = air Srj,  ri = br r
ir . 

In [8], the geodesic coefficient function Gi of a Finsler space with an (α,β)-metric 

are given by , 

(6.2.1)         2Gi = i
00γ  + 2Bi, where 

    
* i

i i i * i
0

L LE y
B y S C b

L L
 β αα

α α

α      α α= + − −      α α β  

 


   



 

(6.2.2)   E* =  *L
C

L
ββ 

 
 

    

    C* =  0
2 2

00 2 S L )(r L

2( L L )α αα

α βαβ
β + αγ

− α
    

    γ
2 = 2 2 2b α − β ,       

L
Lα

∂=
∂α

,      
L

Lβ
∂=
∂β

,     
2L

Lαα
∂=

∂α∂α
, 

 
2L

Lαβ
∂=

∂α∂β
,  

3L
Lααα

∂=
∂α∂α∂α

. 

Then, we have , 

    i i i
j 0 j jG B= γ + , i i i

jk jk jkG B= γ +   and i i
jk jkG B=l l  

where     i i
j jB B∂ =ɺ ,   i i

k j jkB B∂ =ɺ   and i i
jk jkB B∂ =ɺ

l l . 

Thus  m ij
m ijky G g 0=  implies r m

mrky B 0=  i.e., B0k = 0.   



Theorem   6.2.1    The necessary and sufficient condition for a Finsler space        
with an  (αααα,ββββ) - metric to be a Weakly Landsberg  Space is that  

           
m r
mrkB y 0=    i.e.,  B0k = 0.   

Remark: Throughout the present chapter, we say “homogeneous polynomials of 

degree r  will be denoted as due to brevity. 

6.3.  Weakly – Landsberg  space of Randers and Kropina metric 

Consider the metric L (α,β) = α +β. It is well known that in a Randers space 

the geodesic coefficient Gi are given by 

(6.3.1)    2Gi =
( )0 i00 i

0

i r 2 S
y 2 S

00

− α 
+ α  α + β 

. 

This implies  

(6.3.2)      2 i 00 0
j 00 0

i r 2 S
G 2 (2r 4 S

0i (

1

)
) .

  − α= + − α  α + β α + β 
−  

Contracting (6.3.2) by indices i, j gives 

(6.3.3)    2 i
i 00 0

1i
G )2 (r 2 S

0i
.

 = + − α  α + β 
 

Again 

(6.3.4) 2
( )00 0k0 k0i

ik 0k 2k k

i r 2 S
G 2 (2r 2 S

k i ( )

2a a1
) . b

− α = + − α 
 − − + α αα + β α β  +

 

(6.3.5) 2 k 0 k0 ki
ik k

0 0 0 0 k
3

2a S 2a S 2a S a 2
G 2r

a S1  = − α + β 
− − +

α α α α
l l l l

l l  



         

k0 0
kk

2
0

0r 2 S

( )

a S
2

a
. b

 − α   −
− α

α + β
+ α 

l
l  

         
( )k 0 k

k
0 00

3

2 a a
. b

r

)
.

2

(
b

S−    − + +   α α 

α
+ β  α

l
l  

         0 k k0 000
22

r 2 S

( )

a a a
.

−  − α
α +

− α α α β
l l . 

Contracting equation (6.3.5) by yk, we get  

      ik
k iGy 0=l    i.e.,  G0l = 0.  

Theorem   6.3.1.    Randers space of n-dimensional, is always Weakly 

Landsberg space. 

 Remark:  B. Li and Shen, Z. [6] in his paper quoted that a Randers space is 

Weakly Landsberg space iff β is parallel with respect to α. He quoted this result 

from the paper [7] which read as follows “A Randers space is Landsberg space iff  

β is parallel with respect to α. But Landsberg space is always Weakly Berwald 

space, the converse may not be true. So the result quoted in paper [7] is not 

applicable for Weakly Landsberg space. 

Now, we consider  Kropina metric L (α,β) = α2/β. It is well known that in a 

Kropina space the geodesic coefficient function Gi (x, y) are given by 

(6.3.6)  2
i i

2

2 i 2
i 0

0 0 0 20 0 02

i S
G (S r S r

y

b0
2 )

b0
b 

+ −
  αβ α= − + +  α β β 

 
 

  



where 
i

00

 
 
 

 denotes the Christoffel symbols of the Riemannian metric α (x, y) [9]. 

Differentiating this equation by yj, we get  

(6.3.7)  2
2

j 00 j0 00i i
j j2 4

i
j0

j 2

b r 2 r 2 ri
G 2 S

y
i0

a
2

b
S

+ β β   α= − −   α 
−

α β
+

 
  

       
2 2 2

j0 j0i
0 j 0

i

j j02 j2 2

b
S

2a 2a
S b S 2rb

b

α α α− + −
β β β β

     − + +    
    β 

. 

Contracting (6.3.7) by indices i and j, we get  

(6.3.8)  2 i i00
j 0 i2 20 0

i br
G 2 S 2S 2r b

i
2

b0

   = − + +   α 
+


  

Differentiating this equation by yj, we get  

(6.3.9)  i i
ij j 00 ij2 2 2

j

2

0 j0

4

j

2

i 1 1
G 2 S 1 r r b

i j b b b

2r b 2 aβ β    = + − + + − +     α α α    
. 

Again differentiating equation (6.3.9) by yk, we get (hv)-Ricci tensor in the 

following form 

(6.3.10)  i
ijk 2 2 2 2 4 2 2 4

jk j0 j j0k0 0kk
2r 2r b 2 a2 a 2rb

G
b b b

  = + − + −  α α α α α  

ββ



β
 

     j k0 jk k0k
j002 4 04 4 6

1
r

b a 2 a 4ab
2a

b

  + − − − −  α α α α 

β β


. 

Contracting this equation by yj gives 

      i j
ijk 2

k0k
400

2 ab
rG y

β = − α α 
. 



So i
ijkG is vanish only when either 00r = 0 or k

2
k 0b 2 aβα − = 0. But 2α ≠ β  (mod – 0), 

so, 00r = 0. 

Theorem  6.3.2.    Kropina Space of dimension-n, is Weakly-Landsberg space 

iff  00r = 0, i.e., ββββ is closed with respect to αααα. 

Example of Weakly Landsberg Kropina space, which is not Landsberg 

Kropina space. 

Consider  a covariant vector field bi(x) in an odd-dimensional Euclidean 

space so that rij  = 0 and Sij ≠ 0 hold good. Let Aij be an n × n type quadratic skew 

symmetric matrix and xi denote coordinates of a point.  

We consider the following vector field bi = Aij x
j + ci, where ci are constants. 

In this special case bi|j + bj|i = 0 and bi|j – bj|i ≠ 0. So a Kropina space, which is 

generated by bi = Aij  x
j + cj is a Weakly-Landsberg space, and it is not Landsberg 

space.  

 

6.4.  Weakly-Landsberg space of Matsumoto metric 

A slope of a mountain is represented as the graph S of a differentiable 

function x3 = L (x1, x2), where (x1, x2, x3) is a rectangular coordinate system in a 

three- dimensional Euclidean space. The Riemannian metric   is induced on S by  

                 (x, y) = {(y1)2 + (y2)2+ ( b1 y
1+ b2 y

2)2)1/2 

          Where x = (xi ), y = (yi ) and bi = I f. We put  

 (x,y) = b1 y
1 + b2 y

2 



When a man can walk v meters per minute on horizontal plane, how many minutes 

does it takes him to walk along a road on S. 

                    Recently, M. Matsumoto [9] shows that the man will walk in  

s = ∫
1

0

))(),(( dttytxL  minutes along a road x(t) on S ,by taking  L as  ,where 

2ω  is the gravitational constant , and we may regard slope of a mountain as a 

Finsler space with such time measure L. 

Since  = ( 2 / {(  –  / 2)}, we shall normalize as  

    and taking a general Riemannian metric  and a general none zero one- 

form  on a general differentiable manifold M,  

An n-dimensional -metric  is called a slope metric or 

Matsumoto metric[1]  and a Finsler space equipped with this metric has been 

called a Matsumoto metric. 

Now we have 

L
Lα

∂=
∂α

, 
L

Lβ
∂=
∂β

, 
L

L α
αα

∂=
∂α

, 
L

L β
ββ

∂
=

∂α
 and 

L
L α

αβ
∂=
∂β

.  

We have from equation (6.2.2) 

    C* = 2
00 0[r ( 2 ) 2 S ]

2

α − β α − β − α
βγ

,  where   2(1 2b ) 3γ = α + − β  

    E* = 2
00 0

1
[( 2 )r 2 S ]

2
α − β − α

γ
 



and 

(6.4.1)   Bm =
2 mm 2 m

2 0
00 0

Sy ( 4 ) 2 b
[r ( 2 ) 2 S ]

2 ( 2 ) 2

  αα − β + αα − β − α + γα α − β α − β 
. 

   In view of equation (6.2.1), we have  

 

(6.4.2)  2Gm =
m m

2
00 0

m 2 y 2 b
[r ( 2 ) 2 S ] 1

00 2 ( 2 )

    β αα − β − α − +    α − β αγ γ α − β    
 

          
2 m

02 S

2

α+
α − β

. 

Equation (6.4.1) gives 

(6.4.3)  m
iB =  

 

i0
m mi

2 i
00 0 2 2

a
2 2b

y 2b 2 y
[r ( 2 ) 2 S ] 1

( 2 ) 2 2 ( )

   β −     βα   α − β − α − − − αγ α − β α − β α − β αγ    
   

mi0 i0 i0
i0 i i0 i i2 2 2

a a d a
3 2a c 2 b 2b 2a c d b 12 b

( )

 β βα   − + − α + − − − α + β    α δ α δ α    
m m

2i0
i0 00 i i0 0 i

a2 y 2 b
1 2r ( 2 ) r 2b 4a S 2 S

2 ( 2 )

    β α  − + α − β + − − − α    α − β αγ γ α − β α    
 

 
2m 2

m i0 ii
0 2

( 2 )a 2 b2S
2S

2 ( 2 )

 α − β + αα+ +  α − β α − β 
. 

Contracting by the indices i, j 



(6.4.4)  i 2
i 00 0 2 2 2 2

1 2 2
B [r ( 2 ) 2 S ] A

( )

 β= α − β − α − − δ αδ δ 
 

        
2

i 2 0
i0 00 02 2

4 S2
[2r b ( 2 ) r 2b 4 S ]

( 2 )

αα β + α − β + − − β + δ α α − β 
. 

We note that  

c = 1 + 2b2,  d = 5 + 4b2,   K = 2 + 16 b2,  

δ2 = (αc � 3β).(α � 2β),    K1 = 2c + 12 b2 

A = 2 k0
k0 k kk

a
( ) 2ca 2d d b 12 b

y

β∂ δ = − − α + β
∂ α

 

B =  2 22(c d 6 )α − αβ + β   and  P = 2 2 2
1K d dbαβ − β − α . 

Differentiating equation (6.4.4) by yj, we get  

(6.4.5)   j0i 2
ij j0 00 j j 0 2 2 2 2j

a 1 3 2
B [2r ( 2 ) r b 4a S 2 S ] P

( )

   β= α − β + − − − α − −   α δ αδ δ  
 

j j02
00 0 2 2 2 3

b a1 2 2
[r ( 2 ) 2 S A 1

( )

β  β α − β − α − − − −   δ α δ α α   
2 2 2

j0 2 1
1 1 j j j02 2 2 3

a2 4( K d db )
K K b 2d b 2db a A

( ) ( )

  αβ − β − α− β + α − β − +  δ α δ  
 

j0i i 2
ij i0 j j02

a2
2r b ( 2 ) 2r b 2b 2r 2b
  α β + α − β + − + −    δ α α  

 

2

j j0
00 j 0 j j3

b a
r 4b S 4 S 4S

2

β   α+ − − − β +   α α α − β   
 



2
j0 j0

0 j2 3

2a a2
4S 2b

( 2 ) ( 2 )

  α+ − −  α − β α − β α  
  

j0i 2
i0 00 0 2 2 2

2a 2
2r b ( 2 ) r 2b 4 S A

( )

  β α + α − β + − − β −   α δ α δ    
. 

Contracting it by yj gives 

      i j 2
ij 00 2 2 2 2 2 2 2 30

3 6 1 2 B 4PB
B y [r ( 2 ) 2 S ] (10P B)

( ) ( ) ( )

 β β= α − β − α − − + + + δ αδ δ α δ δ 
 

(6.4.6)   
2

i 2
i0 00 0 02

4
r b ( 2 ) r 2b 4 S 4S

2

  α β α + α − β + − − β +    δ α α − β    
. 

Differentiating equation (6.4.6) by yk 

(6.4.7)      ( )i j 2k0
kij k0 00 k k0 0k

a
B y [2r ( 2 ) r 2b 4a S 2 S ]

y

∂  = α − β + − − − α × ∂ α 
 

    
2 2 2 2 2 2 2 3

3 6 1 2 B 4PB
(10P B)

( ) ( ) ( )

 β β− − + + + δ αδ δ α δ δ 
 

2 k0k
00 0 2 2 2 3 2 2 2 3

a3A 6 b 6 A 2A
(r ( 2 ) 2 S ) (10P B)

( ) ( ) ( )

 β− β + α − β − α − − + + +  δ δ α α α δ δ 
 

k0 k0k
k 2 3 k 4 k02 2 2 2 3

a a1 2B b
b K 2K b K a

( ) ( )

 β β   − + α + β + + −    δ α δ α α    
 

k0
k0 k k2 2 2 3 2 4

a4B 4 AB 12ABP
2ca d b 12 b

( ) ( ) ( )

  β + − β + α + β − −   α δ α α δ δ   
 

i 2k0
i0 00 02 2

4a 4 A
2r b ( 2 ) r 2b 4 S
 α β   + − α − β + − − β   αδ δ α   

 



i i 2k0 k0k
ik i0 k k0 002 3

a a4 b
2r b ( 2 ) 2r b 2b 2r 2b r
 βα β    + α − β + − + − + −    δ α α α α    

 

( ) ( )

2 2
k0 k0

k 0 k k 0 k2 3

2a a2
4b S 4 S ] 4S 4S 2b

2 2 2

  α α  − − β + + − −     α − β α α − β α − β   
. 

Now, 

(6.4.8)     j i j i
ijk ij i
i

kk
B y (B y ) B

y

∂= −
∂

. 

In view of equation (6.4.5), (6.4.7) equation (6.4.8) gives 

(6.4.9)      i j 2k0
ijk k0 00 k k0 k0

a
B y [2r ( 2 ) r 2b 4a S 2 S ] = α − β + − − − α × α 

 

    
2 2 2 2 2 2 2 3

2 4 1 2B 4PB
(8P B)

( ) ( ) ( )

 β β− − + + + δ αδ δ α δ δ 
 

2 k0k
00 0 2 2 2 2 2 3

a2A 6 A 4 b
(r ( 2 ) 2 S )

( ) ( )

 β− β  + α − β − α + − −  δ α δ δ α α 
 

k0
1 k 1 k2 2

a1
(12K 4d) b (11K 3d 4c) b (36 28d)

( )

β− − + α − + + β −δ α
 

2 32
2 k0 k0 k0

k0 k 2 3

a a 2Ka
a (6c 22db ) 48 b 4d 24

β β ββ + − − + − + α α α α 
 

2 3 2 4

1 4 12ABP
16AP AB 2

( ) ( )

 β + + − −   δ α δ   
 

i 2 k0
i0 00 0 2 2 2

a A
2 2r b ( 2 ) r 2b 4 S

( )

  β α + α − β + − − β −    α δ α δ    
 



i i 2k0 k0k
ik i0 k k0 002 3

a a2 b
2r b ( 2 ) 2r b 2b 2r 2b r
 βα β    + α − β + − + − + −    δ α α α α    

 

k 0 k4b S 4 S ]− − β .  

Thus we get,  

Theorem 6.4.1.   Matsumoto space is Weakly Landsberg space if rij = 0 and S0 = 0, 

i.e., covariant vector field bi is parallel with respect to the Riemannian connection 

of the Riemannian space, provided    2 2 2 2 2(1 2b ) (5 4b ) 6 0δ = α + − + αβ + β ≠ . 
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CHAPTER 7

Quartic Rander’s Change of Finsler Metric

Introduction : Let Mn be an n−dimensional differentiable manifold and

F n be a Finsler space equipped with a fundamental function α(x, y), (yi =

ẋi) of Mn. If a differential 1-form β(x, y) = bi(x)yi is given on Mn, then M.

Matsumoto [4] introduced another Finsler space whose fundamental func-

tion is given by

(1.1) L(x, y) = α(x, y) + β(x, y)

This change of Finsler metric has been called β−change [11], [12]. If

α(x, y) is a Riemannian metric, then the Finslerspace with a metric L =

α + β where α = {aij(x)yiyj}1/2 is a Riemannian metric. This metric was

introduced by G. Rander’s [10]. In papers [1], [2], [3], [5] and [7] Randers

spaces have been studied from a geometrical view point and various theorem

were obtained. In 1978 S. Numata [9] introduced another β−change of

Finsler metric given by L = µ+β where µ = {aij(y)yiyj}1/2 is a Minkowski

metric and β is as above. This metric is of the similar form of Rander’s

one, but there are different tensor properties, because the Riemannian space

with the metric α is characterized by C i
jk = 0 and on the other hand the

locally Minkowski space with metric µ by Rhijk = 0, Chij|k = 0.

In 1978 M. Matsumoto and S. Numata [8] introduced the so called cubic

metric on a differential manifold with the local coordinate xi defined by

L = {aijk(x)yiyjyk}1/3 (yi = ẋi)



2

where aijk(x) are component of a symmetric tensor field of (0, 3) type de-

pending on the position x alone and has been called a cubic Finsler space.

This cubic metric is of the similar form to the Riemannian metric α, which

is characterized by ∂̇i∂̇j ∂̇kα
2 = 0, where as cubic metric L is characterized

by ∂̇i∂̇j ∂̇k∂̇pL
3 = 0.

In the present paper we shall introduced a Finsler space with a metric

(1.2) L(x, y) = L(x, y) + β(x, y)

This metric is of the similar form to the Rander’s one in the sense that

the Riemannian metric is replaced with the Quartic metric, that is, why we

will call the cahnge (1.2) as Quartic Randers change of Finsler metric. The

relation between v-curvature tensor of Quartic Finsler space and its Quartic

Rander’s changed Finsler space has been obtained.

The Fundamental tensors of F n :

We consider an n-dimensional Finsler space F n with a metic L(x, y)

given by

(2.1) L(x, y) = L(x, y) + bi(x)yi

where

(2.2) L4 = aijkp(x)yiyjykyp

By putting

(2.3) aijk =
aijkhy

r

L
, aij =

aijkry
kyr

L2
, ai =

aijkry
jykyr

L3
.



3

We obtained the normalized element of support li = ∂̇iL and the angular

metric tensor hij = L∂̇i∂̇jL as

(2.4) li = ai + bi,

(2.5)
hij

L
=

hij

L

where hij is the angular metric tensor of Quartic Finsler space with metric

L given by

(2.6) hij = 3(aij − aiaj).

The fundamental metric tensor gij = ∂̇i∂̇j

(L
2

2

)
= hij + lilj of Finsler space

F n are obtained from equations (2.4), (2.5) and (2.6) which is given by

(2.7) gij = 3τaij + (1− 3τ)aiaj + (aibj + ajbi) + bibj where τ =
L

L

It is easy to show that

∂̇iτ =
{(1− τ)ai + bi}

L
, ∂̇jai =

3(aij − aiaj)

L
, ∂̇kaij =

2(aijk − aijak)

L
.

Therefore from (2.7), it follows (h) hv-torsion tension tensor Cijk = ∂̇k

(gij

2

)

of the Cartan’s connection CΓ are given by

(2.8) 2LCijk = 6τaijk+3(1−3τ)(ajkai+aijak+akiaj)+3(aijbk+ajkbi+akibj)

−3(aiajbk + aiakbj + ajakbi) + 3(7τ − 3)aiajak

In view of equation (2.6) the equation (2.8) may be written as

(2.9) Cijk = τCijk +
(hijmk + hjkmi + hkimj)

2L
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where mi = bi − β

L
ai and Cijk is the (h) hv-torsion tensor of the Cartan’s

connection CΓ of Quartic Finsler metric L given by

(2.10) LCijk = 3[aijk − (aijak + ajkai + akiaj) + 2aiajak]

Let us suppose that the intrinsic metric tensor aij(x, y) of the Quartic

metric L has non-vanishing determinant. Then the inverse matrix (aij) of

(aij) exists.

Therefore the reciprocal metric tensor gij of F n is obtain from equation

(2.7) which is given by

(2.11) gij =
1

3τ
aij +

(b2 + 3τ − 1)

3τ(1 + q)2
aiaj − (aibj + ajbi)

3τ(1 + q)

where

ai = aijaj, bi = aijbj

b2 = bibi, q = aibi = aib
i =

β

L

The v-Curvature tensor of F n :

From (2.6), (2.10) and definition of mi and ai, we get the following

identities

(3.1) aia
i = 1, aijka

i = ajk, Cijka
i = 0, hija

i = 0

mia
i = 0, hijb

j = 3mi, mib
i = (b2 − q2)

To find the v-curvature tensor of F n, first we find (h) hv-torsion tensor

C
i

jk = girCjrk

(3.2) C
i

jk =
1

3
Ci

jk +
1

6L
(hi

jmk + hi
kmj + hjkm

i)
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− ai

L(1 + q)
{mjmk +

1

6
(b2 − q2)hjk} − 1

3(1 + q)
aiCjrkb

r

where

(3.3)

LC i
jk = LCjrka

ir = 3{ai
jk − (δi

jak + δi
kaj + aiajk) + 2aiajak}

hi
j = hjra

ir = 3(δi
j − aiaj)

mi = mra
ir = bi − qai

and ai
jk = airajrk.

From (3.1) and (3.3) we have the following identities

Cijrh
r
p = Cr

ijhpr = 3Cijp, Cijrm
r = Cijr br, mrh

r
i = 3mi,

mim
i = (b2 − q2), hirh

r
j = 3hij, hirm

r = 3mi.

From (2.9) and (3.2) we get after applying the identities (3.4)

(3.5) CijrC
r

hk =
τ

3
CijrC

r
hk +

1

2L
(Cijhmk + Cijkmh + Chjkmi + Chikmj)

+
1

6L
(Cijrhhk + Chrkhij)b

r +
1

12LL
(b2 − q2)hijhhk

+
1

4LL
(2hijmhmk +2hhkmimj +hjhmimk +hjkmimh +hihmjmk +hikmjmh)

Now we shall find the v−curvature tensor Shijk = CijrC
r

hk − CikrC
r

hj. The

tensor is obtained from (3.5) and given by

(3.6) Shijk = Q
(jk)

{τ

3
CijrC

r
hk + hijmhk + hhkmij

}

=
τ

3
Shijk + Q

(jk)

{hijmhk + hhkmij}

where

(3.7) mij =
1

6L

{
Cijrb

r +
(b2 − q2)

4L
hij +

3

2
L
−1

mimj

}
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and the symbol Q
(jk)

{· · · } denotes the exchange of j, k and subtraction.

Preposition 1: The v−curvature tensor Shijk of F
n

with respect to Car-

ton’s connection CΓ is of the form (3.6).

Thus (3.6) may be written as

(3.8) Shijk =
τ

3
Shijk + Q

(jk)

{hijmhk + hhkmij}

It is well known [6] that the v−curvature tensor of any three dimensional

Finsler space is of the form

(3.9) L2Shijk = S(hhjhik − hhkhij)

Owing to this fact M. Matsumoto [6] defined the S3-like Finsler space F n

(n ≥ 3) as such a Finsler space in which v−curvature tensor is of the form

(3.9). The scalar S in (3.9) is a function of x alone.

The v−curvature tensor of any four dimensional Finsler space may be

written as [6]

(3.10) L2Shijk = Q
(jk)

{hhjKki + hikhhj}

where Kij is a (0, 2) type symmetric Finsler tensor field which is such that

Kijy
j = 0. A Finsler space F n (n ≥ 4) is called S4-like Finsler space [6] if

its v−curvature tensor is of the form (3.10).

From (3.8), (3.9), (3.10) and (2.5), we have the following theorems.

Theorem 3.1 : The Quartic Rander’s change of S3-like or S4-like Finsler

space is S4-like Finsler space.
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Theorem 3.2 : If v−curvature tensor of Quartic Rander’s changed Finsler

space F
n

vanishes identically, then the Quartic Finsler space F n is S4-like.

If v−curvature tensor of Quartic Finsler space F n vanishes then equa-

tion (3.8) reduces to

Shijk = hijmhk + hhkmij − hikmhj − hhjmik (3.11)

By virtue of (3.11) and (2.11) and the Ricci tensor Sik = ghkShijk is of the

form

Sik =

(
− 1

3τ

)
[mhik + 3(n− 3)mik]

where m = mija
ij, which in view of (3.7) may be written as

(3.12) Sik + H1hik + H2Cikrb
r = H3mimk

where H1 =
m

3τ
+

(n− 3)(b2 − q2)

24 L
2

H2 =
(n− 3)

6L

H3 = − (n− 3)

4L
2

From (3.12), we have the following:

Theorem 3.3 : If the v−curvature tensor of Quartic Finsler space vanishes

then there exist scalar H1 and H2 in Quartic Rander’s changed Finsler space

F n (n ≥ 4) such that matrix ||Sik + H1hik + H2Cikrb
r|| is of rank two.
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The symbols  ∂  and 
.

∂ denote the partial derivative with respect to xi 

and yi respectively. Small and long vertical lines (I and |) stands for h and v- 

covariant derivative respectively. 

First chapter is an introductory in nature and consists of preliminary 

details.  Some useful results and definitions such as Finsler space, some 

connections like the Berwald, Carton and Runds have been mentioned 

therein.  

The second chapter deals with the relation between Carton’s 

connections of two Finsler spaces (Mn, L) and (Mn, L) where L obtained 

from L by h-Randers change. It has been obtained the conditions under 

which this change is projective. It also deals the conditions under which 

Douglas space, Landsberge space or Weakly Berwald space becomes 

invariant. 

The third chapter  is devoted to study for Finsler spaces 
−

nF  

obtained by Randers Conformal change of Finsler spaces Fn of Douglas type 

to be also of Douglas type and vice versa .It has been also worked out the 

condition under which the said transformation is projective.    

 In the fourth chapter we discuss the Finsler space 
−

nF = ( Mn , 
_

L (α, 

β))  obtained by Conformal Randers change of Finsler space Fn = ( Mn , L(α, 

β)  ) of  Douglas type remains to be Douglas type and vice versa . 

   The fifth chapter is devoted to investigate the Berwald connection, 

condition for projectively flatness of Finsler space with 2nd approximated 



exponential (α, β ) metric L = α α
β

e + β and the conditions under which said 

space is Douglas type. 

In the sixth chapter, we investigate condition that the Finsler space 

with ( , )α β −metric like Randers metric, Kropina metric and Matsumoto 

metric become Weakly Landsberg space. We also give an example for 

Weakly Landsberg space which is not Landsberg space.  

 The seventh chapter is the last chapter of my thesis and is devoted to 

study the S4- likeness of Quartic Rander’s change of a Finsler space and the 

relation between V-curvature tensor of Quartic Rander’s changed Finsler 

space. 
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