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PREFACE

The present thesis is an outcome of my investigatio the Department of
Mathematics and Statistics, D.D.U. Gorakhpur Ursitgr Gorakhpur under the
supervision of Prof. T.N.PandeyY¥he purpose of the present thesis is to study

models of Finsler spaces .

The whole thesis is divided into seven chapters aadh chapter is
subdivided into various sections. Throughout thssts ordered -3 tuples of
positive integers ( a.b.c) are used to locate empmtlemmas, theorems etc .The
first integers a locates the chapter , b lottagesection , c tell you the number of
the equation, proposition, lemma or theorem .Tin@ya a.b indicates the section
. For instance, Theorem 2.6.3 is the third theooémsection 2.6, but there is also
equation 2.6.3 , it is the third equation of sett®6 .The numbers in the square

bracket in a chapter correspond to the referenwves @t the end of the chapter.

The symbolsa and d denote the partial derivative with respect tamxd y
respectively. Small and long vertical lines (I dhaétands for h and v- covariant

derivative respectively.

First chapter is an introductory in nature and @eof preliminary details.
Some useful results and definitions such as Firsglace, some connections like

the Berwald, Carton and Runds have been mentidrazdin.



The second chapter deals with the relation betv@saton’s connections of
two Finsler spacedV", L) and M", L) where L obtained fronL by h-Randers
change. It has been obtained the conditions unteiwthis change is projective.
It also deals the conditions under which Douglaacsep Landsberge space or

Weakly Berwald space becomes invariant.

The third chapter is devoted to study for Finsieaces F" obtained by
Randers Conformal change of Finsler spack®fFDouglas type to be also of
Douglas type and vice versa .It has been also wodig the condition under
which the said transformation is projective.

In the fourth chapter we discuss the Finsler spBce= (M, L(a, B)

obtained by Conformal Randers change of Finslecespa=( M" 'L(a, B) ) of

Douglas type remains to be Douglas type and vicgave

The fifth chapters devoted to investigatee Berwald connection, condition

for projectively flatness of Finsler space wifl @pproximated exponentiat,(B )
B
metricL = a e+ 3 and the conditions under which said space is Cxsutyipe.

In the sixth chapter, we investigate condition ttite# Finsler space with
(a,B) —metric like Randers metric, Kropina metric and Mat®to metric become
Weakly Landsberg space. We also give an exampl&Vieaskly Landsberg space
which is not Landsberg space.

The seventh chapter is the last chapter of myidreesl is devoted to study
the S- likeness of Quartic Rander’'s change of a Finsjemce andhe relation

betweerV-curvature tensor of Quartic Rander’s changed Eirggace.
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TABLE OF SYMBOLS IN FINSLER GEOMETRY

For easy reference, the below table lists symlolnsler geometry,

their definitions and homogeneity.

Name Notation Homogeneity
in directional
argument

coordinates of point x=(X)
Tangent space of M at p oM
Tangent vector at point P y

. . . i a8
The Einstein summation y=y —
convention

T™= | |TM
Tangent bundle g X
Local coordinates of a point in TM
P (%, Y)
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A basis of M
A Finsler space of dimension n

Normalized supporting element

Fundamental metric tensor

Inverse of ¢

Angular metric tensor

Christoffel symbol

Cartan tensor

Geodesic coefficient

Geodesic spray

Non-linear connection

Horizontal basis vector

F'=(M", L)
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& =9t
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Set of vector field on M

Horizontal connection component

vertical connection component
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Chapter 1

Introduction

1.1 A brief historical of development of Finsler Georatry

Finsler geometry is a kind of differential geometmhich was originated by P.
Finsler [13] in 1918. Main focus of Finsler in ldsssertation was to geometrize
calculus of variation the idea given by his teacBaratheodory. The creataf
this geometry is really L. Berwald in 1925. Thermgsrof Finsler geometry were
present in the epoch-making lecture of B. Riemarmckv he delivered in June
1854, at Gottingen University. In the lecture Riemahad discussed various
possibilities by means of which ardimensional space may be equipped with the
metric before coming to the square root metric. tds thought over cubic and
guartic also, but he give up it ,due to the diffiguof geometrical meaning to
various differential invariants, furthermore thenmgmutation is very complicated.
Consequently he concludes that the theory of secemlized metrics (Cubic and
Quartic) would hardly contribute to the progress gdometry. It is usually
considered as a generalization of the Riemanniamggy in which the space
consists of tangent bundles instead of collectibpants. Finsler spaces differ

from Riemannian spaces by the fact that metric wgp®n direction also. Finally



Riemannians main attention was on a metric, wheeedistancels between two

neighbouring points represented by the co-ordingtesd(x' + dx*) defined by,

where the coefficientg;; are functions of coordinatas and

det(g;;) #0 .This quadratic differential form is called a Rennian metric and

space with such metric called Riemannian space.

There are two approaches of Finsler Space outhothwvone is considered as
Riemannian metric generalization. Finsler Space $pace where metric function

has been taken as
ds =L(x' & X, ..... X", dxt dbé,dx,....... dxX) = L(xy) (y =dx) .

We are concerned with the generalized melsic L(X, y) which gives the distance
between two poin{x’) and (x'+ dx') . Riemann has also discuss that the
positive fourth root of a fourth order differenti@irm ds' = gjm, dX dX dx" dx")

might serve as a metric .These functions have {nmegerties in common

(i) they are positive definite;
(i) they are homogeneous of first degree in differ&éntia

(i)  they are convex in differentials.

It would seem natural Therefore, to introduce dhterr generalization to the affect

that the distance between two neighbouring pdintsand (x* + dx') be defined

by some functio.( X,dX ) ,where

ds = L(X,dX)



and it satisfies above three properties. Riemarsertesl that the differential
geometry based on such generalized metric willdie @ develop in a way similar
to the case of Riemannian metric. It will be difficto give suitable geometrical
meanings to differential invariants and further goenputation for it will be very
complicated. Consequently he concluded that theryhef such generalized metric
will hardily contribute to the progress of geometkye put it in the following

words.

“Investigation of this more general class wouldually require no essential
different principles but it would be rather timensoming and throw relatively no
light on the study of space, especially since teswannot be expressed
geometrically.”

Due to Riemann’s comments, mathematicians did nottd study such
spaces for more than 60 years. In 1918, 24 yedr&etman, Paul Finsler [9] tried
to study such spaces and submitted his thesis tinGen University. His
approach of study this geometry was based on emoofl variation. He put the
idea of calculus of variation with special referenc new geometrical background,
which was given by his teacher Caratheodory .Fingeometry is a kind of
differential geometry which is usually considered@ a generalization of
Riemannian geometry. The history of developmentiofsler geometry can be
divided into four periods.

1. 1924 — 1933
2.1934 — 1950
3.1951 - 1963

4.1963 — up to now
1. 1924 — 1933



The first period of the history of Finsler georgelregan in 1924, when the
three geometrician, J. H. Taylor [32], J. L. Syrigé&] and L. Berwald [4], [5]
simultaneously started the work in this field. Balivis the first man who has
introduced the concept of connection in the theamr¥insler spaces. He was the
creator of Finsler geometry and, what was more fahader. He had developed a
theory with particular reference to the theory ofvature in which the Ricci
lemma does not hold. J. H. Taylor and J. L. Syng@duced a special parallelism.
In 1928 Taylor gave the name ‘Finsler Space’ torttanifold equipped with this
generalized metric.

2. 1934 - 1950

The second period began in 1934, when E. Carfgoul@ished his thesis on
Finsler geometry. He showed that it was indeed iplesso define connection
coefficients and hence covariant derivatives shelh the Ricci lemma is satisfied.
On this basis Cartan developed the theory of cureand torsion. All subsequent
investigations considering the geometry of Finslgsices were dominated by this
approach. Several mathematicians such as E. T.sBdvi, S. Golab [10], H.
Hombu [12], O. Varga [33], V. V. Wagner [34] haveudied Finsler geometry
along Cartan’s approach. They expressed the opihianthe theory attained his
final form. This theory made certain devise, whiblasically involves the
consideration of a space, whose elements are mopdints of the underlying
manifold, but the line element of latter, whichrfe a (2n-1) dimensional variety.
This facilitates the Cartan called “Euclidean castio®” which by means of

certain postulates may be derived uniquely fronftinelamental metric function.

3. 1951 - 1963
The third period of the history of Finsler geomébggan in 1951, when H.

Rund [27] introduced a new process of paralleligwmf the stand point of
Minkowskian geometry. Cartan introduced paralleli;iom the stand point of

locally Euclidean geometry. Latter on E. T. Deveesl A. Deicke have indicated



that Rund’s and Cartan’s parallelism were the s&eeeral Mathematicians such
as W. Barthel [3], A. Deicke [8], D. Laugwitz [18R. Sulanke [30] have studied
Finsler spaces on Rund’s approach.

4. 1963 — up to now

The fourth period of history of development of $ter geometry began in
1963, when H. Akabar Zadeh [2] developed the modesory of Finsler spaces
based on the geometry of connections of fibre kesmdlThe reason of
modernization is to establish a global definitidnconnections in Finsler spaces
and to reexamine the Cartan’s system of axiomsh&fatiticians and Physicists
began to study special Finsler spaces from the egimm organized by M.
Matsumoto on the development of Finsler geometngesil970. The aim of this
symposium was to find real models of Finsler spathes contribution of Prof. M.
Matsumoto on the development of Finsler geometwagh records. He correlate
Cartan’s connections, Berwald connection and Ruondimections by the process
called C-process and P-process. His various rdsqmpers (1992-1996) on the
theory of Finsler space witlx,()-metric has great contribution in the development

of special Finsler spaces.

The study of Finsler spaces in India was startediral 1960 under the
leadership of Prof. R. S. Mishra, Prof. R. N. Sal #rof. K. S. Amur. Some
Important mathematicians in this fields are asofefi: - Prof. U. P. Singh, Prof. H.
D. Pandey, Prof. R. B. Mishra, Prof. M. D. Upadhayeof. R. S. Sinha, Prof. B.
B. Sinha, Prof. Ram Hit, Dr. B. N. Prasad, ProfNI.Pandey, Prof. H. S. Shukla,
Prof. P. N. Pandey, Prof. S. C. Rastogi, Prof. C. Bagewadi,



S.K.Narasimhamurthi and some Finslerian are Progh&én, H. S Park,. . Y Lee,
Alkou Tadashi, P.L Atonally Xiaohuan Mo,R.Miran ,H. Akbar-Zadeh etc.

Now, we | will discuss some preliminary concepfsFansler geometry

which have been used in the present thesis.

1.2 Homogeneous function, Curve , Line Element & Tangdrbundle

Homogeneous functionis a function with_multiplicativescaling behavior if the

argument is multiplied by a factor, then the resulnultiplied by some power of
this factor. More precisely, if f: TM — W is a functionbetween two_vector
spacesover a_fieldF, and k is an integer, then f is said to be hanegus of

degree k iff (x,cy) = cf (x, y) for all nonzero &F and ye V.

Let R be a region of n-dimensional differentiable maldiftd" which is
covered completely by a co-ordinate system, su@t #my pointP of R is
represented by a set of n-real independent vagablg= 1, 2, 3,........ n)called
the co-ordinates of the point. A transformatiorcofordinates is represented by a

set ofn-equations,
(1.2.1) Xt = x (xt,x?, ., x™) (=12 ... .. n)

which shows that the co-ordinaté®f a pointP of M" are represented in the
new co-ordinate system by new variakfesWe assume that the functiona$ of

(1.2.1) are at least of clag8 and,

i’
(1.2.2) detZ) # 0



A set of points of R, whose co-ordinates may h@essed as functions of a
single parametert’ is regarded as a curveVbf Thus the equations,

(1.2.3) X = X(t)

defines a curve C d¥f1". If the functions (1.2.3) are class, @ve shall regard the

entity whose components are given by,

. dxt

(1.2.4) y'==

as, the tangent vector@oWe called the combinationd( y') a line element
of C.

Tangent bundle The tangent bundle [3] of a differentiable matufé1" is the
union of the tangent spacesMf , that is TM = [JTM = | J{x} x TM where

T.M denotes the tangent spaceM” at the pointk. So, an element ofM can be

thought of as a pail, y), wherex is a point inM" andy is a tangent vector tal"

atx.The set of coordinates,ggg) define a basis of the tangent space.

The infinitesimal distance between two poiRt) andQ(X ,dX ) of curve

(1.2.3) lies on ManifoldM" is define by ds £(xX ,dX) = ng. (g, y)dxidx) . The

arc PQ become tangent at x on Manifolt .M

1.3 Finsler space



Let M" ben- dimensional ManifoldTM tangent bundle d¥1" |, { % }is
X

basis of tangent spaces at (x) g (y) = % . A functionL: TM - [0,20) of the

line elementgx’, y') defined orM" is called fundamental function if it satisfies

(a) The functiorL (x!, y?) is positively homogeneous of degree ong'im e.,

(1.3.1) L(x!, ky?) =kL(x?, yY), k>0

That is, the arc length of curve is independerthefchoice of parameter t.

(b) The functiorL(x*, y?") is positive if not ally* vanish simultaneously, i.e.,
(1.3.2) L(xf, y)>0 with Y.(y")*=0

That is, the distance between two distinct poisfsasitive.

(c) The quadratic form,

(1_3.3) 513}-.[;2 (x", },i)fiéj _ 8212 (x, vjfafj

dylayl
is assumed to be positive definite for anyalales’.
Thatis,L (x?, y*) is a convex function iy¥.

The manifoldM" equipped with the fundamental functidnis called a Finsler
space 3] .It is denoted by" or (M", L).

Some example of Finsler spaces are Normed vep@aces, Euclidean spaces,

Riemannian spaces, Randers spaces,...

From Euler’'s theorem on homogeneous functions, ave h



(1.3.4) a.L(x, v)y' =L(x, )
and

(1.3.5) 51-3fL (x, y)y'=0

We put,

(1.3.6) gi;(x, y) = 56'1-6'}-[‘2 (x, V)

Using the theory of quadratic form and the Cond#p we deduce from (1.3.4)
that

(1.3.7) 9x, ¥) = |g;(x, y)| >0
for all line elemengs?, y*).

If the functionL is of particular form

(1.3.8) L (x%, dx®) = Jgij(x"]dxidxf

where, the coefficientg, ; (x*) are independent afx’, the metric defined by this

function is called Riemannian metric and the mddifd" is called a Riemannian
space. Throughout the present thesis, the n-dimealsiFinsler space will be
denoted byF" or (M", L), where as n-dimensional Riemannian space will be
denoted byR'".

1.4. Physical motivation

In a perfectly homogeneous and isotropic mediunongry is Euclidean, and
shortest paths are straight lines. In an inhomogemespace, geometry is
Riemannian and the shortest paths are geodesica. ffedium is not only

inhomogeneous, but also anisotropic 1, i.e. haatehmlirectional structure, the



appropriate geometry is Finslerian [13] [14] ande tlshortest paths are
correspondingly Finsler-geodesics. As a consequéheefundamental metric
tensor depends on both position and direction. iBhaégso a natural model for high

angular resolution diffusion images.

Finsler geometry has its genesis in integral offtinen f: L(x,y) dt, where

x = (X),y = () :dd—)f Let us find out some contexts in which this intéguises.

(a). Suppose& stands for position, yor velocity. ThenL(x, y) would have the

meaning of speed andwould play the role of time, in this case the im&g

f: L(x,y) dt measures distance traveled.

(b). In an anisotropic medium (rays and wave Baate not orthogonal to each
other) the speed of light depends on its directbtravail. At each locatiorx,

visualize y as an arrow that emanates fromMVe denote the time that light takes
to trivial from x to the top of y call the resuwl{x , y) . The integraIf: L(x, dx) dt
represents total time that light takes to travesggven path in this medium.

(c). It is well-known that the time taken by marcimbing up and going down on
same length of the slope of mountain are distiittaeans time measures

functionL(x (t), y (t))also depends on direction .This fundamental fandt

together with slope of mountairM (Tangent bundle) is Finsler space.



(d). Cost of transportation function not only degp@m distance but also on
direction, except some other physical perturbasiach as friction, air resistance

e.t.c . This function can be regarded as fundarh&mation of Finsler space.

(e) . (Mathematical ecology ) Supposestands for the state of coral reef , and
displacement vector from the state x to new statixx L (x ,dx) represents the

energy one needs in order to develop from the state the neighboring state
x+dx . Hence the integra_,fI:L(x, dX dt represents the total energy cost of a given

path of evolution.

So from above we see that the world is Finsleriah ih has wide application in
theory of relativity, control theory, thermodynamsicoptics, ecology, and
mathematical biology .

1.5. Tangent space, Indicatrix and Cotangent spas

We consider a change of local co-ordinates asesepted by the equation

(1.2.1), along the curve (1.2.3) referred to anarmant parameter t; the new

“*_ are obtained by differentiating the

components of the tangent vect_p‘f =

relation,
(1.5.1)  x' = (x(D)

With respect to t, which gives,

Ele’

axt

(152) y' =

v



Or in terms of differentials,

(1.53)  dx' =2 dy

axt

Heredx! is interpreted as the components of a displacemevit from a point P

(x*) to a point Qf* + dx?).

E-.II
If the point P§?) is fixed, i. e. the coefficientaas% of the transformation (1.4.2)" are

fixed, this relation represents a linear transfdromaof thedx® onto thedx" . The

same is true for the variablgs andyir in the transformation (1.4.2). Therefore,,

the n-entities of this kind may be taken to define elements of an n-dimensional

linear vector space.

A system of n-quantities¥’ whose transformation law under (1.2.1) is
equivalent to that of the' is called a contravariant vector attached to tbiatp
P(x") of M". Such contravariant vectors constitute the elernéuéector space. The
totality of all contravariant vectors attached ' of M" is thetangent space

denoted by T(P) or T,(X).

Indicatrix

We consider the functiok(x!, ¥*) defined for all line elementgx!, y?)

over the region R df1". The equation,

L(x', y')=1, (' fixed, y’ variable)



Represent an (n - 1)-dimensional locus in (P) i. e., a hypersurface. This
hypersurface plays the role of unit sphere in gepmaf the vector space,{P)
and is called Indicatrix [28].

Cotangent space

Let M" be a smooth manifold and letoe a point inV". Let T,M be the_tangent
spaceatx. Then cotangent spacexais defined as the dual spackeT,M denoted
by T,M or (TM)" Concretely, elements of the cotangent space_agarli
functionalon T,M. That is, every elementd T, M is a linear maf: TM — R*
.whereR ™" set of positive real numberghe elements of, M are called cotangent

vectors

1.6. Pull- back tangent bundle, Non-linear connectionDecomposition of
T(MM-0)and T(TM-0).

Pull- back tangent bundle(z#T M): Let M" be an n-dimensional manifold.
SupposeT, M the tangent space ate M, andTM = | JTM = [ J{x} x TM the
XM XM

tangent bundle d¥1. Each element of M has the forngx, y), wherex € M andy &€
TXM. LetTM, =T M \ {0}. The natural projection: T M — M s given byz(X, y)

= X.
The pull-back tangent bundieTM is a vector bundle ovdr M, whose fiber
n,'T Matv € T Myis T,M , wherer(v) = x. Then

o TM={XVY,V) | YETcMy,vVET M }.
The natural basis fof,T M is { @i ,= (v, %)M,} foralli=1,2,......n.
X

Non-linear connection



A non- linear connection on a manifold"Ns a collection of locally defined 1-
homogeneous functiomji on(TM -0) satisfying transformation rules

ox’ X"\ 162xhy,-

(1.54) 2% N =9 N 19X and
OX' ox! 2 0x'0x’
i _0G'
Decomposition of T(TM — 0)
The vector spaces spanbflih: = 1,2,...... n} depend on local coordinates.
Ll

Therefore, we can not say aboutaa—‘i “ direction in T(TM — 0 ).However, when
X

M" is equipped with a non — linear connecﬁd;in, let

& a d
(1.5.6) sy = oaly ™ N¥(x,y) oy l, e T(TM-0),
_ X o

whence% |y . Thus 2n — dimentional vector spadgflM — 0 )has

T oA

2n- dimensional subspaces, V,TM = span {% l,} and

H,TM = span {% |,} and these are independ of local coordinates. tedafine

VIM = ] V,TM andHTM = [ J H,TM hence T(TM - 0) = VTMO HTM.

pTM-0 pOTM-0
The vectors inVTM are called vertical vectors and victors HTM are called
horizontal vectors. The tangent of a geodesicsiM&ys a horizontal vectors

geodesic spray G(X, y) is horizontal for @) y) € (TM — 0)

Decomposition of T (TM — 0)



OnTM the 1- formadX anddy satisfying law of transformation

157) o], =% dx |,

X
. i r 2 i r s
(1.5.6) dy, = 2 dy |+ 29 Jdx |, .
0 X X 0Xx
Let 5y'|, = dy |, + N¥(x,y)d¥], . in whencedy'l, = % &y |, . The 2n —
X

dimensional vector spaceB(TM — 0)has two n- dimensional subspaCéréer =
span {5y‘|IO } and, Hp*TM = span {d>é|p } and these are independent of local

coordinates. Then point wis€ (TM-0)=VTM O HTM . Co-vectors it/ TM
are called vertical co-vector and co-vectorsHiTM are called horizontal co-

vectors.
1.7. Metric Tensor & Cartan torsion

From equation (1.4.2)" we can easily see that thentifies g;; defined by the

equation (1.3.7) from the components of the cowartgnsor of rank 2, also

g:;(x, ¥) are positively homogeneous of degree zerp‘iand symmetric in their

indices. Due to homogeneity condition — (a) of mec8 for the functionL(x, v),

we have,
1.7.1) IP(x y) =g, »y'y

By condition- (c) of section 3 it follows that imge of matrixg,; exist. Thus, if

g" denote the inverse gf;, then



1.7.2) g0 Mg (x ) = 8F

where, §F is well known kronecker delta. Therefore,, thestanwhose
covariant and contravariant components @ré€x, ) and g (x, y) is called the

metric tensor or the first fundamental tensor ef Emnsler space"F

Cartan torsion tensor.

Letx eM, y€eTM and L fundamental function on Manifold'", define

¢ TMx T,M x TM — R byc,(u,v,w) = g u' vV W*. The familyc = { ¢} for
all y e T,M, is called Cartan torsion. The tens@g, (x, y) defined by

1 12 2 2
(1.7.3) Cijk (x, y) = Eak.’ga'j = Zaiajakl‘z

is positively homogeneous of degree -lyinand is symmetric in all their

indices. This tensor is called Cartan’s C-tensar satisfies
(1.7.4) Cijr (x, Y)y' = i jl (x, ¥)y/ = Cijr (x, )y*=0

(1.7.5)  (3rCij)y" = 0nCiji)y’ = (0nCipi)y* = 0

1.8. Magnitude of a vector. The Notion of Orthogoality

The metric tensog, ;(x, y) may be used in two different ways, in defining

the magnitude of a vector and also the angle betiee vectors.

LetX* be a vector, then the scakgiven by

(1.8.1) X? =g,;(x, X)X'XJ



Is called the magnitude of this vector.
If¥* is another vector, then the ratio,

gij {xi, }Ei:]Xi el

(1.8.2) cos(X, V) =

Lix!, XDL(xl, ¥D)

is called the ‘Minkowskian cosine’ corresponding tioe (ordered) pair of

directionsX®, ¥*(Rund [27]). It is obvious from (1.7.2) that Minkskian cosine is

non-symmetric inX* and Y".

Let X* be a vector angt* an arbitrary fixed direction, then the scalar

(1.8.3) gi;(x, VX' X7

is called the square of magnitude of the vedidrfor the preassigned direction
yIf Y* is another vector, then the ratio,

e }‘Tfyj
(1.8.4) cos(X, V) =~ g5 3”?
ﬂ'gzj{x; v)xixl _\IIHE_J'{-'X-', yvivi

is called the cosine oX*, ¥* for the directiony’.

It is to be noted that the concepts of magnituleeator and the cosine

between two vectors given by (1.8.3) and (1.8.dh@s$ at each point of the space

in a pre-assigned directigrf which has been called the element of support. Also

the cosine given by (1.8.4) is symmetrickihand ¥* (Berwald [4], Synge [31])

To distinguish between the two magnitudes we tb@&lmagnitude given by

(1.8.1) as the Minkowskian magnitude oX* and that given by (1.8.3) the

magnitude of’.



The equations (1.8.2) and (1.8.4) are used to edfia Orthogonality in'F

The vectory" is said to be orthogonal with respecixtoif

Thus according to this definition ¥ is orthogonal with respect ¥ then it is not

necessary thék’ is also orthogonal with respectta

The vectorX* andY® are said to be orthogonal (for a pre-assigrigd
(1.8.6) g:;(x, YIX'V =0

This definition of Orthogonality is symmetric X and¥”.

1.9. Connections and Covariant Differentiations

Any quantities in a Finsler space is functioniogélelement, y). If

S(x, y)is a scalar field in a Finsler space thequ? are not components of a
X

covariant vector. If we have a non-linear connecﬂ.ﬁ}ﬁ(x, V), we can obtain the

covariant vector field of the components

S ==, where =2 N/ 2

Sx Sact Bt Logyd

Further, if we have quantitie‘%"k (x, ¥) which obey the transformation rule
similar to Christoffel symbol the covariant derivas K, of a Finsler tensor field

of (1, 1)-type is defined by

. 5 K . .
(2.9.2) K;lk = a_ﬂi + KjTF;k — K_,Eﬂ"';:



On the other hand, the partial derivatives of congmds of a tensor fieldi}*' with

respect toy’ gives a new tensor field, but we shall modify thesn

. a k' . _
(192)  Kile =1+ K'Ch — KiG,

Where,t‘fj"k (x, y) are components of a tensor field of (1, 2)-typlee Tollection
(Fi, NY, C}.) constitute a Finsler connection, and covariamivdéves given by

(1.9.1) and (1.9.2) are called h- and v-covariamniatives of R}i respectively.

Finsler connection: SupposeN; is is a non-linear connection o' MndF};,, Cj,

are 0 & -1 degree homogeneous function respegiivgl from (TM — 0 ) to

R’, X (M) the set of vector field on manifold M A Finsler connection is a

mapping

V(FL,NE CL): TR(TM = 0) x K(M) = T, (M), (Y, X) = Ty(X)

Satisfying the properties
1 -Vislinear oveRin X and Y (but not necessarily in y).

2—-Iffe c* (M) and ye T,M — 0 then in local coordinates

5 O | y— e 0 9 mpy 0
F&‘xf I;u(f %Iy) = df (W I;u) %Ix) +fF1'j (y) ax™ Ix),

¢ 0 —f (i 0
and V—[,(f 5 1,) = G () = 1

For all X € %(M) andV does not depend on the local coordinates.



For any Finsler connectio@‘{f, N, C;,:) we have five torsion tensors and three

curvature tensors hh, hv and vv-curvatures [Rieni@ancurvature (R), Beraldian

Curvature (B) and third curvature (Q)] which areen by,
(1.9.3) (h)h-torsion: T, = Fj, — F;

(1.9.4) (v)v-torsion: S, = Cji — Cy;

(1.9.5) (h)hv-torsion:C}, as the vertical connecticff,
ionr: — 5N _ eni
(1.9.6) (v)h-torsmnRik =k su

(1.9.7) (Whv-torsion: B} = d, N' — Fj,

. SR ) . .
(1.9.8) h-curvature:  Rj, =" — Bk Frpl, — FRFL 4
CrmFjic
(1.9.9) hv-curvature: P, = 8,F; — Ciy); + Chn PR

(1.9.10)  v-curvature:  Si, =d,C}, —9;CL, + CCL, —CmCL,

The deflection tensor fielﬂj" of a Finsler connection/Fis given by
i _ o kpi N
(1.9.11) D =y*"F — N,

when a Finsler metric is given, various Finsler reegtions are determined from
the metric. The well known examples are Cartanisneation, Rund’s connection

and Berwald’s connection.



Cartan’s Connection

We are concerned with a Finsler spatefM", L) which is to be endowed

with the Cartan’s connection IC = ([, Igi, C) constructed from the

fundamental functiorl.(x, y). According to the theory of Finsler connectiong du

to M. Matsumoto ([17], [18]), the Cis determined from the axiomatic stand point

as follows:-

There exists a unique Finsler connectigi=RE};, N}, C},) which satisfies

the following five conditions:

(Cy) Gijie =0

(C;) (h)h-torsion: Tj =0

(Cs) Deflection tensor field; = 0

(Cs) gijl =10

(Cs) (v)v-torsion: Sj =0

This connection is called the Cartan’s connectimh ia denoted by
T = [, Tik, Ch).

The last two condition £and G give,

(1.9.12) C, —1gm29k

2 ayh
This shows that vertical connection af @nd Cartan’s C-tensor is identical.

The first three conditions,CC, and G give,



i «i 1 _inclgjn , 8g gk
(1.9.13)  Fp =Tx =39 h[a;k + 5; o
(1.9.14) N = [l =y}, —2Ci G™
where,

(1.9.15)  G'=-v{,

and

i _ 1 pePih , Bgxkn  9Gjk
(1.9.16) vy = P e

is the Christoffel symbol of\", L). Here ‘0’ denote contraction witip®.
It is easy to verify from the axioms, (C; and equation (1.5.1), that

(1.917)  a).y, =0, b).Ln=0, )., =0

where,l* is a unit vector in the direction of element opparty’, i.e.

i
i ¥

CL(x )

Since,(; ;. is an indicatory tensor, Therefore, from (1.6.42)have; = &;. Thus
in view of (1.5.1) and condition ;Cwe haveL|, = d,L = I, wherel, = gi;l. It

may also be verified that,

@). Uly;=L""h,,  b). Ll;=L"hy, ). L; =0,

(1.9.18) { 4
d). ha‘ju.: =0, e). hijlﬁ: =1L (Iihjk + Ijhki)

where,h, ; is the angular metric tensor defined by



(1.9.19)  hy; =g, — Ll

ity
andh! = g™ hy
Round’s Connection

The Rund’s connection of a Finsler spack & (M", L) is a Finsler
connection which is obtained from Cartan’s conmectll” by the C-process [18].

The C-process is characterized by expelling theidartens ;',:. Thus the first

two connection coefficients of the Rund’s conneacttiti” are the same with those
of the Cartan’s connectionITC while the third is equal to zero. Thus the Rund’s
connection R of the Finsler space’fs given by R = ([}}, T5;, 0). The torsion

tensors of R are such that,

T =0, R} =thesameasthatofCl, C} =0

(1.9.20) { . .
F}*k = the same as that of CT, .S}*k =0

The curvature tensors offRare as follows

a). h— curvature K: K; 3 = Ry, — Ci, R},

b). hv— curvature F: Fy;, = Bl + Gy, — i Py,

(1.9.21) {

While, the v-curvature tensﬁﬁjk of RI" vanishes identically. We note that

h-covariant differentiations with respect t@" @nd R" coincide with each other.

FurthermoreC), in (1.9.21) is the Carton’s C-tens@, = 9" Cpi Which is not the

vertical connection of Ras it vanishes for R



The h-curvature K and hv-curvature F of Rnay be given in terms of
connection coefficients as,
) 51";‘5. 51"*5
i _ j  elpp
{1). Khjk T gxk Saxl
b). Fpjy = 0;I};

(1.9.22) LR i = Tk o

Bernard’s Connection

The Bernard’s connection of a Finsler sp&fe= (M", L) is a Finsler connection
which is obtained from Round’s connectio Ry the P-process [18]. The P

process is characterized by expelling the torsiensar ;,: The Berwald's

connection of Finsler spacé i§ denoted by B:({}}ik, G;’, 0) where
(1.9.23) a). G, =9,G;, b). G =I5 =0;G'

The Berwald’'s connection B is uniquely determined from metric function

L(x, y) of F" by the following five axioms:-

(B1) L|1 =0
(B,) (h) h-torsion: T, =0
(Bs) Deflection: D! =0

(B) (v) hv-torsion: P} =0
(Bs) (h)hv-torsion:  Ci, =0

Thus the tensors of/Bare such that



Ti =0, R}, =thesameasthatofRl, C} =0

(1.9.24) { . .
Py = the same as that of RT, §;, =0

The v-connection coefficients), of BI" are related to those of by
(1.9.25)  Gh ="+ Cyp
The curvature tensors of Bare as follows

a). h—curvature H: Hj; =K} ;. + Gy 101 = Cglol;
(1.9.2) +Cier10Go = GirjoCingo
b). hv — curvature G: Gpy = Fpq + 5;!{?;&

The v-curvature tensois; # Of BI' vanishes identically.
The simpler forms oﬁ&';ﬁk and G;;jk of BI' may be given by,
(1.9.27)  H}, = d,R}, Ghix = 0,G}y
It is to be noted thatBis neither h-metrical nor v-metrical in general:-
iy = 2G50 Gk = Ciji

where h- and v-covariant derivatives with respedBF is denoted here by () and

‘.’ respectively.

1.10. Geodesics and paths in a Finsler space



The geodesic of a Finsler space are the curvesmmum or maximum arc-
length between any two points of the space. Théeréifitial equations of a

geodesic in a Finsler space is given by [18]

(110.1) X426 (x, ¥) =0

where, s is the arc length of the cuiwe= x*(s) and

(1.10.2)  2G' =y}y/y* or

(1.10.3)  2G' =g (y/8,8,;F — d,F),

Here Lagrangian functionis defined on TM by~ (X, y) :% LA, y)

WhereF: TM —R s the Finsler function

Let M" be a manifold with a Finsler connectiofi E (F},,N',C},). A curve

C of the tangent bundl&M) overM" is called on h-path, if C is the projection of

an integral curve of an h-basic vector fi@v), corresponding to a fixed & V"

[18].

d_}?f i dac! .
— + N/ (x(®), y(©) =0

A2t i dat dx¥ .
o Fir (x(t], ) (t}) de dr 0

(1. 10.4)

Geodesic spray

Geodesic spray @ X (TM - 0) the set of vector field on (TM- 0) is kalty defined

as



(1.10.5 Gy =y 21, -26(x y)gl

Here G does not depend on local coordinate arisl @fined by (1. 10.3). It is also

called path space
1.11. Special Finsler Spaces

In Riemannian geometry we have many interestiegrédms such that if a
Riemannian space is assumed to have special gecahgiroperties, or to satisfy
special tensor equations, or to admit special tefslds, then the space reduces to
one of well-known space forms, for instance, Ewdial space, spheres, topological
spheres, projective spaces and so on.

On the other hand, in Finsler geometry we haveciapd-insler spaces,
namely, Riemannian spaces and Minkowskian spacgghere are various kinds
of Riemannian spaces and Minkowskian spaces. Asnaeguence we have an
important problem to classify all the Minkowskigoases. It is easy to write down
concrete forms of fundamental functido, y) which are interesting as a function,
for instance, a Randers metric, Kropina metric, egalized Kropina metric,

Matsumoto metric and cubic metric.

It is essential for the progress of Finsler geoyné& find Finsler spaces,
which are quite similar to Riemannian spaces, bot Riemannian and
Minkowskian spaces, which are analogous to flatepabut not flat. In the present
section, we are mainly concerned with special teagaations satisfied by torsion,
curvature and other important tensors. In the vYalg, we give some definitions

of special Finsler spaces and their corresponaiaglt.



(A). Riemannian space

A Finsler space F= (M", L(x, y) is said to be a Riemannian space, if its

fundamental functioh.(x, y)is written as,
L(X, Y F .gij(x)}’i}’j

Among Finsler spaces, the class of all the Rienannspaces is

characterized by, ;, = 0 i.e. vertical connectiof” of the Cartan’s connectionIC

is flat.
(B). Locally Minkowskian space

A Finsler space F= (M", L(x, y) is called locally Minkowskian space, if

there exists a co-ordinate systex) in whichL is a function of/ only [18].
A Finsler space is locally Minkowskian if and onifly
Fora: R} =Clp=0
ForR: Kl =F, =0
ForBI:  HR =Gl =0
(C). Berwald space
If the connection coefficierﬂ;’k of the Berwald’s connectionIBgiven by,
G}, = 9,G}

are function of position alone, the space is call@&kerwald space [18].



A Finsler space is Berwald space if and only if

i

ForR:  Flp =0

1

ForBr: G, =0

(D). Landsberg space

A Finsler space is called a Landsberg space FliBlei Berwald connection
BI is h-metrical i.eg;;, = 0.
In terms of the Cartan’s connectioir G Landsberg space is characterized by,
(@). P, =0, or (b). P} =0
(E). C-reducible Finsler space

A Finsler space of dimension n, more than tweaited C-reducible iC,

Is written in the form [18]:-

1

G — iy (G )

ik - n+1
where,C; = Cl.jkgf’f is the torsion vectonm, ; is the angular metric tensor given by

hi; = gi; — L;l; andm 1y is the sum of cyclic permutation bf, k.

(F). Semi C-reducible Finsler space



A Finsler space of dimension n, more than twaaited semi C-reducible if

i

C; ji 1s written in the form [18]:-

C; iﬂ(ijk:} (hijck) + i GGGy

ﬂ': o n+1

where,C? = gC,C; andp +q = 1

(G). Quasi C-reducible Finsler space

A Finsler space of dimension n, more than twaaited quasi C-reducible if

there exists a symmetric Finsler tensor figld satisfyingd,, = 0, in terms of
which C; ;. is written in the form [18]:-

Cijie = Ty (A5;C)
(H). P-reducible Finsler space

A Finsler space of dimension n, more than twoca#led P-reducible if

(v)hv-torsion tensoP,; ;. of CI" is written in the form ([12], [22]):-

1

P; — i ey (M4 Cpo)

Jk - n+1
(). C2-like Finsler space

A Finsler space is called C2-like Finsler spa& [R

1
Cijﬁ: T2 Ca-ﬂ}-C;c

(J).C3-like Finsler space

A Finsler space is called C3-like Finsler spadg [R



Cijk = Sa‘jk{hijak + Ca-C;b;:}
where,a,;, andb, are components of arbitrary indicatory tensors.

(K). S3-like Finsler space

A Finsler space Fwith fundamental functioh(x, y)is called S3-like Finsler space

[18] if v-curvature tenso$y, ;. of CI' is written in the forms:-
Lzshijk = S{hhjhik — hpy, hij}
where,Sis a scalar and function of position alone.

(L). S4-like Finsler space

A Finsler spacé"is called S4-like Finsler space [25] if v-curvatuemsor

Spie Of CI is written in the form:-
Shijk = hthiF: + hithj — Ny Mij - hithF:

where, M;; are components of a symmetric covariant tensa@eobnd order and

are (-2)p-homogeneousy"hsatisfyingMﬂj = 0.

(M). R3-like Finsler space

A Finsler space of dimension more than three, lisd¢#&3-like Finsler space

[20] if h-curvature tensaRy, ;;, of CI" is written in the
forms:-
Rpiji = GnjLae + GireLnj — GrieLi; — GijLna

where,L;; are components of a covariant tensor of seconerord



(N). Finsler space of scalar curvature
A Finsler space of scalar curvatites characterized by [18]:-
where,R, ;;, are components of (v)h-torsion tensor &f &fined by (1.8.6)

(O) One — form

A one-form on a differentiable manifold is a smoséition of the cotangent

bundle. It is a smooth mapping of the total spdcth® tangent bundle of M to R
whose restriction to each fiber is a linear funudio on the tangent space.

Symbolically,
B:TM — R, Bx =Bt : XM — R where gy is linear.

In a local coordinate system, a one-form is adirembination of the differentials

of the coordinatess, = bdX where theb, are smooth functions

(Fibers over x). Itis an order-1 covariant tenfssid
Examples

1 - The second element of a three-vector is giwethb one-form [0, 1, 0]. That is,

the second elementofly .z is [0, 1,0] -k v,Z =Y.

2-The mean element of amvector is given by the one-form fi/1h, ..., 1A].
That is,mean (v) =[1/n, 1/n, 1/n].v

(P).Finsler space with @, B)-metric



In the paper [26] concerned with the unified fiéheory of gravitation and
electromagnetism Randers wrote, “Perhaps the nf@stcteristic property of the
physical world is the unidirectional of time liketerval. Since there is no obvious
reason why this asymmetry should disappear in tagn@ematical description it is
of interest to consider the possibility of a metsith asymmetrical property. It is
known that many reasons speak for the necessaygaadratic induction. The only
way of introducing an asymmetry while retaining tipeadratic indicatrix, is to
displace the center of the indicatrix. In other emwe adopt as indicatrix an
eccentric quadratic hypersurface. This involvesdhénition of a vector at each
point of space determining the displacement ofdéeter of the indicatrix. The
formula for the lengthis of a line elementX must necessarily be homogeneous of
first degree indX. The simplest “eccentric” line element possessitig property

and of course being invariant is

(1.11.1) ds=Jaij[x)dxidxf + b (x)dx!

where,a;; is the fundamental tensor of the Riemannian affioenection and, is

a covariant vector determining the displacemenhefcenter of the indicatrix.”

After sixteen years, in the monograph [13] conedrrwith electron

microscope Ingarden wrote:-

“In arbitrary curvilinear co-ordinate systems thagrangian function of

electron of electron optics may be written in tbef

L(x, x) = imc '}fij(x]x’ix’f + epd; (%, x'H)



where,y;; is an isotropic tensor reducing in Lorentz systémthe constant unit
tensor §;;. According to their physical interpretation, weaBhcall y;; the

gravitational tensor and; the electromagnetic vector.

The special kind of Finsler space with the metficl(.1) we shall call a
Randers space, since Randers (1941) seems to kavetle first consider this
kind of spaces, although he regarded them not esldfispace but as “affinely
connected Riemannian spaces” which is rather corgustion. Randers could not
use, Therefore, the methods of Finsler's geometd/tded to reduce the study of
(1.9.1) to a sort of 5-dimensional Kalza-Klein gextryg, where Riemannian
method plus a method of special projecting of temaoe used. Spaces with metric
of the form (1.9.1) were also considered by Stepberand Kilmister [29] in 1953,
but in investigations of these spaces they simgly pure Riemannian methods,

which are obviously erroneous.”

On the other hand, in 1959-1961 Kropina consideretectively flat Finsler

spaces equipped with the metrics

- ()t
1.11.2) L(x, y) = WXy y
( ) &, ) br(x)y*

(1.11.3)  L(x, ¥) = {@y )y Yy 3/

Generalizing these special Finsler metrics of Rendgoe (1.10.1) and Kropina

type (1.10.2), Matsumoto defined in 1972, the nobb(a, F)-metric as follows:-

Definition-1: A Finsler metrid.(x, y) [18] is called an(a, £)-metric, whenL is

positively homogeneous functidife, ) of first degree in two variables



a(x, y) = /aq(_x}:}ﬂ'}ff and 8(x, y) = b,(x)y"

It is usual to suppose thatis a Riemannian metric, i.e. non-degenerate (egjul

and positive definite, but there are some casesafiplications where these
restrictions are relaxed. Further, we shall havecdofine our discussions to

suitable domain ofx, y)on account of special form of the functib{w, g).

Definition-2: The (e, f)-metric L = a + 8 [18] is called a Randers metric and

Finsler space with this metric is called a Randpexce.

In 1980 Hashiguchi and Ichijyo gave the followiimgeresting remark on

Randers metric.

Proposition-11.1: A Randers metrik. = « + p [11] is positive valued, if and only

if a;; — b;b; is positive-definite, provided that ; is positive-definite.

Definition-3: The(a, g)-metric L = “f [18] is called Kropina metric and Finsler
space with this metric is called a Kropina space.

Wrona [35] has given the interesting example obpgfma metric. For a
Kropina space the direction y* belonging to the hyperplane
B(x, yv) = b;(x)y" = 0 of the tangent space at any point X must be olsiou

excluded. The indicatrix is to extend asymptoticalllong this hyperplane.

Therefore, a Kropina metric is never positive dédin

Although Kropina herself seems to have played aterto such a metric
from a pure mathematical standpoint, there aresclekation between this kind of

metric and Lagrangian function of analytic dynamics



Definition-4: The (a, B)-metric L = a™ 1™ (m =0, —1) [18] is called a

generalized m-Kropina metric.

The Finsler metric given by (1.9.3) is called aicumetric and was
considered by Wegener (1935) and also by Kropihas regarded as a direct

generalization of Riemannian metric in a sense.

In the astronomy we measure the distance in g tmyarticular, in the light
year. When we take a second as the unit, the urfiice (indicatrix) is a sphere
with radius of 300,000 km. To each point of ourcspes associated such a sphere,
this defines the distance (measured in a time)tb@djeometry of our space is the
simplest one, namely, the Euclidean geometry. Nexten a ray of light is
considered as the shortest line in the gravitatibel, the geometry of our space
iIs Riemannian geometry. Furthermore, in an isotropedium the speed of the

light depends on its direction, and the unit swefecnot any longer a sphere.

Now, on the slope of the earth surface we somstimeasure the distance in
a time namely, the time required such as seenguiceepost. Then the unit curve
(indicatrix) taken a minute as the unit, will bengeal closed curve without center,
because we can walk only a shortest distance iaphill road than in downhill
road. This defines a general geometry (Finsler gy although it is not exact.
The shortest line along which we can reach the,doalinstance, the top of a

mountain as soon as possible will be a complicatede.
The exact formulation given by Matsumoto is atofuk:-

Proposition-1.1.2.A slope, the graph of a functicn= f(x, v), [21] of the earth

surface is regarded as a two-dimensional Finskecespvith fundamental function,



aZ

Lx, y, x, )=

v —w 3
where,v andw are non-zero constants and
a’? =% +y* + (if, +7f)°
B=xfLt+Vf
This « is the usual induced Riemannian metric fird a derived form

B(x, dx) = af (x, ¥)

The two constantg andw are such that one can walkmeters per minute on the
horizontal plane andwis equal to the acceleration of falling. Aikou, dH&guchi

and Yamauchi generalized and normalized the ab@taaras follows:-

2

Definition-5: An n-dimensionafe, 8)-metricL = “—E [1] is called a slope metric
a’_

or Matsumoto metric and a Finsler space equippdl this metric is called a

Matsumoto metric.

Definition-6 projective: If any geodesic of" coincides with a geodesic 6f" as a
set of points and vice versa, then the changeLlof the metric is callegrojective

and F is said to be projective tB "
Definition-7 Conformal change: Let F'= (M", L ) andF" = M", L) be two
Finsler spaces on a same underlyignifold Mn . If the angle in 'Hs equal to

that in F" for any tangent vectors, thedl & called conformal tF" and the

change L— L of the metric is called a conformal change of Einmetric.



Definition-8 g - change: Let R'be associated Riemannian spaces with a Finsler
spaces Fwith (a, 8 ) — metric ,theg - change is a change fromMi ® F' . Randers

change ,Kropina change .Matsumoto changgiarehange .

Definition—9 Mean Cartan torsion : Mean Cartan torsion t TM — R defined

by Iy (u) = k(y) U,
where }=d’cj and u = U% I,

Definition—10 Landsberg Curvature: The h- covariant derivative of cartan
tensor along geodesics gives rise to the landstbangature L,: T\M x Ty;M X
T.M — R by L, (u,v,w) = Ly(y)u' vV w* , where

Lik = Giko = GjsY® -The family L = { L, } for all y € TyM are called Landsberg

curvature .

Definition-11 Mean Landsberg Curvature. The h- covariant derivative of Mean

cartan tensor along geodesics gives rise to thenNsalsberg curvaturg JT,M

— R ,defined by J(u) =J(y) U where J= lisy°, u = u% I,

Definition-12 Landsberg Metric and Weakly Landsberg Metric. A metric
Landsberg Curvature and Mean Landsberg Curvatergansi.e.L =0and J =0

are respectively called Landsberg Metric and Wehklydsberg Metric.

Berwald curvature : For  T\M, ,define B : M X M x M — T,M by B,

R i | 0 ' _ 0%G .
(u,v,w) = Byu(y) U v'w'-Z | where By(y) = ———(y) . B is called Berwald
ax' oy'y'y
3
curvature ,a Finsler metric is called Berwald meafrB = 0, that isa—G: 0.

ay'y*y'



1.12.Intrinsic fields of Orthonormal frames

Berwald theory of two-dimensional Finsler spaceaseloped based on the

intrinsic field of orthonormal frame which consisif the normalized supporting
element!* and unit vector orthonormal . Following idea Moor introduced, in a
three-dimensional Finsler space, the intrinsicdfief orthonormal frame which
consists of the normalized supporting elemgntthe normalized torsion vector
C'/C and a unit vector orthogonal to them and developettheory of three-

dimensional Finsler spaces. Generalizing the Bel'walnd Moo’s ideas, Miron
and Matsumoto ([18], [20], [24]) developed a theofyntrinsic orthonormal frame

fields on n-dimensional Finsler space as follows.

LetL(x, y) be the fundamental function of an n-dimensionalsker space

and introduce Finsler tensor fields of (@&-2) type,a = 1,2,.....,n by

- 9, I
bilgumlzg=y g k1 Tkt Pilagey

Then we get a sequence of covariant vectors

L ____gfza—a-fza—z

. = A - _ jl jl
@i Llhiz ----- J m-z-lm-zg g -

Definition-1: If (n-1) covariant vectord.,y;, a = 1, 2,....., n-1 are linearly
independent, the Finsler space is called stronghyRiemannian.

Assuming above n-covectorslL,, are linearly independent and put
ej, = L%,/L =1*. Here and in following we use raising and lowerafgndices as

Ly = gLy



Further puttingN,y;; = g;; — e1y.1y; and matrixN;y = Nyy,; is of rank (n-1).
Second vectoe,, is introduced by

eyy = Lyy/ Ly,

where, L, is the length oﬁf';._] relative toy*. Next we putN,y;; = Niy;; — €:y:€2y5,

E;]:N;H.ng and so third vectce,, is defined by,

Egl:] == Egl:]ng )

where,E, is the length oE;'j relative toy’. The repetition of above process gives a

vectore, .4y, r=1,2,...... , N-1 defined by
E‘]’{+l:] = E;+1JXET+1

where, E,_,EH]:N,_,EHL‘;H] E,., is the length ofE;,,, relative to y* and

Nrjij = N,_ 1ij — €ri€2y;-

Definition-2: The orthonormal frameef}, « = 1, 2,....., n as above defined in

every in every co-ordinate neighborhood of a sthpnmpn-Riemannian Finsler

space is called the ‘Miron Frame’.

Consider the Miron framee( }, If a tensori’}i of (1, 1)-type, for instance, is

given then
T = Tapeayes);

where, the scalafk,; are defined as



' j
Tﬂ'ﬁ == T;.l Eﬂ':]lea':]

These scalarg,; are called the scalar componentsTibfwith respect to Miron

frame.

Let H, g, be scalar components of the h-covariant derivat.éjg%j andVyyp, /L
be scalar components of the v-covariant derivat?egc?lsj with respect to C of the

vectore;] belonging to the Miron frame. Then

exy = Hapy %) ey
€l = Varpy €&,
where, the scalal,,g, andV,,g, satisfying the following relations [18].
Hygy =0, Haypy = —Hpyey,
Varey = 8y = 98y Vaypy = ~Vpyay

Definition-3: The scalar s, andV,,z, are called connection scalars.

If Cop,/L be the scalar components of the (h)hv-torsion tre@fﬁd.e.,

LGy = Capy®ayes)jyin
then [13], we have

Proposition-1:[18]

CIEF == {]



C, LC, C, = C,.. = 0forn = 3, whereC is the length of*.

pp = pp =TT npp

Now, we consider scalar components of covarianvadeves of a tensor field, for

instance,?}i. Let T,p, andT,p,, /L be the scalar components of h-and v-covariant

derivatives with respect tolQespectively of a tensd}" i.e.,
(1.12.1) T = Tap, ey €58, and

(1.12.2)  LT'|; = Tap.€285)8y 0 then we have [34]
(112.3)  Tupy = (6kTup)efy + TupHuyay + TopHy g, and

(1.12.4)  Top., = L(0:Tap)ef + TypY,

up Vway T Tﬂ#V#]ﬁ}"

The scalar componen®$;, andT,g.,, are called h-and v-scalar derivative

of T respectively.
Two-dimensional Finsler space

The Miron frame &y, ey} is called the Berwald frame. The first vec@jg
is the normalized supporting eleméht= y!/L and the second vect@jj =m'!is

the unit vector orthogonal . If C* has non-zero lengi@, them® = +C*/C. The

connection scalarf,,g, andV,z, of a two-dimensional Finsler space are such

that [18],

Ha.:”g}, == D, Va‘:]ﬁl = U, Va]ﬁz = 5;'2, Wthh Imp|IeS

(1.12.5) I

=0, mi; =0, LI'|; = m'm;, Lm'|; = —l'm,

lj i ]



There is only one surviving scalar componentd.@f, namelyC,,,. If we put

I =C,,,. Then

The scalat is called the main scalar of a two-dimensionakKinspace.
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Chapter 2

H-RANDERS CHANGE OF FINSLER METRIC

2.1 Introduction



Let F" = (M", L) be n-dimensional Finsler space, whés is n-dimensional
differentiable manifold antl(x, y) is the Finsler fundamental function. In 1974, M.
Matsumoto ([1], [7]) introduced the transformatiminFinsler metric

(2.1.1). L*(x, y) =L(x, Y) + h(¥) Y,

and obtained the relation between the imbeddingsclaumbers of tangent
Riemannian spaces tM{, L) and M", L*). In 1980 he [8] obtained the relation
between the Cartan’s connections BI'(L) and M", L*). AssumingL(x, }) as a

Riemannian metric, he obtained various importaméaes of Finsler space

(M",L*). The Finsler space equipped with metric
L¥(%, ) = | 00y'y) +; )y’

Is called Randers metric. This metric has beemdhiced by G. Randers in 1941
[11], from the stand-point of general theory ofatelity and applied to the theory
of electron microscope. R. S. Ingarden [4] nantedsi Randers metric. The
geometrical properties of this space have beenestuny various authors ([3], [9],
[10], [12]). In all these theories bas been considered as functions of coordinate’s

x only.

In 1980, H. Izumi [5], while studying the conforimansformation of
Finsler spaces introduced the h-vectprwihich is v-covariantly constant with
respect to Cartan’s connectioff @.e. bjj = 0) and satisfies the relations iﬁ,-(bh =
p hy, where Gf‘j are the components of (h)hv- torsion tensor graré components
of angular metric tensor. Thus the h-vector isardy a function of coordinates, x

but also a function of directional arguments S@iigfLo; b; = ph;; -

In this chapter we consider the transformatioRingler metric given by



(2.1.2) L, y)=L(x, ) +B(x, Y)

wherep = h(x, y)y and kx, y) are components of h-vector M7 L). The Finsler

space with metrid_(x, y)will be denoted byF" whereas the metric

L(x, y) will be denoted by 'F The quantities corresponding £ will be written
by putting bar (i.e~ ) on the top of that quantities.

2.2 Cartan’s Connection of F".

Let the Cartan’s connection of Finsler spatéddenoted by

Cr = (F}k ,Gij,Cijk). Since KX, y) are components of h-vector, we have

(2.2.1) (@ H=9;n -bhc{j‘: 0

(b) LEb=ph;.
Hence we obtain,

(2.2.2) db; = L1p hy.

Since k) are components of an indicatrx tensor i.eyh= h; y = 0, we have
0,8 =b;. Therefore differentiating (2.1.2) with respeci/towe get

(223;'., =L, + b,

where L =o,L. Since the normalized element of suppouflF" is given by | =

oL, equation (2.2.3) may be written ds= I; + h.



Differentiating (2.2.3) with respect to!,yusing (2.2.2) and the fact that

ol =L7h

J we get

i
(2.24) " hyj=oh,

wheres = L™ L(1 + p). Since h=g —Iil;, from (2.2.4) and (2.2.5), we get
(2.25) gi=0g+ (- o) lil;+(ib +;b) + b b

The contravariant component of the fundamental tensay; of Fn, are

obtained from
“g" g, = 8, and is given by
(226) _gij = 0'_1 gIJ _ 0.—3(1+p)2(1 _ b2_ O.)Ii IJ _ 0.—2(1 + p)(ll b| +|j bi),

where b is the magnitude of the vectpinbF" and b= ¢’ b. Now we establish the

following:

Lemma 2.2.1. For a Finsler Space of dimention n (» 2 ) the scalarp in h-

vector is a function of coordinate’s Xonly.

Proof. Since

; _ -1

Differentiating (2.2.1) (b) with respect t8 gnd using (2.2.2) we get



h s ~h h _ -1

which after using (2.2.1) (b) and the fact thgc]’ = -2cfcp, +9"Mo, C i, we

obtain

-1 : n_: -1

Taking skew symmetric part in j and k in the abegeation, we get
Hence (8 Py —(@;p)hy = 0, which after contraction with! gjives (n— 2)
(0,,p)= 0. Hencep is independent ofYfor n£2 and we have the lemma (2.2.1).

From equations (2.1.1), (2.2.4) and lemma (2.2d pet

(2.2.9) 0,0 = L1+ p)m;,
where
(2.2.10) m. =b, (L),

Differentiating (2.2.5) with respect toyand using (2.2.4), (2.2.5), (2.2.8) and
(2.2.9) we get

(2.2.11) “Cy =0 Gy + (“Lp) (hy m +hy m + hg my).

2

From the definition of mit is evident that

(2212) (@) nm=0, (b)) mb=p*-pILi=mm.



€ hm=hb=m, (d) G;m"=L"p hij.
From (2.2.1), (2.2.7), (2.2.11) and (2.2..12), wé g

(2.2.13) CT —CE‘ L m +hTm +hhm)

L{,2 B L h
st o

From equations (2.2.2) and (2.2.3) we obtained

(2.2.14) L i = (1 +p) Lj,

(2215) _I—ijk = (1 +p) I—ijk:

where L; = 9, a L, Lix =0,0,;0, L. From equation (2.2.14) we obtained

]
(2.2.16) 0k Lj = (1 +p) oLy + Ly px,

wherepy = aplax". Since h-covariant derivative ofjland L; with respect to C

vanishes, we have

(2.2.17) 9, Lii =L;i Gl +L,

r
ij ijr Rk + Llerk '

r]
— —. = — =r —. =r
(2218) akLIJ :Lierk +|—erik +|—ir ij .

The equation (2.2.14) and lemma (2.2.1) serve timpgse to find the
relation between v-connection components 'd0faRd F" with respect to C. For

this purpose we put



i _ i i _l i
(2.2.19) Djk —ij _ij, DOk —Gk_Gk.
Here 0 in index, denote the contraction withfgr instanca%iOk = Di-kyj.

The differenceDijk is obviously a tensor of type (1,2). Substitutirp t

values ofo,L; and akEij from (2.2.17) and (2.2.18) in (2.2.16) and usigg@ (14),
(2.2.15), (2.2.19), we get

r r r _
(2.2.20) (@L+P)(Ljjr Dok *L1iPik *LirDjk = LijPk-

In order to find the difference tensmijk, we hadto constructed supplementary
equation to (2.2.20). From (2.2.3), we obt@jnL; = dL; + 9d;b. Since the h-
covariant derivative of Lwith respect to C vanishes and;jo= d;b; —Ggarbi —brl:l'jr,

this equation may be written as

. +G'd.b. +b.Ff

L = r r
(2.2.21) LirG; +LrF; =L Gj +L Ky +b +G;0,b; +b,F.

J 1) o

Sinced b; =pL;,, in the light of equations (2.2.14) and (2.2.18,have

(2.2.22) A+p)Ly, Dh; + (1, +b)Df =by;.

The difference tens,0|Dijk Is now found from equation (2.2.20) , (2.2.22) dine

lemma given below.
Lemma [7] 2.2.2. The system of algebraic equations

(') Lir A" = B (”) (Ir + br)Ar =B



has a unique solution A for given B and B such that B I' = 0. The solution is

given by
(22.23) A=LB +%(B ~LB, by

It is obvious that (2.2.22) is equivalent to thetequations

(2.2.24) @+p)(L;, D{)j Ly DGi) +2(1, + |o|r)D{j = 2

(2.2.25) 1+ p)(LirD(r)j —Ler(r)i):ZFlj

where, we put
(2.2.26) 2g=hy+b;, and 2k =1k -k
Applying Christoffel process to (2.2.20), we get
(2.2.27)

1+ P)(2L Df *Ljjr Dok *+Ljier Poi ~Lir PO}) = LijPk +L jkPi ~LkiPj-

Contraction of (2.2.24), (2.2.25) and (2.2.27) byiyes

(2.2.28) (L+p)L; Dy +2(I, +b,)D§; = 2E;,
(2.2.29) @W+p)L; Dpg = 2R
(2.2.30) @+P)(Lir Dok +LirPoi *Lkir Poo) = LkiPry" -

Moreover contraction of (2.2.28) by gives

(2.2.31) (I, +b,)D{g = Egg-



Applying lemma (2.2.2) to the equations (2.2.29] éh2.31), we obtain

2L
@+p)

2L

i i 1 rqyl
(2.2.32) Doo— FO +f[EOO_mFrob ]y

where we putF(i) :gij Fio- After replacing k by j in equation (2.2.30) amtblang it

in equation (2.2.25), we get

(2.2.33) LirD{,j =Aj
where

_ 1 1
(2.2.34) Ajj =@+ )R +Zpy Lyl - Lj Dhg

The equation (2.2.28) can be written as

(2.2.35) (I, +b)Dg = A,
where
_ (1+p)

Substituting the value 01360 from (2.2.32) in (2.2.34), we obtain
= 1 r r
(2.2.37) A =1+p) l[Fij +§pry L; —LL; R

+ {5 0 PE, ~LF DL

ij
Substituting the value dt from (2.2.29) in (2.2.36), we get

(2.2.38) & Eo — Fo.



Applying lemma (2.2.2) to equations (2.2.33) an@.@5) , we get
i oAl Lo A My
(2.2.39) Doj =LA] +f(Aj LA rJlo Y.

Finally we deal with (2.2.27) and (2.2.24), we abta

where
(2.2.41)
- r r r -1
2Hijk = LiirDoj ~Lijr Dok =L jkrPoi * @+P) “(Ljjpy +Ljipj ~LyiPj)
and
_ @+p) r r
(2.2.42) Hik =Bk == (LirDoj + L Doi) -

Hence Hx and H are written in terms of known quantities. Applyitgmma
(2.2.2) to the equations (2.2.40), we can findahecrete value of

Kool
Wheﬂ@]?k—g Hipg -

Theorem 2.2.1. The cartan’s connection C = (l_:ijk,éi

j,Cjk) of the Finsler

space F" are completely determined by the equations (2.2.13(2.2.39) and

(2.2.43) in terms of the Cartan’s connection of F



2.3. Relationship of Randers change with projectivehange:

We consider the Berwald connectioh B (Gijk ,Gij)WhiCh IS given by

2G! (x,y) = g (v'9;0,F~0,P,where F=1%/2, Gij =9jG' and Gijk :akeij.

Since Gijyj =2G', therefore from (2.2.19) we ger:lzioO =2G' -2G'. Hence from

(2.2.32), we obtain

2L
@+p)

1 2L

_| _ | 1 _
(2.3.1) 2G' =2G' + =[Eqo s

i (S
Fo+ Fob'ly -

From this equation ,we have

L

Sl gl —aivi _elyl SN
(2.3.2) Gy!'-G'y' =Gy Gy+(1+p)(F0y Foy')-

Now let F be a Douglas space. Thehy! -Gly! is homogeneous polynomial of

degree three in'y8]. From (2.3.2) we may state the following:

Theorem 2.3.1. Let P be a Douglas space andé" is obtained from F' by h-
Randers change of its metric. TheF" is a Douglas space if and only if

L(Féyj - ch)yi) is homogeneous polynomial of degree three ity

Now let us suppose that the h-Randers changensfdfimetric given by
(1.1.2) is projective. Then [8]



233) G =G+P(Xx Y)Y,

where P(x, y) a scalar function and is called thejgetive factor. Comparing
equation (2.3.3) with (2.3.1) we get

= i i —L iyl = i
(1+p) FO+Z[E°° s Fob' ly P(X, Y)Y

which may be written as

(2.3.4) o=y,

where A = “Tp{{P(X’V)‘%Eoo}}rZFrobr- Since Ryg;,y" =0, equation (2.3.4)

gives\ = 0. Consequently, we haw = 0.

Theorem 2.3.2. The h-Randers change of Finsler matris projective if and

only if F)=0.
In view if theorem (2.3.1) and (2.3.2) we havefitiowing:

Theorem 2.3.3. Let h-Randers change of Finsler metris projective. Then a

Douglas space is transformed to a Douglas space.

We are concerned with the Berwald connectidSn:B(Gijk ,Gij) which

is given by 26' (x.y) =¢"(y'0;9,F-0;), where F = #2, G} =4;¢'



n I =0 I
a dGJk deJ

The Douglas tensor of Finsler space is defined by

h _~h h h h h
(2.3.5) DIJk Guk " (G iKY +G|15k+c;]k5 +le6])

whereGf, =9,G is the hv-curvature tensor of Berwald connectién B

Gj = Girjr and Gjjx =0kGjj [9]. If the Finsler space"F,is projective toF" then

Dlrl]k = itj]k [9]. Thus from equation (2.2.5), we obtain

@+p) 1- —=a
(2.3.6) ThahDijk = Nah Dy -

Since the hv-torsion tensor of Cartan connectiomgiien by Pik =—%thirj‘k,

therefore from equation (2.3.5), we have

a 2
(2.3.6) NanPijk = Chik * Pijk'n - (hthu hihGijk *NjhCki)

(n+1)

where Gy = guhGi?k .Usingequation (2.3.6)to the equation (2.3.6), we have

2 1

(2.3.7) 1+p) Ghljk 2 Fik'n - L(n+1)

(hthu h|hGJk +hthkI)

1 2 - - 1 = e o
= ZGhijk +-= Pijk Ih ~—— ("kh Gij +hih Gk +hjh Gki).
= Chijk 2 ijk Ih L(n+1)( khGij +hihGjk +hjh Gki)

Now suppose that the Finsler spactard F' are Landsberg spaces. Then

Pik = P = 0 [1-721p.]. Under this condition (2.3.7) became



1 1
(2.3.8) @+ p)[EGhijk ‘m(hkhc‘ij *hinGik *hjhCki )}

(hkhGij +hihGjk +hjh Gki)-

1_
Lok T

Moreover, for Landsberg space [1- 721p}\G- Gk = 0 andGpijx — Gnx = O.

This leads to
(2.3.9) WG = G + hi(Gr — Gr) = hn(Gii — Gui) —hin(Gjj — G;) =0

Contracting (2.3.9) with'gwe get
-~ _ 1
(2.3.10) Gk— G = n__,_lhhks(x’y)

where s(x, y) = i{y(Gij — Gj). Therefore we have

Theorem 2.3.3. Let B and F" be Landsberg spaces andr" is obtained by

projective h-Randers change, then G = Gy = niﬂhhks(x,y), where

s(x, ¥) =4 (Gj = Gy).
If a Finsler space satisfies the conditiop £ 0, we call it a Weakly-

Berwald space [6]. If Fand F" are Weakly-Berwald spaces then equation (2.3.7)

becomes

1 2 _ 1= 2 = =



But 1GhIJk 2 IJkIh 1h0(hG|jk’ therefore in view of equation (2.2.5), above

equation reduces to
(2.3.12) 0(h(Guk éuk) 0.
Now if F"is projective to F then from (2.3.3) ,we get

=0 _ ~a a a a a
(2.313) Gy =Gij +Pyy” +Rydy +Py B +RgaY

where R =0,0.P, Pik = =0;0,0, P. Substituting (2.3.13) in (2.3.12) we get

| j

(2.3.14) WP+ hin B + R =0
Contraction of (2.3.14) with"§gives (n + 1) P= 0. This equation shows that P

(= 9,P) does not depend on yhus we have

Theorem 2.3.4. Let P and F" be Weakly Berwald spaces and-" is obtained
by projective h-Randers change. Suppose P(X, y) dete the projective factor
of this change. Then Pdoes not depend on'y
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Chapter 3



RANDERS CONFORMAL CHANGE OF A FINSLER SPACE

OF DOUGLAS TYPE

3.1 Introduction

In 1941 ,G.Randers ([1], [7], [10]) inthaced a special metric

ds = Jaij (x)yiyj +b, (x)yi in a view point of General theory of Relativity.nge

then many Physicist had developed the General yhafoRelativity. By this time

Finsler space has already been coined. This meagfirst recognized by , as a
kind of Finsler metric in 1957 by R.S.Ingarden ,.Matsumoto introduced the
(a,B ) — metric by generalizing Randers Metric [2]. Tieory of Finslar space

with (a, ) - metric has been developed into fruitful bran€frinsler Geometry.

From stand point of Finsler Geometitgelf Randers metric is very
interesting because its form is simple and propertif Finsler spaces equipped

this metric can be looked as Riemannian spaeggipped with the metric
L(x,y) = \Ja, (x)y'y’ together with one form® = b (x)y'. The curvature tensors of
Randers metric R , Phi,-k , S ik , of Finsler spaces can be written in terms of

Riemannian curvature tensors of metmic, b and its covariant derivative with

respect to Riemannian connection.R change of Finsler metrlgx ,y) goes to

L (x,y) is called Randers changeldai ,y )if C(x,y)= L(x,y)+B .The
concept of Douglas space ([1], [8], and [10]) ha=erb introduced by M.



Matsumoto and S. Bacso as a generalization of Bdrg@ace from stand point of
view of geodesic equation. Finsler space is salietof Douglas space if 'B G

y' - Gy are homogeneous polynomial ih ¢f degree 3. It has been shown by M
. Matsomoto in papers ( [1], [7], [8], [9], [LGpHat

F'=(M", L)is aDouglas type iff the Douglas tensor

D =Gj, _ﬁ(eijk y"'+9"G, + 3]G, +9,G, ) vanishes identically, Wheré"iﬁs

is hv — curvature tensor of Berward connectian. Bouglas curvature is a non-
Riemannian projective invariant constructed from Berwald curvature. The said
transformation is generalization of conformal adl\we Randers change because
writing B = 0 it reduces to Conformal change and whk¢€x) = O it reduces to
Randers change .It is compositions of conformahgkaand Randers change. The
conformal theory of Finsler metrics based on treoti of Finsler spaces by M .
Matsomoto ([3], [7]).Hashiguchi [3] in 1976 studidude conformal change of a

o (X)

Finsler Metric namelL(x,v)= €  L(xy)

In the present paper we shallestigate the condition under which a
change of Finsler metrit. (x, y) goes toL(x,y) =g’ L(x, Y+B(X,y), Wherec
is a function of position xonly, andp adifferentiable one-form ([1],[6] )is the

Randers Conformal change of Finsler spaces of Rgugipe. We have also

worked out the condition under which the said clesraye Projective also.

3.2. Preliminaries



The geodesic of an n-dimensional FinsfmceF" = (M", L) are given by
the system of the differential equation [1]

d’x' j  d*' i i A i
& Vg Y AG Yy - Gxyy =0
where VE %in a parameter t . The function'(§y) are given by
ZGi(x,y):gij(yrajarF—ajF), whered, = , 9=, F=12,

and 4 (x,y) are inverse of Finsler metric tensor [6] . Let L=9iL,
ijl=0;0iL , Lix= 0x0;0iL . Then we have

Li=e?®Li+h,

(321) Lj= ea(x) Lij
|:ijk = Lijk

where Li=1,LL;=h; and we shall use the notation 2=Hy,;+ b;;; and

2F;= hyj-bj,i , where (/) denote the h- covariant derivativéhwespect to the
Cartan connection [C = (F}k,Gij,Cijk). Throughout the paper we say
homogeneous polynomials il gf degree r as hp( r ) for brevity. The Finsler

spaces with metric = will be denoted byF where as with metrit.(x,y)

will be denoted byF" . The quantities corresponding ®© will be written by

putting bar i.e. (-) on the top of that quaaest



3.3 -RANDERS CONFORMAL CHANGE OF DOUGLAS TYPE

For Randers conformal change —LL = g™ L+ B

We put G'=G+D
(3.3.1) G =G;+Dj,
G ijk = ij + Dijk

Where [ =4; D & D) = D). The tensor DD}, D} are positively
homogeneous in'yof degree 2, 1 & O respectively. To find the vabfe D, we

deals with the equation

L = 0 which implies a.L; = L;G + L,F;  where L, is h — covariant
J J J )

derivative of L;=h;/Lin CI" . Then

(3.3.2) OLij= L Gk + Ly Fic+ LiFjc
(3.3.3) OkLyy= Eijré‘rk+ Ly 'Erjk + Ly 'Erjk
also (334) akl: = ea(x) (Gk(X) Lij + 0y Lij ) .

In view of (3.3.3), the equation (3.3 .4) can béten as
(3.3.5) L D'k + Ly D'+ Ly D' =0w(X) L .

Next we deal with |, =0 which implies



(3.3.6) oL =Ly G| + L Fj

This shows that (3.3.7) o' =',G" +LF';.
Also b; =0 implies

(3.3.8) db =h; +hF;
In view of (3.2.1) , (3.3.1) & (3.3.8), the equoat (3.3.7) gives

(3.3.9) ib &Ly D +1.D — L gj(x) + b, D';
Therefore we have,

(3.3.10) 2 ¢”[L,D|+L, D\ +2|D%-Lo-Lo;]+2 b Dij

(3.3.11) 2i= [ Li D' - L DYi- Li 0j(x) + Ljoi(X) ]

Proposition 3.3.1: The tensors [E& F; of Randers Conformal change are
given by (3.3.10) and (3.3.11).

Applying Christoffel process to (3.3.5), we get
(3.3.12) kD'« + 2 Lj D'k + Ljr D'oi - Liir D' = Lj Ok + Lik O - i0j.
Transvection of (3.3.10), (3.3.11) & (3.3.18)y gives

(3.3.13) 2E ¢”[2L, D'+2 D" - Ligjy - Lo;] +2 b D'l

(3.3.14) 20= g”[2L; D' -Ligiy + Lai(x) ]



(3.3.15) + D'+ L D} +2 L D" =Ly 0o,

Again transvection of (3.3.13) by gives

(3.3.16) o= €”[21,D"- Loy ] +2 b D'i.
Lemma 3.3.1 The system of algebraic equati®
(3.3.17) (1) A" =B

2P A" +QbA =B

has a unique solution A=LB'+[ 7" (B-QLBg), forgivenBandB
suchthat BI'=0.

It follows from (3.2.1) that 1-(3.3.17) is writtén the form h A" =L B;, where

h; is angular metric tensor .This implies
(3.3.18-a) 'ALB + (I, A" .

Contraction by b gives

(3.3.18) A= L By +€ (I, A

wh@®, = By and bl = % .

In view of (3.3.18) , Lemma-(3.3.1) - 2 wstten as

(3.3.19) A= 71 (B-QLB), wherer :P+Q€ .



In view of (3.3.12) & (3.3.19), the equation (33-4) is written in the form
(3.3.20) 'ALB' + 17" (B-QLBy)

which is the solution of Lemma (3.3.1) . Compar{Bd3.14) & (3.3.17) to Lemma
3.3.1 (2) & (1) respectively,we get

A=D' , P=2, Q :é_ya(x) ) B= Eooe_a(x) + L Oo,
B =" For Loy - 3d;

Using these results together with equation (8)3.2ve get
(3.3.21) D:ue”mﬁo+%VGW%GQW*ﬁA(Emeﬂ”+LGO
—2Lg"™Bp) I'.
where 7 =2(1 +€ e’™) ,Bs=Bb .
Propositions 3.3.2 The tensor Dof the equation G =G+D arising
from Randers Conformal change in Finsler spas are given by

equation (3.3 .21).

From equation (3.3 .21) we have

G'y-Gly =Gy -Gl +Leg™ (Foy-Foy') + Z(LY-Ly)oy



-E%Lcr(d‘y"—d"y‘)-

This equation is rewritten in the form

Gi Ejk- é] Eik = G Ejk-GjEik'i' L e_a(X) (FiOEjk_ FjOEik)

1,,icj i, e ro 1 Y i o
"‘E(Lﬁjk—l—]yﬁk)cry 'ELUr(gryﬁjk—djﬁk)-

Thus we have

Theorem 3.3.1 Let Tbe a Douglas space andF" a Finsler space

obtained by Randers Conformal change. Them® " is Douglas spaces if and

only if

Le " (Fo&—Po ﬂik)+%(l—i &—L 8oy’ '%L o (¢ 8'v— ¢ &%)

is homogeneous polynomial in pf degree 2 .

The change is Projective if every geodesfd®/d, L) is also a geodesics of
(M", I__) and vice versa. We are going to find out a dom for a Conformal

Randers Change to be Projectivée Euler —Lagrange equation for the metric

in terms of arc length s is given by [2]



i(a_'-i) ] a—L. =0 which gives
ds oy 0 X
(3.3.22) 9009 1wy g B9 oy 000 5 .
ds ds ds  ox' 0s ox'

The Euler —Lagrange equation for the metric L is

(3.3.23) d _aL=0.

ds

-

In view of (3.3.23), equation (3.3.22) becomes

g™, oL dx!
. — -1) + by =
ox' ( 0s ) b”] ds
_ 0ob 0D,
where [ij]b = W- 67:

Thus we have

Theorem 3.3.2. Randers Conformal change is Prajgve iff

g™, oL dx!
(& 1)+ =
ox' ( 0s ) q”] ds

Now let us suppose that the Randers ConformalgehahFinsler metric given by
(3.1.1) is Projective. Then [10]

(3.3.24) G'=G +P(xy)y

where P(x,y) is a scalars function and is callezl Rnojective factor. Comparing
equation (3.3.24) and (3.3.21), we get



p(xy) Y = L [¢"F, +% l'og - %org”] +77 (Ege ™+ Loo—2L g™ Bp) |

,which may be written as

L e™Fo-2 L2 0'=[pxy) - 77 (Eog ™ +

Lop—2Lg"” By LY v
Since 'Fgny"=0. So we get

(3.3.25) Poy) 2% L g7 (Ep- 2L Bg) +0, (77 %L-l +% ).

Theorem 3.3.3. Randers Conformal change ofriSler metric given by
(8.1.1) is Projective if

P(X,y):Z"l L-l e—a(x) (EOO' 2L BB)+GO(T-1_ %L-l + % )

,3 -0(X)
L€ )

where 7 =2 (1 +
BB :Bibi )

O'o:O'iyi.
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Chapter 4

CONFORMAL RANDERS CHANGE OF A FINSLER
SPACE WITH (a,B) METRIC OF DOUGLAS TYPE

4.1 Introduction



The conformal theory of Finsler metrics basedlmtheory of Finsler spaces by
M. Matsomoto, M. Hashiguchi ([3], [7]) in 1976 stad the conformal change of a

Finsler metric namely

a(x)

Lix,y)=€ Lxvy).

G.Randers ([6], [7],) in the year 1941 introducespacial metric

ds= 1Iaij (x)yiyj +b, (x)yi in a view point of General theory of Relativityin8e

then many Physicist had developed the General yhafoRelativity. This metric
was first recognized by R.S.Ingarden and M .Matstiong[1], [4], [6],) in 1957,
produced thed, B ) — Metric by generalizing Randers Metric [2]. Tteory of

Finsler space witho(3) - metric has been developed into abundant

branch of Finsler Geometry. From stand point ofsler Geometry itself

Randers metric is very interesting because its foirsimple and properties of

Finsler spaces equipped this metric can be lock®d Riemannian spaces

equipped with the metric

L(a,B)=a+p .

The concept of Douglas space ([1], [8], [9], [1@hd [11]) has been
introducing by M. Matsumoto and S. Bacso as a @gdization of Berward spaces
from stand point of view of geodesic equation. KEinspace is said to be of

Douglas space if



iBGY-GYy
are homogeneous polynomial ih yof degree — 3. It has been shown by M
. Matsomoto in papers ( [1], [7], [8], [9], [1D}hat F" = (M"L ) is a Douglas
type iff the Douglas tensor

h _ah _ 1 ( h . sh h h )
Dik =Cij ~ -7 CikY" +0 G * Gy + Gy

vanishes identically, where"(gis hv — curvature tensor of Berward connection
Br. The Conformal Randers change can be consider gameralization of
Conformal as well as Randers change because wrfiing O it reduces to
Conformal change and wheno(x) = O it reduces to Randers change .It is

compositions of Randers change and Conformal @ang

In present chapter we shall workout the conditiader which a change of
Finsler metric L(a, B) -L (o, B) = ¢ { L(a, B) + B } is that Conformal

Randers change of Finsler spaces of Douglas typains to be Douglas type.

4.2. Preliminaries.
Leta(x, y) = a x)y'yl be Riemannian metric and

B(x, ) = h(x)y' be a differentiable one-form in an n-dimensional
differentiable manifold M If a fundamental metric functioh (a,B) is

positively homogeneous of degree oneiandp in M", then



F" = (M", L (a,0) is called a Finsler space with,B)-metric [5]. The
spaceR" = (M",q) is called a Riemannian space associated Witp]F-
Christoffel symbols of R' are indicated byy,‘k, and covariant
differentiation with respect txz;ik (x) by 0. We shall use the symbols as

follows:

1 1
(4.2.1) r” =E(Djb| +|:||bJ) ’Sj =E(D]b| _Dibj) y
sij =airsrj S =brsrj.

It is to be noted thaf :%(ajb, -9,b;) . Throughout the paper the symbols

0; and ojstand for% and -2 respectively. We are concerned with

axJ ay!

the Berwald connection B = (Gijk,Gij) which is given by

2Gi(x,y):gij(yréjarF—ajF),Where F = L%2 Gij:ajc;‘

I _3 Al
andG ik =0KG i
The Finsler space"Fis said to be of Douglas type (or Douglas
space) [1] if B=G(x, )y - G(x, y) y are homogeneous polynomial
in y' of degree three. we shall denote the “homogenpolymiomials in

y' of degree r” by hp(r).

For a Finsler space'with (a, B)-metric ([3], [5]), we have

(4.2.2) 2G! :yi00+28i,



i _E i Ol i algg [y _a

(4.2.3) Bl =y e P e [a Bb},

E:BL—BC*, C*:aﬂ(rooLa‘ZO’SoLﬁ)’ H=d b, V2= F o
L 205°L, +ay’L,,)

- B4 G=d bhb

and the subscriptt and3 in L denote the partial differentiation with
respect too and B respectively. Sinceyy, = vl (x)y!'y*is homogenous

polynomial in (y) of degree two, we have

Proposition [7].4.2.1. A Finsler space withd|, 8)-metric is a Douglas

space if and only if
'B=B'y - By are hp(3).

Equation (4.2.3) gives

o2
(4.2.4) Bl B(soyl soy)+ B'L'O‘O‘ c*b'yl -blyh
a

Lemma [8] 4.2.1 If a® = 0 (mod -B ) that is @(x) y'y' contains b(X)y
as a factor then the dimension is two afg 0 .In this case ,we hawe

= d(x)y' satisfyinga® =B 6 and g(x)b' = 2



4.3. Conformal Randers change of Finsler spaces Wit

d, B)-metric of Douglas type

LetF"=M", L) and F" = M", L(a, B) = €[ L(a, B) + B ] )be
two Finsler spaces on the same underlying mani#ldIf we have a

functiona(x) in each coordinate neighborhoodsWfsuch that

L@, p)=¢ [La,p)+B]

then F is called conformal Randers t&", and changé — L of
metric is called conformal Randers chamde(a, B) metric. For

(a,B) metric
L@p)= €[Lap)+B]=L(a, B,

(by homogeneity). Therefore, a Conformal Randeanghk of ¢,(3)

metric is expressed ag,f) - (o, B)where a=¢€a, p=¢€p,
Therefore, we havey' =y "y = €%y, , g =€"g, b=€h,
“d=e*d, b'=€°b and b® ="
Proposition 4.3.1: In a Finsler spaces witha,) — metric the length

b of b with respect to the Riemanniana is invariant under

conformal Randers change

The Conformal Randers change B) - (o, B) gives rise to

the conformal change of "Ra - a =€ a and hence we get the



Conformal Randers change of Christoffel symbojg, are same as

Conformal change of Christoffel symbolg . So it follows [1] as

(4.3.3) Vljk :yljk +5Iij +6|k0-j _Olajk

whereo; =9;0and o = aijoj .

From (4.3.2) and (4.3.3) we have the following foomal Randers

change

(434) (@ Oh=€0h-bg+m)

(b) :ea[rij _%(qaj +b,0) + gy ]
- 1
(c) §~F€ [Sj +§(h0-j _bjai)]
=i —0T 1 i i
(d § =¢€’[s +§(b o, -bo')
(e) S =5 +%(b20-i —-A). wherep=b,d,

From (4.3.3) and (4.3.4) we can easily obtain thewing:

(4.3.5) @ Yoo=Yoo+ 20y -0a’d

b) Too=€"(lho+pa®-a,3)



©  $=e7ls+ 00~

d =% +%(b200 )
To find the Conformal Randers change dfdiven in (4.2.3), we first
find the Conformal Randers change of C* given i2 @).p
Since L (o, B) =€ [L(a,B) +B], we have (4.3.6)
L-«=Ls Loa=¢€’ Lo
EE:LB+1 Y =€~
From (4.2.3), (4.3.4) and (4.3.5), we have
(4.3.7) TC* = &(C* + D),

where

afl(pa” -o,B)L, —a{2s, + (0°g, - pB)(L, #1}]
2AB°L, +yal,,)

(4.3.8) D* =
Hence Conformal Randers change bfiBwritten in the form
(4.3.9) “Bi=B'+C,

where



(4.3.10)
2 :f[zae”(éoy" —sioy ) +(L, +€")a{a, (b y' ~bly) -

D*a’L, (b'y' -b'y")
BL,

By -a'y)}l +

Theorem 4.3.1. A Douglas space witha(3) —metric transformed to a
Douglas space withd,B) —metric under Conformal Randers change
if and only If C! defined in equation (4.3.10) is homogeneous

polynomial in y' of 3.

4 4. Conformal Randers Change of some parti@ar

a(B) metric

For aRanders metric
we have | =a+f
sothatL, =1, Lg=1andLy, =0 .Then we have

(4.4.1)

2c = ap2e(Soy! -sloy) + @+ 7)oy ' y! -bly) - Bty -ty



We know that [6] Finsler spaces with Randers mégr@ouglas space

iff s;j =0 . Under this condition equation (4.4.1) beceme
2c! =@+ &)o'y -bly) - pa'y) - alyy.
Sincea is irrational function in Y, from above it follows that'C
are hp(3) if and only if
(4.4.2) aBy -by)-Ady -a'y)=0
The equation (4.4.2) may also be written as ,

(4.4.3) (@4 +o,0)8 -(B.a +hd)o' - (0.4, + T, 3 )P
+ (b0, +b,5 )’ =0

Contracting (4.4.3) by j and h we getjb- bo; = 0 which gives

- £
Gi—b2b|.

Conversely, if $=0 and 0; = =0 then(4.4.1) gives €= 0 .Hence
equation (4.3.9) givesB'=B'.
Thus we have

Theorem - 4.41. The Douglas space with Randers miet

transformed to a Douglas space under Conformal Raiters change

ifand only if S;=0andg, =z wherep=hd .

For aKropina metric,



2
, Lpg= -2 Hence the value of D* given

_20a _
sothaLa_F, L. = 2

by (4.3.7) reduces to

(4.4.4)

Ry 2[ﬁ (pa® - 0,p) - ae’{25,5° + (b°0, ~ PB)(B* ~a’e”)}]

Therefore, the value of'@iven by (4.2.10) reduces to,
(4.4.5)

O =2 e (soy’ ~sloy) + (£ - “ﬂ){ao(b'y -bly) - Ba'y -y}

Wy by NEL-TEL EES g, 4 ) (L - Ty

Since
ﬁZ
2b?

—Zibz(bzao+pﬁ)] are hp (3).These terms may be neglected in our

ZeB(soy ~5ey) + EE{a by ~bly) - B’y ~a Iy - By ~bIyEL

future discussion and we treat only

—_a_z ii_Ji_ii_jiL:Bzz
H = 4ﬁ00(by b'y')-(b'y by)[sza(baow/S’)]

Above equation may be written as



(44.6) Af*BHY = - (By — By' ) [a*b? o, - 20,B* 4 °s00B° +2

e’b’o, B2 p €ap’]
Equating rational and irrational terms we get
4.4.7) 4f’BHY = - (By' — By' ) (@*b?g,- 20,B%) and
(4.4.8) 283y —by' ) (2 +bPo,+pB) =0 .

Taken>2 o?= 0 (mod -B) [8] . If (By — By') = 0 ,by transvection
of by; we get Ba® - > = 0 which gives rise to contradiction. So we

must have ,
@.4.9) (2s+ o, +pB) =0
Also from equation4.4.7)
fo® [ 4BH" + By —By') o*a,] + 2 0, By —By') =0
which implies #H" + (By' — By' ) a?0,= 0 ando,= 0
Therefore from equatiod@.9) 2s=- pp.

Thus we have ,

Theorem 4.4.2. A Finsler spaces" (n > 2) which is obtained by
conformal Randers change of a Kropina space"Fwith b? # 0 is of
Douglas type if and only ifo,=0and 2+ pB =0,

wherep=h d',.



Fora Finsler spaces with metric

(4.4.10) L +2°

a

Under Randers change it become
6.4.11) l=a+B+ %2 .

The €@, B) —metric (4.4.11) is called an Approximate Matstmno

metric.

Lemma[l0] 4.4.1.— A Finsler spaces with an Approxiate
Matsumoto metric is a Douglas spaces if and only @+ 0

(mod-B), b>= 1,40 =k{(1+ 2K) a — 3bib, } where

k = ZL—l , h(x) is scalar function, that is bis gradient vector.

b
(1) o’=0(mod-B):n=2,

A b= %{ vi(d;+3h) + vj(di +3b)}where vy = v; (X) Y.

Also Conformal change of an Approximate Matsumotetria is

approximate Matsumoto metric. Take

(4.4.12) Aj=0,bi-k{(1+2) a -3 hb}=0



— 2 _
Assume ( F", L = e°(a +B+ ﬁ) ) is Douglas Spaces .Then A; = 0 This can be
a
expressed as

(4.4.13) e’ (Aj+pa; —aiby) _

In view of equation (4.4.10), the equation (4.4..8yome
paj = aib;

contracting by ygives

(44.14) pyi =B

Again if n = 2, a’= 0 (mod B ) assume

(4.4.15) W 8,1 - 2 {vi(d+30) + vi(d +3)} =0

Theyy, = 0 implies
(4.4.16) €W+ paj —aiby) — 0,

we note that Vi = Vi,
In view of (4.4.14), the equation (4.4.16) becomq;aj —aib) = 0.
After contacting by, pYi = op.

Thus in both cases we see that ,



Theorem 4.4.3. A Finsler spacer" (n > 2) which is obtained by

conformal Randers change of F= (M",L=a +% ) with b># 0 is

of Douglas type , remains to be Douglas type if armhly if

pYi= o wherep=hd .

Lemma [11] 4.4.2. Let P be a Dauglas space witho(8) metric

L = (e, +c2[3+”7j) for which b2 = 0 andif o= 0 (mod -B ), then

there exists a scalar function u(x) and a tensor fiction Vj(x) such

that o,b=(r;+S)isgiven by

P = b—lz(hs—hsi)'(nil) Vi

i =§—é(h$+h3)—4aj.

2
For a Finsler space with metricL = (a+%).
Under Randers change above metric becomes
0,2
(4.4.17) L= (o +p+ ?) .

The conformal change of fundamental metric (4.4i$7a metric of

same type . Take



(4.4.18) %:%-éwus—qs)+mgjw:o and

(4.4.19) V\/ij:fij-%(biﬁ+b13)+4a;j =0.

2
Assume M", L = e“(a + [+ %) ) is Douglas type. Thema; =0 and

Wij: 0 .BUtAij = éinjy V_IJ :eUVij SO we getAij =0if Aij: 0. Also

(4.4.19) wuﬂM+€m@+%hh'2TZMQ+hm)

In view of (4.4.19) W; = 0 implies

(4.4.20) p%+%hQ:2TZMQ+hG)

Contracting by bwe get p b = o, b*-

Thus we have,

Theorem 4.4.4. A Finsler spaceF" (n > 2 ) which is obtained by
2
Conformal Randers change of a (M, L= a +% ) of Douglas type

remains to be Douglas type if and only ifo bi = a; b® , where

p=bd "
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Chapter 5

EXPONENTIAL ( a,f)-METRIC



5.1. Introduction

The theory of Finsler space with,( ) - metric has been developed into
faithful branch of Finsler Geometry by M. Matsumi8],[4]) .A Finsler metric
L( x,y) defined on differentiable manifold Nis called and|, B ) - metric, if L is

a positively homogeneous function of degree oneadRiemannian metric
=Ja,(xy'y’ and a one form =h(x)y'. A Finsler space is a Berwald space [7], if

the Berwald connection is linear.

The concept of Douglas space ([2], [8], and [#} lbeen introduced by M.
Matsumoto and S. Bacso as a generalization of Bdra@aces from stand point of
view of geodesic equation. Finale space is saluetof Douglas space if ;& G
y;- G yi are homogeneous polynomial in yf degree 3. It has been shown by M.
Matsomoto thatF"=(M",L)is a Douglas type iff the Douglas tensor

pDh =gh - 1

h, sh h h
ik = i n—_l(Gijky t0 Gy +9; Gik+5kGij)

vanishes identically, where"fgis hv — curvature tensor of Berward connection
BI . A Finsler spac&" = (M", L) is a locally Minkowski space ([5], [6]) ¥1" is
covered by a coordinate neighbourhood systen) fnxeach of -which Lis a
function of y only. A Finsler space is projectively flat if & projective to a locally

Minkowski spaces . The Exponential, 3 ) metric

(5.1.1) Loer +3

was firstly introduced by Yu Yao Yong ([11], [12]}) is expressed as

2 3
Lea +23 + B LB,
ZE 2a 6a’



for | B|< |a|.If we regardb(x) as very small numerically and neglect all the power

greater than two d , then L, B) is called 2! approximated to exponentiat, (B

) metric .So we use
(5.1.2) Lae+2B +2°
2a

In this chapter, we have worked out the Fingbacs with second
approximate exponentiadi( 3) metric in which all powers greater than 2[dfre
neglected,to be a Berwald space ,Douglas spaceté&d®nely flat space . We also
investigate the Berwald connection of this metric.

Throughout the chapter we shall effectively use fll®wing expressions.
The derivatives of approximate exponent@)B) metric L with respect toa & 3

are -

(5.1.3) L, =1 -2 Ly = 2+ f/a

Ly =2 l=1/0a,  Lg=-p/a?

5.2 Berwald Connection of F
Throughout the chapter the symba|sand 9;stand forlj and ij
0X oy
respectively. We are concerned with the Berwaldneation B = (G;,G; 0)

which is given by



26' (xy) =g (v'0;0,F -,

where F = £/2, Gij :ajei andGijk :akeij.

we shall denote the “homogeneous polynomials of gegree r’ by hp(r).

For a Finsler spac€' With (a, B)-metric ([3], [5]), we have

(5.21) 26 =yh,+28',
where
L
(522) BI_EyI+a BSI GLC(G C*(y gblli
La Lo a B
L L, —2as,L
E_B BC*, C*:alg(r;)Oa O;SO ﬁ)’
L 2(6°L, tayLy,)

Ib:djq, y2:b2a2_[32, bZZthq

and the subscrigg andf3 in L denote the partial differentiation with resp&o
a andp respectively. Sincg,, = ¥, (x)y'y“is homogenous polynomial of degree

two in (y).

Proposition 5.2.1. The Geodesic coefficient'Gof exponential ¢, B) metric

(5.1.1) is given by



s
d+e”)y

5 [0 B) -0’5 (1L +e)s] +

(5.2.3 26x,y) = Voo + 2

£ , B
b'a®-pBy')  2sa*(l+e”) N 280’ (1+e @)
0° o° a-p ’

where 6% = oa?(1+°) - ap - B2

Berwald connection [4] satisfying the following amatic system:
B;- L-metrical: =0
B,- (h) h- torsion tensafy = Gjx — G =0,
Bs;- deflection tensor P=y* G — G; =0
B, — (V) hv — torsion tensor,P= 4, G, — G=0
B; - (h) hv — torsion tensor' =0,

Where the symbol (]) in B- denotes the h — covariant differentiation wikpect

to the Finsler connectionVe have from (5.2.1) in view of,B; & B, we get
(5.2.4) 16 ;G =y,+B),
and @ 9jGy= y, + By
where we put B = 9;B' & B'y=9;B}.
The axiom B;: L;j=0,L— G| orL = 0 is written as

(5.2.5) | Byl +alg(Bjib - 0p)y' =0.



Where y = a;y' andp, is the differentiation with respect tg, .

In view of (5.1.3) ,the (5.2.5) becomes

(5.2.4) Za® - BB Yyi + 20°(20+B) (Bib - 0 b)Y = 0
Equating rational and irrational terms we get

(5.2.5) 2%° - B)B Yy + 20°B (Bj by - 0p)y = 0

(5.2.6) od (Bib - 0b)y =0

In view of (5.2.6), equation (5.2.5) becomes?-5%)B; y'y =0 .

If 2a° - %= 0 implies2a? = > which contradicts to our assumptipg|< |a |
So2a?- 42 #0. Therefore, §yy,=0 & (Bib-0p)y=0.

Which implies B a, + Bhag =0 and Bb-0b=0.

Thus we get , E}: 0 & 0. = 0 .Therefore,the Finsler space [3] with metrid (3)

is Berwald space.

Theorem 5.2.1. Approximated exponential o, B) metric (5.1.2) is a Berwald

space iff 0,n= 0 and Berwald connection is g, , y,;, 0 ).

The h-curvature tensorof Berwald connection concides with the
curvature tensor g, of Riemannian connection .So we havg,R 0 . Therefore

according to Kikuchi theorem if g = 0 =0,



(M",L) is locally Minkowski.

Theorem 5.2.2. Approximated second order exponeli (a, ) metric (5.1.2)

Space is a locally Minkowski space iff Rh =0&O0p=0.

5.3. Projective flat Finsler space with Approximaéd second
order exponential (@,B) metric

A Finsler space (M,L ) is called Projectively flat [5] with rectanigu

geodesic if for any point p of ‘Mhere exists a local coordinate neighborhood

( U,x) of P in which the geodesics can be represented by [in€gr equations of
X .Here we shall find that Approximated second pe@onential ¢, B) metric

(5.1.2) be Projectively flat .

o1

We define riJ >

_l o Ak
(Djbl +D|bj) S” _E(Djbl D|bj)’
I |
SJ—a Srj, Sj:brSrj,

Vik = a ylrk :

A Finsler spaces"fwith an ¢, B) metric is projectively flat ([5],[6]) if



(531) e D) (Y Yoy 102+ 92
T o0~ 22 S)1(o%IB-y) =0,
Providég s (g::)z ~F) % 0.
In view of (51.2), equation (8.1) becomes,
(5.3.2) (@1'c - 20°B%(c-1) B*) (0% Voo - VoooY) + (160" - 8a°B? + 805B -
40 3y +{roo(4a*-20%F% - 20% (8a® +40”B ) S} (a’b' By') =0 .
Equating rational and irrational terms,we get
(53.3) (& - B”)so— 2 5(0’0' By') =0
(5.34) (4x'c - 2%B%(c-1) B*) (0% o0~ VoooY') + foo(4a* - 20°B7) (0"

By') +40'B[ (20% - B?) go — 259(0°b By')] = 0

In view of (53.3), (53.4) becomes

(5.3.5) @ c+B?) (@ Voo - YoooY') + 20° roo(a®0 By') = 0 .
From (5.3.3)
(5.3.6) @(So— 9b) -B (SB-23y) =0.

The terms ('s— $b') must be factor o ,so there exista'o (x) such that

(5.3.7) ‘s b =pA



Transvecting (5.3.6) by yve getl; = 5.
Thus (5.3.7) becomes
(5.3.8) iS= sb; + sby

Again from (5.3.5) we see thag,,, must have a factax® , so there exists 1-form

Vo = Vi(x)y' such that

(5.3.9) Yow=Vga?

In view of (5.3.10), equation (5.3.5) becomes
(5.3.10)  @[(yi-Voy)e + focd' 1=Bl2ra0Y — (13 -Voy) Bl
So there exists 'of hp (1) in y such that

(5.3.11) ¥, -Vay')e + dd' =B Vo

In view of (5.3.11) , equation (5.3.10) gives

(5.3.12 ) 2% Vo= 210 Y — (v, -Vaoy') B
Transvecting it by yand using (5.3.9) we get
(5.3.13) 26=VoVi.

In view of (5.3.13) , equation (5.3.11) gives
(5.3.14) K. -Vay)e =B Vig— Vo

Eliminating (y., -Voy') from (5.3.14) &(5.3.11) we get
(5.3.15) Vip(20°C +p%) = Vo (B +2C ¥) .

We define F= 23 c + hb,



Then (5.3.15) becomes io j = Voo Eo .
Which implies
(5316) qu Vi + Ejk Vin +Ethij = Eithj + Ein ij +Eij Vin.

The reciprocal of tensor;is given by

=L (d._ 00
2c 2¢ +b?

Transvecting (5.3.16) by "Ewe get V. -E Ex .

E"V,
where we put = J

Therefore we have ,
(5.3.17) Y=E (2 gc+hby)

and (5.3.13) becomes

(53.18)  y==(23c+hb)

In view of equation (5.3.18) ,the equation (5.3.4dcome
(6319)  X=Vidh+ Vil + = (B0 +bo'j— 23d))

Conversely, it can be easily verified that (5.3§)a consequence of (5.3.8) ,
(5.3.18) & (5.3.19).

Thus we have ,

Theorem 5.3.1. A Finsler space with second approxeited exponential



(a, B) metric is Projectively flat iff we have (5.3.8)5.3.18) , and the spaces
Is covered by coordinate neighbored in which th€hristoffel symbol of
associated Riemannian space with the metrica are written in the form
(5.3.19).

5.4 - Douglas type

A Finsler space is of Douglas type ([2],[8],[9])ahd only if Douglas tensor
vanishes identically. It is generalization of therBard spaces from the view
point of Geodesic equations .A Finsler spaces YathB) metric is a Douglas

space if and only if ([2],[8])

(5.41)  Bl=—Pey —spy)+= ooyl -blyh.
a a

— aﬁ(rool-a _ZOS)LB)
28°L, +ay’'Ly,)

Here , b'=4d b,

}f2=b20(2—[32, bzzal' ij
In view of (5.1.3) , (5.4.1) become

(5.4.2) B(202 - BA)(2ka? -3p3) = 20” (20 + PB))(2ka? -3p?)
( g.oyj— S.oyi) +a? [(20(2 - [32) foo - 40°S (2a +B) ] (biyj - Hyi ) -

Suppose thatFis a Douglas space, that id Bare hp(3). Separating

(5.4.2), in rational & irrational terms of ywve have



(5.4.3) (2K -3B%) (Soy'— Soy") - 20°s (bly' — By' ) = 0
& (5.4.4) @k-3p% B’ - a’ry (by —By')=0.

The term B°B! of equation (5.4.4) seemingly does not contafm
Hence there exists\in y of degree 3 such thatp®B’ = a® Vi, i.e

B! = a® !y, Here we divide the following discussion in the toases

(1) a? 0 (mod -B) (2)a®=0 (mod -B)

Case — 1 In this case 'Ba’Viy & (5.4.4) leads to
(2ka®=3B%) a® Vi) - o’ (by —By' ) =0.
Transvecting it by s, we get (2ka®-3p%) V' by, = 1o (b°a® —B).

If (2ka? -3B%) contains (fm® —B?) then there exists a scalar function
A(X) such that

(2 -3p%) = A(x) (0°a*-p?) .

This impliesi= 3 and b= 2 . Thus for bz 2, (2la® -3p% is a

factor of gy .
So there exists a scalar function h(x) such that

h(x)@k—-3B%) = Ky i.e
(5.4.5) i ¥ h(x) (2k §- 3b b))

Also (5.4.3) can be rewritten as



(5.4.6) (@K -3B%) ($ho'x + S -hd'k - So'h)
P[(shk + )b = (5% + ' )b = 0.

Contracting (5.4.3) with"&,we get

(5.4.7) (26> -3p3)s! = 20” (b'd — BS )

Contracting (5.4.6) by with"gwe get

(5.4.8) (2% -3B%) (S .45\ + 45 - db) =0

Contracting j & k , we get (2K -3p?)s = 0.

Buta?® 20 (mod -B) , so §= 0. Thus from (4) , 'S= 0. That is

(5.4.9) 'so=9g

From (5.4.5) and (5.4.9) ,we have

(5.4.10) Oh = = h(X) (2k g — 3hby)

Conversely, if (5.4.8) holds,then it follows that

B' =h(x) (b'y’ -b'y)a?® which is h(p)- 3.

So Fis Douglas space . Therefore we have,

Theorem 5.4.1. A Finsler spaces"Fwith second Approximated exponential
(a, B) metric is Douglas space if and only if there egis a scalar function h(x)

such that o,b = h(x) (2k g — 3hby) . In particular if

h( x) = 0 ,then F is Berwald spaces
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Chapter 6

ON A WEAKLY-LANDSBERG SPACE OF SOME
(a,B) METRIC

6.1. Introduction

Let M " be n-dimensional differentiable manifold aftl= (M ", L) be



2
n-dimensional Finsler space, where L is a fundaaidonction. Let ¢ = aiaj%

be the fundamental tensor, where the opré;onmeansaiyi . Now we define

geodesic coefficient @&s ([8], [9])

G =4y (0014 LY

and G=d G, where the symbob, means% and ¢ the inverse of metric of;g

The equation of geodesics (Canonically parametdyjzd F' is given by

d?x’
dt?

=-2G' (x,y) [%—ﬁ:y]

The Berwald connection of Finsler space is defimgd5], [8])

(G, G, ,0), where the connection coefficients are defined by

G =0,G,G} =0,(G)). LetxOM, yOT Mand L is fundamental metric on M,

T™M = U T,M, the non-Riemannian quanti, :- TMOTMOTM - R defined

x£OM

by

10

G(u, v, w) = Gy U vV w*, where G = 2%

The family {Gi} is called Cartan tensor. It is well known thag & O iff L

is Riemannian. In late 2century, defined Berwald space as given bellow.

ForyOT,M, define§ : TMOTMOTM -TM by



T 0
By (U, v, W) =G}, u’%w‘W

X

3i
whereG, :% is hv-curvature tensor oflB
ay'oy“ay

B is called the Berwald curvature. A Finsler metisccalled a Berwald

metric[13] if B = 0. In this space'®, y) are quadratic ity :y‘% OT M. Itis
X

X

single norm space [5] i.e., all the tangent spagd With induced norm L is

linearly isometric to each other.
A Finsler space is called a Weakly Berwald spa@if, ¢’ = Gn=0

l.e.(Ricci curvature tensor) vanishes. It is &dsown as Mean hv-curvature

tensor B'.
We are going to investigate the characteris ofl€mrfSpace whose

Pnix = 0. The condition g = 0 are equivalent to [9]p = 0. Such a space
of two dimension was first considered by G. LandgbeéNow, we shall investigate
in general Landsberg Space, i.e., a non-Riemarguantity defined on [13] the
slit tangent bundle TM — {0} a& :TM OTM OTM -R by L, (u, v, W) = Gyo

i 0 i 0
, V=V —| , w=w —
ox'

» 0
u' v W where u=u — i
0 ox

X

. The family {Gyo} are called

X X X

Landsberg curvature. But for Landsberg spacelinyg Gy, = 0 implies that ¢o
= 0. So we conclude that the Finsler space witigjy= 0 (BI') are called

Landsberg space.

Now we define mean Cartan torsion a&u) = G u where



G=d" Gy, u=ul, yOTM-{0}

X

The h-covariant derivative of Mean Cartan torsitomg geodesics gives rise
to the Mean Landsberg curvature: T, M — R defined byt, (u) = Gp U. The
families {C} are called Mean Landsberg curvature. A Finsletrimas called
Weakly Landsberg metric if g = 0. This space was first introduced by Z. Shen
(1], [11], [12], and [13]). But for Landsberg sgain Bl' Cyxo = 0 implies y,Gj; =
0. So for Weakly Landsberg spacgGf, ¢’ = 0. Also y,Gp g’ = 0 implies Gy = 0.
Thus a Finsler space is called a Weakly Landsh@gesif Gy = 0. This space also
called Mean Landsberg space. Several Finsleriae h&. Matsumoto, M.

Hashiguchi, Z. Shen, A. Teyebi, G. S. Asanov haualied about Weakly

Landsberg space.

The purpose of the present chapter is to investigge condition that the
Finsler space with some (3)-metric like Randers, Kropina and Matsumoto metric

to be Weakly-Landsberg type.

6.2. Weakly-Landsberg space ofo(,3)-metric

In the present section, we deal with the conditi@t a Finsler space with an
(a,B)-metric be a Weakly Landsberg space.IMf, (L) be a Finsler space with an
(a,B)-metric, wherex = (g; (x) Y ¥)** andB = b(x) y. Here, the symbol (/) stands

for h-Clcovariant derivative with respect to the Riemanntannection in space



(M,a) and ij stand for the Christoffel symbols in the spalgka(. Let us list the

symbols for the later use
=d b, B =d°by b, 25 = by + by, S=b S
= by -k, i=d ry, S, = air Srj, r=hbr.

In [8], the geodesic coefficient functiorl 6f a Finsler space with an,3)-metric

are given by,

(6.2.1) 2G=yi + 2B, where

B =[Sy o[ e e (2[5 )]

(6.2.2) E= (%]c

C* — GB(rooLq _ZGS) L[})
2(B°L, +ay’Le,)

2
Yzzbzaz_Bz’ L, :a_l—’ LB:a_L’ L, = 0L ’
Ja op dada
2 3
LGB:aL’ L= 0°L .
0aap da dada
Then, we have ,
= y"Oj + Bj , Gijk = \/jk + B.jk andGiud = Bl]kl

where 0B =B, 0,B/ =B, and B =B,.

Thus y,Gi ¢’ = 0 impliesy'B, =0 i.e., Bx =0



Theorem 6.2.1 The necessary and sufficient adinon for a Finsler space
with an (a,B) - metric to be a Weakly Landsberg Space is that

Br.y =0 ie., B¢=0.
Remark: Throughout the present chapter, we say “homogenpolynomials of
degree r will be denoted as due to brevity.

6.3.  Weakly — Landsberg space of Randers and Kropina metric

Consider the metrit (a,B) =a +3. It is well known that in a Randers space

the geodesic coefficient' @re given by

[ 1) (e —208) .
(6.3.1) 26_{00}—G+B y' +2aS,.
This implies

mol el o Cgyg)-Twm 205,
(6.3.2) &L= Z{Oi}-l- Y (2, - 4 S) 0B

Contracting (6.3.2) by indices i, j gives

o) 1 _
(6.3.3) L= Z{Oi} + e (o — 20 S).

Again

i i 1 _ 28, _ _(rOO_ZGSO) (% j
(6.3.4) 2G, = 2{ki}+ a+p (25, . D g) «+p? L +b,

(6.35) G :LM 23,8235, 28 S8 a%Skj
Ky + | o q e a



a

(a+B)°

oty

_M(ﬁ+bJ(&+bj
@+p° La "Jla ™

_&_(ﬂ_&ﬁ)
(@+B)” La a® «

Contracting equation (6.3.5) bY, ye get
y"G:kl =0 ie., G@=0.

Theorem  6.3.1. Randers space of n-dimensionaf always Weakly
Landsberg space.

Remark: B. Li and Shen, Z. [6] in his paper quoted thd&®anders space is
Weakly Landsberg space fff is parallel with respect ta. He quoted this result
from the paper [7] which read as follows “A Randspsce is Landsberg space iff
B is parallel with respect ta. But Landsberg space is always Weakly Berwald
space, the converse may not be true. So the rgaoled in paper [7] is not

applicable for Weakly Landsberg space.

Now, we consider Kropina metric(a,B) = a?/p. It is well known that in a

Kropina space the geodesic coefficient func®ix, y) are given by

I B P < RS A i W e b
(6.3.6) 23_{00} 2A$+ 76 g J{B %+50]bz



Where{olo} denotes the Christoffel symbols of the Riemanmmtrica (x, y) [9].

Differentiating this equation by ywe get

(6.3.7) Z_?,"J = 2{-;}—2{3 4 byt + Pr, $%Oajo:|i_ 2 o
|

J a2 a4

PR e L PSP (0 -
So( B Bz bj]-l_bz{sj B +%( B 2bjj+2rjo}'

Contracting (6.3.7) by indices i and j, we get

(6.3.8) ! = 2{i'0}—b—22(%+%j+ 28+ 25 t

Differentiating this equation by ywe get

] 1), 2B, 1 (b _Ba),
(6.3.9) Gij:2{}+§(1—Fj+b2a2+FJO[—2— ?j+i[b,

ij a a

Again differentiating equation (6.3.9) by ywe get (hv)-Ricci tensor in the
following form

(6.3.10) G = 0P +ﬁ(&_%]+ﬂ(%_ 2 @o]

b’a? b*\a? a? b? a

+éroo{_ bjio - » ?k - Zam(b_ljt - 4@28]} y

a a a a

Contracting this equation by gives

i —. (b _2Ba
Gix y = roo(a_l;_Toj-



So G, is vanish only when eitheg,= 0 or a’b, -~ B3,= 0. Buta®#p (mod — 0),
S0, 1,,= 0.

Theorem 6.3.2. Kropina Space of dimension-n, Weakly-Landsberg space

iff r,=0,i.e.Bis closed with respect ta.

Example of Weakly Landsberg Kropina space, which isnot Landsberg

Kropina space.

Consider a covariant vector field(d in an odd-dimensional Euclidean
space so that = 0 and $# 0 hold good. Let Abe an rx n type quadratic skew

symmetric matrix and'xdenote coordinates of a point.

We consider the following vector field b A; X + G, where care constants.
In this special caseb+ b = 0 and  — b # 0. So a Kropina space, which is
generated byl Aj; X+ G is a Weakly-Landsberg space, and it is not Landsbe

space.

6.4. Weakly-Landsberg space of Matsumoto metric

A slope of a mountain is represented as the gramf & differentiable
function ¥ = L (x}, X, where (%, X°, X°) is a rectangular coordinate system in a

three- dimensional Euclidean space. The Riemarm&ncea is induced on S by
a(x, y) = {(y")* + ")+ (by'+ bpy?)?)'”
Where x = (¥, y = ( ) and b=, f. We put

B (xy) =by + by



When a man can walk v meters per minute on hora&giane, how many minutes

does it takes him to walk along a road on S.

Recently, M. Matsumoto [9] stwtliat the man will walk in

S =

O =y

L(x(t), y(t))dt minutes along a road x(t) on S ,by taking LLas ﬁ ,where

2« Is the gravitational constant , and we may regadoge of a mountain as a

Finsler space with such time measure L.

Sincel = W:; i (@/vY ! {(a/v) - (o B v}, we shall normalize as

2
L = = and taking a general Riemannian metriand a general none zero one-

a—f
form g on a general differentiable manifold M,

2
An n-dimensional (@, f)-metric L=“—ﬁ is called a slope metric or
a

Matsumoto metric[l] and a Finsler space equippét this metric has been
called a Matsumoto metric.

Now we have

oL
Lq:a_L’ LB:a_L’ Lqu:%’ LBB:_B anquB:an_
oa op oa Ja op

We have from equation (6.2.2)

C* = G—_B[roo(a -2B)-20°S,], where y=a(1+2°)- P

2By

s = Lo -28)r, -2a%S,]
2y



and

6.4.1 B" =[r,,(a —2pB) - 20> ym(a_48)+2a2bmj s
6.4.1) a2 -20°5,| LG B, S

In view of equation (6.2.1), we have

_[m _op)—20?s.1[1-_ 2B Y, 2l
(6.4.2) 2@—{00}[%0(0( 2p) - 2a So]Kl a—ZB]GVJrV(O(‘ZBJ

Equation (6.4.1) gives

(6.43) B"=

; 25(%—2hj
Ay Pl 2 | (B Y
[roo(0 —2B) - 20°S; ] ay| (@-287 o-2 (l 0(—2[3j @yy

Fa ()
2B Wy 20 b" B & _ B a2
{(1 G—ZBJGV-'-V(O(‘ZB)HZFO(G )+ 2-20)- 435 @ %

+&0‘2+2s;[(0(-28)%+2212bj_
oa-28 (a-2)

(-3%’B+2aoc— 21 tpj+ 28[%—L( 23 e%— a b 132&)}

Contracting by the indices i, |



(6.4.4) B! :[roo(a—ZB)—Zazs)](a—lz— B__2 Aj

as2 (52)2
20, i B a’s,
TS [2r0b' (0= 2B)+ 'E)o(a j B3I (G By
We note that
c=1+26 d=5+4b, K=2+16H,
& = (ac [ 3B).(a [ 2P), Ki=2c+12B
_ 0 o _ _ Ao _
A= ayk(6) 2ca,, ZGBT @ b+ 18 |
B = 2(ca®-cdaf+ @) and P =opK,-dp*-db*a’.
Differentiating equation (6.4.4) by,we get
- - % b |-4a5- 22sfri-B _
(645) Bij _[ero (C( ZB)+ 'E)o[ a bjj 43}§ ol $ﬁ62 G62 (62)2
_BY_2(b _PBay
[roo(ct ~2B) ~ 20 S{ o [1 aj 62[0( asj
2 A(aBK, -dp’ - db’a?)

a _ —
_(62)2[F3K1+Klo(bj 2dBb, Zquoj+ &)

+26—‘Z[2r”b‘ - B)+ 2p b(%_ 2@}+ % (5_ ij

+r,

Oo[t; Baa]oj 4b S - 4;5% 4{ 2[5}2

1



2a,  2a% (3 _ D
4 — =2
' S{(a—zﬁ)z (a—zs){ a 8

+|:2I’i0b' a-B)+ 50(5_ ZBJ_ B %}(6?:; _(§2a)2 A}

Contracting it by {gives

4a i~ B 2
(646) +?|:r|0b (O( a?))+ IE)O(G j 43 §:|+ 4§(a ZB]

Differentiating equation (6.4.6) by'y

(6.4.7) aiyk(B:jyi)=[2rko<a—zs>+n)o[%—2bkj—4%%- 2° 54

BB 4PB
= - + B)+ +
& ad (8%’ a(8)? (62)3}

{368

E b _Ba, ), BA |

_%KakoB+abij2+2K3Bbk+K4ak0}+%[&_ﬁa§oj
() a (®)°\a «

4B a, 4BAB 12ABP
o [ { B+qu+13 pj R (52)4}

4a,, 4aA i B_ _
(B2 a2 B-25)- 45




Q
Q

o
™
o
o

N———

o=y 2,020 2p e 208 )]s (%P3

-4b S - BS ¥ 4§(a 2J+ 4{(0(2_‘3;%)2 —(az_“;)s( o zpn
Now,

(6.4.8) Bi Y = (B'y) Bl
In view of equation (6.4.5), (6.4.7) equation (8)4jives

(649) By =[20(0-2) 1o 2220, |- 43,5~ 2° §1

E_ﬁ__l 2H3 4PB
{62 a5 @©) B)+a(62)2+<62>3}

a2 S°’[<62) rasy s o a2)

1 {akToB(lzKl—4d)+aq (11K - 3c 4c¥P b (36 28

(3°)°

+a,, (6¢c— 22dB ¥ 4% b+ 43*—;?2— 2&;?7Bg+—2Kj°B}

b {16AP AB(Z 43)}—12§B4P_
HEES a ®)" |

+2{2nold @-B)+ 5{5— zﬁj_ £ g[@_ aA j




Sl mranyn) all- a4y
4B S-B 3.
Thus we get,

Theorem 6.4.1. Matsumoto space is Weakly Landsberg spage=fdand $= 0,
l.e., covariant vector field; lis parallel with respect to the Riemannian corioact

of the Riemannian space, provided® = a®(1+ 2b%*)- (5+ 4 pB+ % (
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CHAPTER 7

Quartic Rander’s Change of Finsler Metric

Introduction : Let M" be an n—dimensional differentiable manifold and
F™ be a Finsler space equipped with a fundamental function a(z,y), (y* =
') of M"™. If a differential 1-form (3(z,y) = b;(z)y" is given on M™, then M.
Matsumoto [4] introduced another Finsler space whose fundamental func-

tion is given by
(1.1) L(z,y) = a(z,y) + B(z,y)

This change of Finsler metric has been called f—change [11], [12]. If
a(x,y) is a Riemannian metric, then the Finslerspace with a metric L =
a + B where a = {a;;(7)y'y’}'/? is a Riemannian metric. This metric was
introduced by G. Rander’s [10]. In papers [1], [2], [3], [5] and [7] Randers
spaces have been studied from a geometrical view point and various theorem
were obtained. In 1978 S. Numata [9] introduced another f—change of
Finsler metric given by L = u+ 3 where u = {a;(y)y'y’ }'/? is a Minkowski
metric and 3 is as above. This metric is of the similar form of Rander’s
one, but there are different tensor properties, because the Riemannian space
with the metric « is characterized by C%, = 0 and on the other hand the

locally Minkowski space with metric p by Rpji = 0, Chyjie = 0.

In 1978 M. Matsumoto and S. Numata [8] introduced the so called cubic

metric on a differential manifold with the local coordinate z? defined by

L= {ag(2)y'y'y'}'* (v’ =)



2

where a;;,(z) are component of a symmetric tensor field of (0,3) type de-
pending on the position x alone and has been called a cubic Finsler space.
This cubic metric is of the similar form to the Riemannian metric «;, which

is characterized by 3i5j5ka2 = (0, where as cubic metric L is characterized

In the present paper we shall introduced a Finsler space with a metric

(1.2) L(z,y) = L(z,y) + B(,y)

This metric is of the similar form to the Rander’s one in the sense that
the Riemannian metric is replaced with the Quartic metric, that is, why we
will call the cahnge (1.2) as Quartic Randers change of Finsler metric. The
relation between v-curvature tensor of Quartic Finsler space and its Quartic

Rander’s changed Finsler space has been obtained.
The Fundamental tensors of ™ :

We consider an n-dimensional Finsler space F™ with a metic L(z,v)

given by
(2.1) L(x,y) = L(z,y) + bi(x)y’
where
(2.2) L* = aijip(2)y' vy P
By putting
_ grny” ity iy Yy
(23) aijk = I y CLz‘j = T, a; = T



3

We obtained the normalized element of support I; = ;L and the angular
metric tensor E-j = f&éjf as

h b
2. ==
(25) L L

where h;; is the angular metric tensor of Quartic Finsler space with metric
L given by
(26) hij = B(Gij — aiaj).
72
The fundamental metric tensor Jij = 0,0, (7) = Eij + ZJJ- of Finsler space

F™ are obtained from equations (2.4), (2.5) and (2.6) which is given by

(2.7)  g;; = 31ay; + (1 — 37)asa; + (a;ib; + a;b;) + b;b; where 7 =

1

It is easy to show that

3(@2‘]‘ — CLiCLj)
L

{(1=7)a; + bi}7

Q(Cbijk — aijak)
I .

87;7' = I

8]-@2- =

7akaij =

Therefore from (2.7), it follows (h) hv-torsion tension tensor Cj; = O <%>

of the Cartan’s connection CT are given by
(28) 2L€Uk = 67'aijk+3(1—37') (ajkai+al-jak+akiaj)+3(aijbk+ajkbi+akibj)

—3(aiajbk + aiakbj + Gj&kbl') + 3(77’ — 3)aiajak
In view of equation (2.6) the equation (2.8) may be written as

(hijmy + hjpm; + hgmy)
2L

(2.9) 6@'16 = TCijk +



where m; = b; — %ai and Cjjx is the (h) hv-torsion tensor of the Cartan’s

connection CT' of Quartic Finsler metric L given by

(210) LOU]{ = 3[aijk — (aijak + Ak + akiaj) + 2aiajak]

Let us suppose that the intrinsic metric tensor a;;(z,y) of the Quartic
metric L has non-vanishing determinant. Then the inverse matrix (a”) of

(a;;) exists.

Therefore the reciprocal metric tensor g¥ of F™ is obtain from equation

(2.7) which is given by

1 (2437 —1) . . W+ albt
(2.11) g7 = —a"” + —( T )alaj — —(a + a’t')
37 37(1 + q)? 37(1+q)
where
a' = aay, b' = a'b;

. | 3
b2 et blbl = lbl et Zbl = —
The v-Curvature tensor of F" :

From (2.6), (2.10) and definition of m; and a’, we get the following

identities
(31) aiai = 1, aijkai = Qj, C’ijkai = 0, hijai =0
miai = 0, hljbj = Smi, 'I”fllbZ = (62 - q2)

To find the v-curvature tensor of F™, first we find (h) hv-torsion tensor

—i

Ci = 7" Cirk



_f(la—:tq){mjmk + %(b2 — @) hjr} — ﬁaierka

where

LCY, = LCjea” = 3{aly, — (Ssar + ba; + d'az) + 2a'ajar}
(3.3) W = hjra'™ = 3(6; — a'ay)

m' =m,.a" = b — qa’
and a;'-k = a"ajrk.
From (3.1) and (3.3) we have the following identities

Cijrhy, = Ciihpr = 3Cp, Cijrm” = Ciyp V", m,h; = 3m;,
mim' = (b* — ¢*), hirh} = 3hij, him” = 3m,.

From (2.9) and (3.2) we get after applying the identities (3.4)

— T . 1
(35) C’ijrChk = gCijTChk + E(C’Zjhmk + C’ijkmh + C’hjkmi —+ C’hikmj)

1 1
—(Ciirh Chrchii 0" + ——=(b* — ¢®)hiih
+6L( jrhinke + Chrrhij) +12LL( q" ) hijhns,
1
+E(2hwmhmk + thkmimj + hjhmimk + hjkmimh + hihmjmk + hikmjmh)
Now we shall find the v—curvature tensor ghijk = Uijrﬁ;;k — akfzj. The

tensor is obtained from (3.5) and given by

— T
(36) Shijk = (Ci) {gCZjTC;;k + hijmhk + hhkmij}
J
.
= gshijk + (Q) {hijmue + hpems;}
Jk
where
1 b — ¢? 3
(37) mi; = 6_L {Cijrbr + ghm -+ §L 1mimj}
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and the symbol @ {---} denotes the exchange of j, k and subtraction.
(k)

Preposition 1: The v—curvature tensor ghijk of F" with respect to Car-

ton’s connection CT is of the form (3.6).

Thus (3.6) may be written as
— T
ik = =Shij .y .y
(38) Shz'k 3Sh ik + (Q){h §Mhk + hhkm ]}
ik

It is well known [6] that the v—curvature tensor of any three dimensional

Finsler space is of the form
(39) LQShijk - S(hh]hlk - hhkhij)

Owing to this fact M. Matsumoto [6] defined the S3-like Finsler space F™
(n > 3) as such a Finsler space in which v—curvature tensor is of the form

(3.9). The scalar S in (3.9) is a function of x alone.

The v—curvature tensor of any four dimensional Finsler space may be

written as [6]

(4

(3.10) L?Spiji = Q){hthm' + hirhng
k

where K;; is a (0, 2) type symmetric Finsler tensor field which is such that
Kijy? = 0. A Finsler space F™ (n > 4) is called S4-like Finsler space [6] if

its v—curvature tensor is of the form (3.10).
From (3.8), (3.9), (3.10) and (2.5), we have the following theorems.

Theorem 3.1 : The Quartic Rander’s change of S3-like or S4-like Finsler

space is S4-like Finsler space.
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Theorem 3.2 : If v—curvature tensor of Quartic Rander’s changed Finsler

space I vanishes identically, then the Quartic Finsler space F™ is S4-like.

If v—curvature tensor of Quartic Finsler space ™ vanishes then equa-

tion (3.8) reduces to
Shijk = hijmug, + by — hampg — hyma (3.11)

By virtue of (3.11) and (2.11) and the Ricci tensor Si = ﬁhkghijk is of the
form

Sy = (— 317) g, + 3(n — 3)mu]

where m = m;;a”, which in view of (3.7) may be written as

(312) Sit + Hihiy, + HoCip, b = Hymymy,
_ b? 2
where Hl — ﬂ + (n 3)(_2 q )
37 24T
PP k)
6L
n—3
e
4L

From (3.12), we have the following:

Theorem 3.3 : If the v—curvature tensor of Quartic Finsler space vanishes
then there exist scalar H; and Hs in Quartic Rander’s changed Finsler space
F™(n > 4) such that matrix ||S;z + Hyhiy + HoCyrb"|| is of rank two.
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The symbols o and a denote the partial derivative with respect to x
and yrespectively. Small and long vertical lines (I ghdtands for h and v-

covariant derivative respectively.

First chapter is an introductory in nature and consists of prglary
details. Some useful results and definitions sashFinsler space, some
connections like the Berwald, Carton and Runds hlaeen mentioned
therein.

The second chapter deals with the relation between Carton’s
connections of two Finsler spacéd”( L) and M", L) where L obtained
from L by h-Randers change. It has been obtained the conslitioer
which this change is projective. It also deals tioaditions under which
Douglas space, Landsberge space or Weakly Berwadates becomes

invariant.

The third chapter is devoted to study for Finsler spacds”
obtained by Randers Conformal change of Finslecesp& of Douglas type
to be also of Douglas type and vice versa .It leenlalso worked out the

condition under which the said transformation gjgctive.

In thefourth chapter we discuss the Finsler spafe’ = (M", L(a,
B)) obtained by Conformal Randers change of Finslaceg" = (M" 'L(a,

B) ) of Douglas type remains to be Douglas typd\doe versa .

Thefifth chapter is devoted to investigatbe Berwald connection,

condition for projectively flatness of Finsler spasith 2" approximated
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exponential @, B ) metricL = a e+ [3 and the conditions under which said

space is Douglas type.

In the sixth chapter, we investigate condition that the Finsler space
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metric become Weakly Landsberg space. We also giveexample for
Weakly Landsberg space which is not Landsberg space

Theseventh chapteris the last chapter of my thesis and is devoted to
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