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In the past decade, considerable efforts have been made to fabricate the 

biomimetic scaffolds from electrospun nanofibers for tissue engineering 

applications.Electrospinning technique offers unique advantages in the 

production of tissue engineering scaffolds compared to other methods in terms 

of simplicity, high surface-to-volume ratio scaffolds and process versatility. 

As promising as it may seem, this technology is still in its infancy, and further 

development is critical before it can be used for any practical biomedical 

applications. One of the major concerns with electrospunnanofibrous 

scaffolds is that they have only a superficially porous network, resulting in a 

sheet-like two-dimensional (2D) framework that restricts cell infiltration and 

growth. Moving towards the next generation of electrospun scaffolds, 

increasing research efforts are being focused on issues such as three-

dimensionality, bio-functionalization, and improved biomechanical properties 

of the scaffolds.   
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The research project outlined in this dissertation was aimed to address the first 

two issue mentioned. To do so, a novelpost electrospinning process 

isdeveloped for the modification of two dimensional (2D) electrospun 

membrane into macro-porous, multi-layered, low-density, three-dimensional 

(3D) scaffolds. In situ gas foaming process is explored for the post 

electrospinning modifications. The theoretical model was developedto 

fabricatethe 3D scaffolds and then validated with experimental findings. 

Sodium borohydride was used as gas foaming agent. Hypothesis is that when 

electrospun membranes immerged in sodium borohydride solution, the 

interconnected pores will be filled with the SB solution driven by capillary 

forces where SB solution will undergoes hydrolysis producing hydrogen gas. 

The gas molecules generated in-situ in the pores will form clusters to 

minimize the free energy resulting in pore nucleation that will reorganizes the 

nanofibers to form a low density, macro-porous, spongy, and multi-layered 

3D scaffold. To validate the hypothesis, electrospun membranes of various 

polar and non-polar polymers were treated with SB solution varying the 

different parameters. It has been found that the solvent for sodium 

borohydride (either water or methanol) played a crucial role in post-

electrospinning process. Only the electrospun mat of polar polymers were 

amended into 3D architecture using aqueous SB solution while methanol 

solution was found equally effective for both polar and non-polar polymers. 

Moreover, the fabrication process was fast in methanol solution compared to 

an aqueous solution due to the rapid liberation of hydrogen gas from the 

methanolysis reaction compared to the hydrolysis reaction.Experimental 

results showed that as- fabricated 3D scaffolds have excellent ability for cell 

infiltration, proliferation and growth. This method proved to be significantly 

better than other modifications methods attempted earlier.  
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Next part of this dissertation deals with the fabrication of 3D cellulose sponge 

for tissue engineering applications. Cellulose is an almost inexhaustible 

biopolymer that has been used in a number of industries due to its eco-

friendly characteristics. Recent developments in cellulose research show that 

it is a promising biomaterial for tissue engineering, stem cell research, and 

regenerative medicine. Bacterial-produced cellulose is primarily studied for 

bone regeneration. However, it does not offer the ability to control the fibers 

on the nanoscale or microscale, which limits its applicability in tissue 

engineering. Due to strong inter- and intra-molecular interactions that 

originate from the hydrogen bonds and rigid backbone structure, cellulose 

does not melt or dissolve in conventional solvent systems which makes 

difficult for electrospinning. Compared to cellulose, cellulose acetate (CA), 

precursor of cellulose, is easy to process and has good spinnability. Taking the 

advantage of the expanded processability window of CA, cellulose fibers are 

produced through alkaline saponification of CA fibers. Thus produced 

cellulose fibers were treated with SB solution modifying into 3D cellulose 

sponge. As-fabricated 3D cellulose sponge showed better cell infiltration, 

growth and proliferations compared to the cellulose and cellulose acetate 

membranes. 

 

Addressing the second issue of bio-functionalization, cellulose-synthetic 

hybrid fibers were fabricated. Electrospun membrane of synthetic polymers 

such as PCL and N6 are widely studied for tissue engineering applications. 

However, the poor wettability and hydraulic permeability of the membranes 

hinder their applications in tissue engineering applications. To enhance the 

biocompatibility and physicochemical properties of such synthetic polymers, 

cellulose-synthetic polymer composite fibers were fabricated. Cellulose 

acetate (CA) was blended with different synthetic polymers (PCL and N6) in 

various mass ratios, and nonwoven hybrid fibers were fabricated using an 
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electrospinning process. CA content of the hybrid fiber was transformed into 

cellulose (CL) by post-electrospinning treatment via alkaline saponification. 

The effect of the mass composition and subsequent saponification on the 

nanofiber morphology as well as physicochemical properties such as 

mechanical strength, crystallinity, surface wettability, bio-mineralization, and 

biocompatibility were determined. Regeneration of cellulose chains in the 

nanofibers increased the number of hydroxyl groups, which increased the 

hydrogen bonding, thereby improving the mechanical properties and 

wettability of the composite nanofibers. The improved wettability and 

presence of surface functional groups enhanced the ability to nucleate 

bioactive calcium phosphate crystals throughout the matrix when exposed to a 

simulated body fluid solution. Cellulose- synthetic hybrid fibers were found to 

be more thermally stable than pristine polymer (PCL and N6) nanofibers. Cell 

viability assay and microscopy imaging revealed that the cellulose-synthetic 

hybrid fibers have excellent cell proliferation and spreading compared to the 

pristine fibers. 

In conclusion, the work presented in this dissertation provided a method of 

fabricating the next generation of electrospun scaffold capable of 3D tissue 

integration and improved physicochemical properties. Such a technological 

advancement will prove advantageous in achieving improved tissue 

regeneration and repair. 
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