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Preface

Network design arising in many of the systems which surround us is an interesting area
to explore, more so when we realize that many of the deciding factors are uncertain at the
time of design. This thesis begins with a case which takes us to the work of understanding
what stochastic network design are. We do understand that deterministic consideration in
designing a network which ought to operate in uncertain condition will not be good. But
this thesis explores in what way deterministic consideration is bad or good for a stochastic
situation and ends with understanding the characteristic of an optimal stochastic network.
The four papers and Introduction chapter included for this thesis studies to understand
network structure under uncertainty.

The thesis has been prepared at Molde University College, Norway as part of the Ph.D
degree in Logistics. The work was carried out during the period from August 2005 to May
2010, with Professor Stein W. Wallace as the main thesis advisor and Dr. Michal Kaut as
co-supervisor. Professor Teodor G. Crainic have also contributed in advising me in my
work. Most of the work is done in Molde University College, along with time spent on
filed work, at Nepal Oil Corporation, Kathmandu, Nepal. In connection to my thesis work
I had been to The Centre for Research on Transportation (C.R.T) in Montreal, Canada in
December 2006.

The work has been evaluated by a committee of Associate Professor Pavel Popela
from Brno University of Technology, Brno, Czech Republic, Dr. Nina Detlefsen, Opera-
tions Researcher, from Energinet.dk, Fredericia, Denmark, and Associate Professor Johan
Oppen from Molde University College, Molde, Norway.

The work embodied in this thesis is born from inspiration, philosophy, love and
commitment.
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Introduction

“Creativity can be described as letting go of certainties.”

Gail Sheehy
Author and writer

Networks and network structures arise naturally in many of the systems which sur-
round us in our day to day life, such as communication, transportation, and manufactur-
ing and distribution networks. They are subject to (re)design and analysis. Some of them
are as old as our civilization, like water distribution systems, water channels networks,
underground sewage networks, or road networks. These networks, in various forms, are
built with huge investments, last for many years, and the investments have direct affects
on the operational performances in years to come.

So, general network design problems arise in many application contexts. But not only
that, some classical combinatorial optimization problems such as the traveling salesman
problem, the minimum spanning tree problem, and the Steiner tree problem are special
cases of the general network design problem (Magnanti and Wong, 1986). The study of
these networks has been the very core of management science and operation researchers
for a long time, and the goals have been to find theoretical, algorithmic, and practical
insight into the problems (Magnanti and Mirchandani, 1993).

Designing networks in a deterministic setting is not sufficient as many of the param-
eters which shape a good network are not fixed or cannot be predicted at the time of the
design. Strategic decisions, like which links to open between the source and demand
points, or link features such as capacity, are here-and-now decisions, and they are mostly
investment decisions (but they can also simply be large irreversible decisions such as
the published schedule of an airline for the following six months). These networks will
typically be used on a daily / regular basis for a long period to come, requiring decisions
related to supply, transportation, demand fulfillment and storage, all associated with costs,
revenues and service levels. The adequate design of a network requires the anticipation of
these future activity levels and ignoring the uncertainty on these lead to inferior designs.

Standard textbooks on stochastic programming, such as Kall and Wallace (1994) and
Ruszczyński and Shapiro (2003), highlight how ignoring uncertainties can lead to incor-
rect or poor decisions and suggest stochastic models to address problems with uncertain-
ties in the parameters. Most of the literature dealing with the problems discussed above
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focus on efficiency in solving large size problems. But still there is almost no understand-
ing of the basic differences between the network structures that arise from stochastic mod-
eling of the problems as compared to deterministic approaches to the same. We believe
that the understanding of what brings flexibility to a network that is designed considering
uncertainties in the parameter values will be very helpful to practitioners who have to deal
with network planning or operations. It may also be useful in constructing heuristics.

This research is motivated by these observations and the many design problems we
encounter in the single-commodity case (which by reformulation also covers some multi-
commodity situations). Thus this research focuses on understanding how different or
similar the stochastic network designs for the single-commodity cases are as compared to
the deterministic counterparts and we hope that it might contribute to better understanding
of more general design problems.

The idea to work in this topic arose from my work in the paper on distributing oil
in Nepal under uncertain network conditions. It forced us to describe what is a good
network structure in a given uncertain environment and we found that we lacked this un-
derstanding. Thus my focus is on understanding optimal network structures in stochastic
environments.

Scientific contribution
Network planners and designers almost always face the situation that they have to plan
for an uncertain future in terms of demand / supply, and / or in terms of link failures
or unstable capacities in the links. Despite many publications on heuristics, it still is
very difficult to find a good solution in a short time. This thesis gives basic ideas to the
planners and designers as to what brings flexibility (and better expected performance) into
a network structure. This qualitative understanding regarding optimal network structures
under uncertainty is useful when trying to understand how a given network will perform
or how to build or update existing networks. Also this thesis highlights the importance of
correlations among the random variables, as we find that they have considerable affects on
the designs. Another general contribution is to inform planners about how uncertainty in
different parameters in the network have different effects on what constitute good designs.
What copes well with one type of uncertainty might be rather useless for another.

To the best of our knowledge, our use of what we name Comparisons B and C to test
the quality of deterministic solutions and their relationships to their stochastic counter-
parts is new. This is despite the fact that these tools are very straightforward. Comparison
B takes information about which edges to open (but not their capacities) from the deter-
ministic designs, and fixes the corresponding zero-one variables in the stochastic mixed-
integer design model. The model then turns into a stochastic linear model, which in turn
is used to set the capacities. Hence, we test the structure (which we denote the skeleton)
of the deterministic designs by allowing capacities to be adjusted to the stochastic envi-
ronment. Comparison C checks to what extent a full deterministic solution (skeleton plus
capacities) can be updated to become a good (if not optimal) solution to the stochastic
problem. This shows us if the deterministic design forms a backbone of a good stochastic
design or not.

Each paper of the thesis has its own contributions that form building blocks in a final



Scientific contribution 3

and more complete understanding of the effects of uncertainty. The core of the thesis is
the work on network design, which are the last three papers.

Paper 1 (Thapalia, Wallace, and Kaut, 2009b) studies a distribution network op-
erating in an uncertain environment. It defines the uncertainties faced when distributing
oil in Nepal (a problem not previously modeled). A unique modeling approach is used
where a time-space version of the distribution network is looped back on itself. By ma-
nipulating the time line this creates a three stage model of an infinite horizon stochastic
problem. The looping back method is not a new way to handle end-of-horizon problems,
but the way we use it to determine optimal inventory levels under steady-state uncertainty
in the distribution network is unique. Our modeling of a fairness policy factor in a system
where there is always under-supply is also new. We study the relationships between fair-
ness factors and inventory levels and thereby give new insight to the policy makers. The
paper provides valuable insight into the steady-state inventories to be maintained during
normal periods in anticipation of random events. Also with this work it is possible to see
the interaction of randomness of different parameters on the decision variables.

Paper 1 is the inspiration for the thesis’ next three papers – which all shed light on the
understanding of optimal stochastic network structures.

Paper 2 (Thapalia, Crainic, Kaut, and Wallace, 2010b) is on single source single
commodity stochastic network design. The major scientific contribution here is that we
present a problem class where, in fact, deterministic models produce useful information
for the stochastic case. The deterministic skeleton (a tree rooted at the source node)
is valuable for the stochastic problem (where the solution must contain a tree), as this
tree works well in the stochastic situation if capacities are adjusted, more so for designs
with high fixed setup costs. Paper 2 also points out that when there are large negative
correlations, moderate fixed setup costs compared to capacity cost, and large variation in
demand – the stochastic skeleton is rather different from the deterministic one. In all other
situations the deterministic skeleton is a good starting point for stochastic settings.

Paper 2 contributes to the understanding of what constitutes a robust design for a
single-source single-commodity stochastic network design problem.

Knowing that the stochastic structures are different from deterministic counterparts in
certain ways, we wanted to study the multi-source case. In Paper 3 (Thapalia, Crainic,
Kaut, and Wallace, 2009a), we therefore investigate to what degree the observations
from the single-source case carry over to the case of multiple sources and/or sinks. This
paper contributes in understanding that the deterministic structure (skeleton) is no longer
good, but taking the deterministic solution to built upon by adding extra edges and ca-
pacities is a good option for stochastic settings. As the number of source nodes increases
in the network the performance of the deterministic structure, which is a forest of many
small trees, becomes less suitable for stochastic settings due to less possibility of sharing
capacities. This paper contributes in stating that in a stochastic network structure, when
demands are negatively correlated, they share paths among them from one or more source
nodes. And from a source node point of view, it is best to connect with demand nodes
which have as small correlations (preferably negative) in demand as possible. The paper



4 Introduction

also highlights that consolidation of flow in the network takes place when source nodes
and clusters of demand nodes are far from each other, more so when setup costs are high.
Paper 3 presents the reason for loop formation and its usefulness in providing flexibility
to the network structure.

Paper 4 (Thapalia, Crainic, Kaut, and Wallace, 2010a) concentrates on the study
of stochasticity of edge capacities. In other words, we study the capacity as a random
variable, not just the on/off situation. The contribution of this paper is in finding that
flexibility in network designs under stochastic edge capacities comes from the presence of
higher number of alternative routes combines with higher installed capacities. This paper
also points out how differently flexibility comes about in the cases of random demand and
random edge capacities.

With lower fixed setup costs compared to variable setup costs, the deterministic skele-
tons have more edges open. This is better in stochastic settings as it generally provides
more paths and connections in the networks. As a consequence, if deterministic models
are run using expected capacities rather than maximal (installed) capacities, they produce
better skeletons, since, from a deterministic perspective, using expected capacities effec-
tively increases the variable setup costs relative to the fixed setup costs.

The paper points out that correlations again have important effects on the structure of
the designs. With uncorrelated edge failures, flexibility comes from more edges in the
design, while for positively correlated edge failures, the flexibility is to a larger extent
based on higher installed capacities. The thesis also finds that loops are predominant
in the designs as they provide two connections between any pair of nodes in the loop,
and provide consolidation effect as in the deterministic situation. The paper contributes
by saying that deterministic skeletons do better for stochastic edge capacities than for
stochastic demand as flexibility comes from more connections rather then consolidation.

Suggestions for further research

The thesis has given us a good understanding of what happens to network structures when
we see randomness in demand or in capacities on the edges independently. So the natural
next question to answer is what will be the network structure when both demand and ca-
pacities on edges are random at the same time? The interaction of these two will certainly
have affect on the way flexibility is achieved in the network as compared to what we have
found. This should definitely be the next step in the future work.

We started with the goal that our results should help to find better heuristics for solving
difficult stochastic network design problem. This can be another direction of research, to
put into real use what we have found in this thesis.

In the Papers 2 and 3 we assumed that networks had to be designed to handle demand
uncertainty. But there is another approach to manage these uncertainties – by managing
demand using price mechanisms. So another line of progress in this research will be to see
how a network behaves in the stochastic demand situation by introducing the management
of demand by price mechanisms. Will the way flexibility comes about be considerably
different as compared to what we have observed?
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Paper 1 introduces a new concept of handling infinite horizon stochastic problems. It
would be interesting to see if this approach can be used also for other problem classes.

The papers
This section lists the four papers constituting the thesis. For each paper, the contributions
of the different authors are stated along with a description of how the paper evolved. We
also give information on the publication of the papers and list conferences and workshops
where materials from the papers have been presented.

Paper 1 – Using inventory to handle risks in the supply of oil to Nepal
This paper is co-authored with my supervisor Stein W. Wallace and co-supervisor

Michal Kaut. This work first focused on vehicle routing problems under uncertainty faced
by Nepal Oil Corporation (NOC). However, with a change in government policy, the
problem of vehicle routing no longer remained a part of NOC, and this brought us to a
meeting with the authorities of NOC. Top managers from NOC, Stein W. Wallace and I
then discussed the problem presented in this paper. The conceptualization of the problem
and the building of the stochastic model was done by me under guidance from my main
supervisor. Michal Kaut later provided input to this model. The approach of looping back
the network comes from my supervisor, whereas I am solely responsible for describing
the scenarios and collecting the relevant data in the field. Since this was the first time the
loop back method was used to represent the infinite horizon problem under steady-state
uncertainty, the model was gradually improved and adjusted to represent the problem in
hand. This was the most tedious and time consuming process which was fully supported in
the form of continuous discussion by my co-supervisor Michal Kaut. All implementation,
testing and analysis was done by me with some valuable guidance from Michal Kaut,
especially in graphical presentation. The major part of the writing was done by me, but
my supervisor polished the language.

This paper is published in the International Journal of Business Process and Supply
Chain Modelling in 2009. A previous version of the paper is published in the Conference
Proceedings of the 12th HKSTS International Conference, Hong Kong, 2007. The pa-
per with focus on the problem description was presented in the 2nd Nordic Optimization
Symposium, Oslo, 2007 and with focus on computational methods and results was pre-
sented in The 12th HKSTS International Conference, Hong Kong, 2007.

Paper 2 – Single source single-commodity stochastic network design
This paper is co-authored with my supervisor Stein W. Wallace, and co-supervisor

Michal Kaut and Teodor G. Crainic. The motivation for this paper was from my previ-
ous paper. The development of the next three papers started with a conceptual discussion
with Stein W. Wallace and Teodor G. Crainic during my visit to the Centre for Research
on Transportation, Université de Montréal, Montreal, Canada. The development and set-
ting up of the model was done by me in consultation with Stein W. Wallace. He has
contributed in conceptual discussions on the methodology. The selection of test instances
and adjustment of parameter values are done by me in continuous discussion with my
co-authors. The test instance ‘Molde’ is generated by me. The implementation, testing,
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and analysis are done by me in consultation with my co-supervisor Michal Kaut, who
also has been responsible for scenario generation. Scenario generation, critical for this
thesis, has throughout been based on earlier work by my supervisors. The observations,
which constitute the main contributions of the work, are all mine. With guidance from
Teodor G. Crainic on the structure of the presentation, most of the writing is done by me
and improved by Stein W. Wallace. Two anonymous referees have also helped to achieve
more clarity in the paper.

The paper has been conditionally accepted in Computational Management Science, a
special issue on Optimal Decision Making under Uncertainty. The paper with a slightly
different focus was presented by Stein W. Wallace at 20th International Symposium on
Mathematical Programming Chicago, 2009.

Paper 3 – Single-commodity stochastic network design with multiple sources and
sinks

The paper is co-authored with Teodor G. Crainic, Michal Kaut and Stein W. Wallace.
The development and setting up of the model is done by me with some assistance from
Michal Kaut. I had continuous discussion with all my co-authors regarding the focus of
the paper. Updates to the methodology used in the previous paper were done by me. The
implementation, testing and the analysis are also done by me. The observations which
constitute the contributions of the paper, are all mine. Most of the writing is done by me
and improved by Stein W. Wallace. The paper has improved much as a results of critical
comments by Teodor G. Crainic.

The paper is selected for presentation in Seventh Triennial Symposium on Transport
Analysis, Tromsø, Norway in June, 2010. The paper with a different focus was presented
by Stein W. Wallace at 20th International Symposium on Mathematical Programming,
Chicago, 2009. It is submitted to a peer-reviewed international journal.

Paper 4 – Single-commodity network design with random edge capacities
The paper is co-authored with Teodor G. Crainic, Michal Kaut and Stein W. Wallace. I

had continuous discussions with Stein W. Wallace and Teodor G. Crainic regarding how to
define the problem as that had a major effect on the focus of the paper. There was a natural
tendency to follow the telecommunications formulation of k-connected networks, but we
decided to include a broader range of problems by seeing edge capacities as random
variables and looking at expected costs. The development and setting up of the model
was done by me. The selection of test instances and adjustment of parameter values are
done by me in continuous discussion with my supervisors. The implementation, testing,
and the analysis in the paper are also done by me. The development in methodology, as
compared to previous papers was my contribution. Michal Kaut again provided valuable
input on generating the scenarios used in the numerical analysis. Most of the writing is
done by me with Stein W. Wallace polishing the final manuscript.
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Using inventory to handle risks in the supply of oil
to Nepal

Biju Kr. Thapalia∗ Stein W. Wallace† Michal Kaut‡

Molde University College, P.O. Box 2110, NO-6402 Molde, Norway

30 November 2008

Abstract

Nepal’s unique geographical features, frequent political disturbances, strikes, a
limited and complicated road network, frequent road breakdowns, government inter-
ventions as well as a volatile international oil market make the supply chain of Nepal
Oil Corporation (NOC) rather unique. We analyze different risks in the NOC supply
chain and discuss what can be done to find inventory strategies that handle these risks
without a particular focused on one specific scenario.

Keywords: Supply Chain, Stochastic programming, Uncertainty, Linear program-
ming, Inventory

1 Introduction
Nepal Oil Corporation (NOC), established by the Nepal government in 1970, is a pub-
lic enterprise to import, store and distribute petroleum products in the country. NOC
maintains monopoly in this market. Nepal being a landlocked country, the entire oil pro-
curement is done through India.

Earlier, the supply of oil to Nepal was handled, in a rather random fashion, by a
few private companies. To regulate these unplanned purchases as well as the resulting
distribution, the Nepalese government established NOC. This monopoly state of NOC
was not created to make profit but to have effective distribution at reasonable prices for
the customers. We can see this from the losses it has suffered when oil prices increased
in the last decade. NOC has over the last five years accumulated a loss of 12 billion
rupees (approx 300 million US Dollars). The government has decided to extend loans
of 1.7 billion rupees on its guarantee to NOC to pay dues to the Indian supplier. As of
June 2007, http://ekantipur.com estimated that NOC owes 4.5 billion rupees to
the Indian Oil Corporation (IOC) . Long queues in front of petrol pumps have become
∗Biju.K.Thapalia@hiMolde.no
†Stein.W.Wallace@hiMolde.no
‡Michal.Kaut@hiMolde.no



a common phenomenon in Kathmandu and in the rest of the country, which is of more
concern to the government and to the general customers, than NOC’s losses.

Oil being a sensitive product, NOC finds it difficult to operate efficiently due to gov-
ernment interventions. Pricing and procurement are political and bilateral issues, which
are dictated by the government and the bilateral agreement between Nepal and India. The
major job in NOC is that of operational activities which includes storing and distribut-
ing oil products. NOC sees possibilities of improving its performance by managing the
operational activities of its supply chain in a better way.

The country’s unique geographical features, frequent political disturbances, strikes,
limited and complicated road network, frequent road breakdowns, government interven-
tions and a volatile international oil market make this supply chain a very complicated
one. A study of NOC’s distribution network motivated us to better understand the risks
and uncertainties associated with the supply chain and how these can be managed. We
shall focus on how long-term inventories can be used to manage the risks. This way
of management, being rather standard in general, is particularly involved for a company
consistently short on foreign currencies.

The paper is organized as follows. The next section explains the supply chain of NOC
and the major players in this network; the third section deals with risks in a supply chain.
The fourth section dwells on a linear programming formulation of NOC’s distribution
problem and its possible extensions. The fifth deals with a stochastic version of the model
and the scenarios are discussed. The sixth section explains the result of the optimization
problem while, finally, the seventh section is the conclusion of the paper.

2 NOC’s supply chain and its distribution network
The supply chain for oil distribution in Nepal is unique in the sense that there are not
many players and levels in this network. The focal company in this analysis does not have
full control of the complete supply chain, as it is heavily dependent on the agreement
between India and Nepal at government level and many other external parties. NOC, our
focus company, can only increase its efficiency by taking what is given and optimize the
network from there. The paper focuses on the distribution network between the refineries
and depots of the IOC and the depots of NOC.

2.1 The players in NOC’s supply chain
The supply chain starts with the International market where crude oil is bought. The
oil market is among the most volatile commodity markets and is extremely sensitive to
international events. Over the last decade, the international prices have increased from
about 18 dollars to around 140 dollars per barrel, and then dropped to the present level of
about 50.

The Indian Oil Corporation buys crude oil and processes it into products. NOC im-
ports oil from refineries/depots of IOC situated at different places in India. IOC deter-
mines prices for the oil products that include costs of crude oil at Kolkata port, the trans-
portation cost to the refineries and the refining charges. In particular the refining charges
are negotiable. NOC has 12 depots in Nepal with total storage capacity of around 70300
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kilolitre. Presently NOC fills only 15 to 18 percent of the full capacity due to its financial
constraints. This covers just a few days of consumption. Nearly 1200 trucks, owned by in-
dependent transport companies, are on contract to distribute the oil products. Most of the
trucks are under trucks associations, which are mostly at regional level, and they do not
like to operate outside their own regions. There are approximately 1900 independently
owned distribution points throughout the nation. These points cater to the customers’
demand of all oil products except aviation fuel. Aviation fuel is distributed directly by
NOC. This network of distributors makes it possible to reach the end customers of NOC.
A population of around 27 million, all dependent on oil in some form, directly or indi-
rectly, puts a lot of pressure on this supply chain. Present total demand of oil products per
year is around 0.8 million kilolitre. Sixty-five percent of the total demand originates from
the Kathmandu valley. Overall there is an annual growth rate of around 10 percent in the
demand for petroleum products. The network structure of the supply chain is illustrated
in Figure 1.

In Figure 1, refineries are owned by IOC and are situated at different places in India.
Presently NOC uses five refineries or depots of IOC to buy petroleum product. The trans-
portation of petroleum product from the refineries to different depots of NOC is done
using trucks. The depots in Nepal are served directly or via some of the other depots.
The eight most important depots will be in the focus of this study. Some of the depots
here act as transshipment points from which smaller sized tankers are used to the moun-
tainous regions. There are several road links between the refineries/depots and depots
situated in Nepal, but only few of these links are actually used. For an idea of the actual
road links between the depots of NOC, see http://www.lirung.com/map/map_
road/Nepal_Road_Map_e.html.

3 Risks in the distribution network
Supply chain thinking has become critical in today’s business environment. The distribu-
tion network, an element of the supply chain, creates links between two tiers of supply
chain members. Most of the time, these links are crucial for the success of a business.
Due to the dynamic nature of the business environment, there are lots of uncertainties
present in the network. Managers need to identify and manage the risks created by these
uncertainties that hamper the performance. The network is mostly analyzed from the
buyers’ point of view with ideas from marketing and network design, in terms of cost and
reach. One of the major issues in a network is the risk of failure. The risk to a network
is multi-faceted and cannot be captured with a single number, see March and Shapira
(1987).

There are three different types of uncertainty in supply chains: demand uncertainty,
supply uncertainty and technology uncertainty, see Davis (1993). These uncertainties
bring risk to the supply chain. The risk concept has been extensively studied in business
contexts and in all studies supply risk is regarded as one of the major risks—see Zsidisin
(2003). By studying the supply risk we capture most of the risk arising from the tangible
and intangible features of the supply chain.

Meulbrook (2000) defines supply risk as any type of risk that ‘adversely affects in-
ward flow of any type of resource to enable operations to take place’ whereas Zsidisin,
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Figure 1: Network structure. The circles denote the NOC depots in Nepal, while
the squares denote the IOC refineries. Note that the only low-lands in Nepal are
along the Indian border, the rest of the country consists of mountains and the
highly elevated Kathmandu Valley.

Panelli, and Upton (2000) define supply risk as ‘the transpiration of significant and/or dis-
appointing failures with inbound goods and service’. Zsidisin (2003), from case studies
with purchasing organizations involved in supply risk management, concludes that supply
risk can be defined as the probability of an incident associated with inbound supply from
individual suppliers or the supply market occurring, in which the incident results in the
inability of the purchasing firm to meet customer demand or causes threats to customer
life and safety.

Most research work on optimization of networks has focused on uncertain demand,
but very few have analyzed uncertainty from the supply side. This paper analysis risks
due to such as random supply and arc failures.

The network facing NOC has both intangible and tangible features. The intangible
features are the political relation between the governments of India and Nepal, the inter-
national political scenario, the bargaining power of Nepal with India, and Indian foreign
policy towards Nepal. The intangible features of a network are difficult to examine and
influence, see Harland, Brencheley, and Walker (2003), but still have profound effects on
design decisions and performance of the network. We see that changes in the government
and/or managers, change the relation between the management and the government which
again affects the decision making style. The tangible features are examinable, but they are
also to some extent influenced by the intangible features of the network. Thus identifying,
defining, and assessing these risks properly for the given network will be a major task.
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The breakdown of a source point due to technical fault can be classified as technology
uncertainty. In the given case the breakdown in refineries (source point) will result in
disruption of supply so this may also be viewed as a source of supply uncertainty. In the
present case the breakdown of any part of the roads due to any climatic condition or man-
made situation can also be regarded as supply uncertainty. Also political or organizational
fallouts may result in blocking or restriction of supply from seller to buyer, which also
may be regarded as supply uncertainty.

NOC does not use any linear programming model to plan the supply chain but uses
their experience, basic ideas, and simple mathematics to calculate the figures required for
ordering, storing and transportation. This model, however, is built in cooperation with
NOC, and reflects their way of thinking. Data was also collected from NOC.

4 Modelling philosophy
There are of course many ways to handle the risks in NOC’s supply chain. Reducing those
risks that are fully or partly man-made will always have a major focus. Our thinking in
this paper is somewhat different. We shall focus on long-term inventory, and study how it
changes as the different risks (and other model parameters) change for whatever reason.
Inventory as a means of handling risks is particularly involved for a company like NOC
which is consistently short on foreign currencies, needed to purchase oil from India.

Obviously, the problem of inventory control while purchasing under a limited period-
by-period budget and random disturbances is an infinite horizon problem. The distur-
bances occur (mostly) independently of each other, and any disturbance can occur at any
point in time. As it stands, this problem is not very well suited for stochastic program-
ming. However, we must remember that our main issue is long-term inventory control.
That is, we would like to understand how inventory should be controlled when everything
runs smoothly in expectation of some disturbance. The expectation is that as the proba-
bility of disturbances increases, optimal inventory increases, increasing capital costs. So
we expect to see the standard trade-off between inventory costs and shortage costs. But
the setting is rather different from a simple inventory model.

We shall first make the somewhat common assumption that only one disturbance can
occur at any point in time. Or in other words, that the probability of two disturbances
occurring at the same time is so low that we can disregard it. In our case, this assumption
is critical.

The present model is not an operational model but rather represents a way to explain
the effects of the different random disturbances on long-term inventory. Figure 2 illus-
trates our modelling. The idea in the model is that we introduce all random events at a
particular point in time (arbitrarily denoted 0). At that point inventories and whatever
parts of the supply chain that are still working, are used to supply customers. When the
events are over, inventory levels must be brought back to their long-term levels (which
are our main variables) within time t1. Thereafter follow t2 periods of no disturbances.
The t2 periods represent where the model will carry the inventory, anticipating the ran-
dom events. This is the core of the model – carrying inventory in expectation of some
disturbance. The longer t2, the less likely is an occurrence. As there is also a scenario
representing “no disturbance” we have two ways of representing the intensity of distur-
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Figure 2: Illustration of events with known and random durations (solid lines),
the scenario of no events (dashed line), the period of inventory adjustments (dot-
ted lines), the period of carrying inventory in anticipation of an event (dashed
line), and finally the loop.
Event 1 has a known duration, while the duration of Event 2 is stochastic: it has
a probability of 40% to finish earlier and 60% of lasting longer then Event 1.

bances: the choice of t2 and the probability of the no disturbance scenario. After the
model reaches time T = t1 + t2, we loop the model back to the start. This way of loop-
ing back can be useful in stochastic models, see for example Lium, Crainic, and Wallace
(2007).

So we shall end up with a three-stage stochastic programming model. First stage
variables shall be inventory levels in periods of no disturbance, second and third stage
variables are all others. Third stage variables are associated with events with random du-
rations (like Event 2 in Figure 2). We could have let also transportation and purchasing
decisions be first stage in the same periods, but have chosen not to: there might be prob-
lems of stability of those variables around the end points of the stable periods, and our
focus is in any case on the long-term (first-stage) inventories.

It is important to note that the second and third stage variables do not in principle
represent operational decisions that can be implemented. The model’s sole focus is on
inventories in stable periods. And even more obviously: The elapse of time in the model
does not represent the actual flow of time. We believe this formulation of a three stage
model for an infinite horizon problem to be a major contribution of this paper. Of course,
the approach works as well for pure two or multiple stages depending on the branching
structure of the events.

So we conclude this section by repeating the relationship between our problem un-
derstanding and our model. In reality, events occur at random points in time, but with
known frequencies (data is available for many of the events). Whenever one occurs, NOC
does its best to supply the country with oil using inventory and those parts of the supply
chain still functioning. As soon as the event is over, NOC will try to recover the chosen
inventory levels. Those inventories will then be carried until the next event starts. So we
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see that the less likely the events, the more costly the inventories (in the sense that they
are more rarely used). In the model, the quiet period of length t2 (as well as the no-event
scenario) represents when NOC waits for the next event. In the model it is known when
the events occur. But the model is not allowed to take that into account since we force in-
ventories to be carried at stable levels throughout the quiet period. Once an event occurs,
the model will try to supply oil by using inventories and whatever of the supply chain is
working. Then, after the event is over, the model forces a rebuild of the inventories, so
that they reach the inventories of the stable period by time t1. Hence, the major variables
– the inventories – function the same way in the model as in reality. They are kept in an-
ticipation of events when all is quiet, and used whenever an event occurs. The assumption
of no two events taking place at the same time is needed for this modelling to work. In
this case this is a reasonable assumption.

5 LP formulation

We formulate the present distribution philosophy of NOC as an LP. This formulation looks
into the distribution of oil products from up to five refineries of IOC in India to a number of
depots of NOC in Nepal. The objective function minimizes the overall cost of distribution,
inventory and penalties for non-delivery. Following present practice, we always source a
depot from the nearest refinery. Since not all refineries deliver all products, a given depot
might be sourced from several refineries, but there will never be two refineries sourcing
the same product to a given depot. Purchasing of products takes place in USD. Since
the Rupee is not convertible, NOC cannot transfer any amount into USD. So instead of
having a total budget for all activities, or at least minimizing total costs, we have chosen
to minimize costs that occur in Rupees under two major constraints: The availability of
USD for purchasing and a requirement that the budget is fully used for purchasing.

We start with a basic LP formulation of the problem when everything is normal. It
is a kind of deterministic multi-period multi-commodity production and transportation
problem with inventory. To address the end-of-horizon problem, we present the model in
a circular fashion. This can be done in a simple way by letting the period following period
t be (t +1) mod (T +1) and the previous period (t +T ) mod (T +1), where 0, . . . ,T are
the time periods in the model.1 Since we develop the model in a circular fashion we need
not provide initial inventories. The model will itself find the appropriate inventory levels,
in fact, that is the purpose of the model. This way we avoid ending up analyzing the
build-up (transient) stage of the operation, which is quite different from the steady-state,
which is our focus.

Since NOC is short on foreign currencies, there will be rejection of demand. We
represent that by piece-wise linear penalties. It is crucial not to use simple linear penalties,
as that will result in unreasonable rejections, such as all demand in a given depot on a
given day rejected rather than rejections spread over depots and time.

The term “node” might need a brief explanation. In the deterministic version of the
problem a node represents all decisions associated with a specific time period (day in

1There seems to be a disagreement about the interpretation of a mod b if a is negative. Hence, we have
chosen to let the period preceding period t be (t +T ) mod (T +1) and not (t−1) mod (T +1)
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our case). Hence, if we start counting both nodes and time at zero, the time associated
with node n, denoted t(n) is always given by t(n) = n. For the stochastic model that will
change. We use n and t(n) also in the deterministic formulation to make the transition to
the stochastic model as easy as possible.

Sets
N Nodes
D1 Depots that can be reached from their nearest refinery in one day.
D2 Depots that can be reached from their nearest refinery in two days.
D Set of all depots; D = D1∪D2.
I Set of intervals for the piece-wise linear penalty for unsatisfied demand.

Input parameters
Hk Inventory holding cost per unit of product k per unit of time. As this

is mainly capital costs, it does not depend on j ∈D .
Cn

ik Unit cost of transporting product k to depot i (from its nearest refin-
ery).

cn
i j Transportation costs between depots i and j inside Nepal.

Pk Price of product k, measured in USD.
gn

ik Fairness factor (percentage of demand fulfilled) for each product at
each depot.

dt
ik Demand for product k at depot i at day t.

Mik Maximum holding capacity of product k at depot i.
B Budget in USD for buying products over the time horizon 0, . . . ,T .
U Total capacity of trucks available each day.
bl Lengths of intervals for the piece-wise linear penalty; l ∈I

Nik,l Coefficients for the piece-wise linear penalty for product i at depot k;
l ∈I .

t(n) The time of node n.
pa(n) Parent of node n, i.e. the node preceding it. To make the network

circular, we set the parent of the first node to be equal to the last node.
This will guarantee that t

(
pa(n)

)
=
(
t(n)+T

)
mod (T +1).

Decision variables (all depend on n, something that will not be repeated
throughout)

xn
jk Amount of product k transported to depot j. We use preprocessing to

determine which refinery will be used. Hence there is no “from” index
on x.

wn
i jk Amount of product k sent from depot i to depot j (both within Nepal)

zn
ik End-of-day inventory of product k at depot i.

qn
ik Sales of product k at depot i.

rn
ik,l Rejected demand of product k at depot i, corresponding to the l-th part

of the piece-wise linear penalty; l ∈I .
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Then solve

min∑
k,n

(
∑

j
Cn

jkxn
jk +∑

j
Hkzn

jk +∑
i j

cn
i jw

n
i jk +

3

∑
l=1

N jk,l ∑
j

rn
jk,l

)
(1)

Subject to

1D1( j)xn
jk +1D2( j)xpa(n)

jk + ∑
i∈D

wn
i jk + zpa(n)

jk = qn
jk + ∑

i∈D
wn

jik + zn
jk ∀ j,k,n (2)

∑
j∈D

∑
k

(
xn

jk +∑
i

wn
i jk

)
+ ∑

j∈D2

∑
k

xpa(n)
jk ≤U ∀n (3)

qn
jk +∑

i
wn

jik ≤ zpa(n)
jk ∀ j,k,n (4)

qn
jk +

3

∑
l=1

rn
jk,l = dt(n)

jk ∀ j,k,n (5)

qn
jk

dt(n)
jk

≥ gn
jk

∑m∈N pm ∑i∈D qm
ik

∑m∈N pm ∑i∈D dt(m)
ik

∀ j,k,n : dt(n)
jk > 0

(6)

∑
n, j,k

Pk xn
jk = B (7)

zn
jk ≤M jk ∀n, j,k (8)

xn
jk,w

n
i jk,q

n
jk,z

n
jk ≥ 0 ∀n, i, j,k (9)

0≤ rn
jk,l ≤ bl dt(n)

jk ∀n, j,k, l ∈I (10)

Here the objective function (1) is the financial representation of the operational activ-
ities; the first component is the cost of transporting oil products to the different depots,
the second component is holding costs at different depots (mostly capital costs); the third
component shows the inter-depot transportation costs and the last term describes the cost
associated with rejecting demand.

Constraints (2) maintain the flow of products in the depots. Here, 1A(x) denotes the
indicator function of set A, i.e. it is equal to one if x ∈ A and zero otherwise.

Constraints (3) enforce truck capacity. Here the first part is the truck capacity utilized
for all trucks staring out that day, be that from a refinery or a depot. For depots two days
away from the refineries we have a second part representing the previous day’s purchases
which are on the way.

Constraints (4) say that oil sent to other depots plus oil sold to customers must come
from inventory. In other words, the incoming volumes xn

jk and wn
i jk cannot be used the

same day they arrive—for example because they arrive in the evening.
Constraints (5) make sure that sales plus rejections add up to demand. Since the

rejections are non-negative, it also ensures that the sales do not exceed the demand.
Constraints (6) make sure that we overall treat all depots fairly. Note that the numer-

ator of the fraction in the right-hand side is equal to the total expected sale of product k,
while the denominator is equal to the total demand for the product. Hence, the constraint
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says that if we satisfy on average p% of the total demand for product k, then we must
satisfy at least gn

jk p% of the demand in each depot j and node n.
Constraint (7) shows the limited budget available to NOC to purchase oil from India.

This budget is available in foreign currencies. We use equality as we know that the budget
is always too low to satisfy all demand. As this is a cost minimization model, this is
our way of expressing that all sales are worthwhile. These constraints, combined with
conservation of flow (2), make sure that all we buy is sold, nothing ends up permanently
in inventory. In reality prices vary a bit over refineries. However, had we included that
in the model, we would have ended up with a difficulty. Since the NOC budget is not big
enough to cover all demand, the model would buy as much oil as possible in order to avoid
penalties for lost demand. And that would mean buying from the cheapest refinery before
re-distributing it all over Nepal. This would take place as long as the extra transportation
and inventory costs did not outweigh the saved penalties, which they would not in the
base case. To avoid this, which certainly does not describe reality, we use prices Pk which
do not vary over refineries, and instead include the differences between depot prices as a
part of the transportation cost Cn

jk. This eliminates the problem.
Finally, constraints (8) guarantee that the depots will not exceed their holding capac-

ities, constraints (9) insure non-negative decision variables and constraints (10) limit the
size of the rejections.

6 Stochastic LP formulation
The model we develop in this section is a stochastic multi-period model representing the
steady-state of the operation. We use scenarios as outlined in Figure 3, which is a specific
case of the more generic Figure 2. Note that because of the looping-back, it is technically
not a scenario tree. We will, however, still use some of the scenario-tree terminology and
call the nodes in the period before the converging nodes leaves, even if technically they
are not.

At this point we might want to properly define our first-stage variables. Focus then on
node 260: whatever is the inventory level in node 260 is also enforced during the quiet
period (nodes 261 through 269, as well as in the no-disturbance scenario: nodes 0 and
114 to 133). Further, the same inventory is enforced in all leaf nodes. The idea is that
after an event is over, the scenario is given some time to recover from the event, bringing
inventories back to “normal” (i.e. that of node 260).

However, a problem occurs here as a result of the chosen modelling approach. Within
a scenario, but after the event is over, the model “knows” there will be no disturbances.
Hence, it brings inventory down to a minimal level for a while, and then builds it up in
time for its leaf node. This does not reflect reality. Hence, we have added another set of
nodes that must have the same inventory levels as node 260. These are found, to some
extent by trial and failure, by making sure that each scenario has enough time (but not
more than that) to rebuild inventory. Our first stage variables are the inventories in all
nodes where inventory is forced to be equal to that of node 260.

Event durations and starts of the fixed-inventory periods for each scenario are given
in Table 1, both in terms of time and node numbers. From the table we can, for example,
read that the event in the third scenario starts in node 41 in period 1 and ends in node 44
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Figure 3: Scenario tree used in the numerical tests. Nodes without displayed
numbers are numbered consecutively from the previous given number. Cir-
cles/ellipses represent nodes with an ongoing event, octagons and diamonds
the recovery nodes and finally rectangles represent the normal nodes, i.e. nodes
where the inventory is fixed to the steady-state level.

in period 4. After that, the scenario is given 3 periods to recover from the event, before
it is forced to have the steady-state inventory from node 47 at time 7. If we combine
information from the table with Figure 3, we can see that scenarios 10 and 11 start as one,
in node 174. The difference is that in scenario 10, the event ends in node 180 in period 7,
while in scenario 11 it continues up to period 12. This means that the two scenarios differ
from period 8 onwards, as we can see in Figure 3.

At this point, we are ready to present the stochastic model. Since most of the notation
is the same as in the deterministic case, we only present the extra things needed for the
stochastic case:
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Table 1: Information about the scenario events. For each scenario, the table
shows information about the start and end of the event, plus the start of the en-
forced normal (steady-state) state. The information is presented in terms of time
and nodes—node that we do not show the time of the start of the event, as they
all start in the first period (t = 1).

Scen. Time Nodes

No. Code Ev. End Nor. Start Ev. Start Ev. End Nor. Start

1 R2 5 8 1 5 8
2 R4 2 3 21 22 23
3 R3 4 7 41 44 47
4 R1 7 12 61 67 72
5 R5a 7 12 81 87 92
6 R5b 14 19 81 107 112
7 N . 0 114 . 0
8 R6 15 20 134 148 153
9 S1 15 20 154 168 173

10 P1a 7 10 174 180 183
11 P1b 12 16 174 198 202
12 P2a 7 10 207 213 216
13 P2b 10 14 207 229 233
14 P3 7 11 240 246 250

τ Root node, i.e. the node just before the start of the event. This is node 0
in Figure 3.

α Converging node, i.e. the node where all scenarios converge. This is
node 260 in Figure 3.

L Set of leaf nodes, i.e. the nodes just before the converging node; L ⊂
N . In our case, these are the nodes at t = 20.

C Set of control nodes, i.e. the nodes where inventories must be the same
as in node α; C ⊂N . Note that these steady-state inventories are our
first stage variables, as just outlined.

pn Probability of node n.
S Set of scenarios, i.e. paths from the root to the final node (node 269).

The probability of a scenario is given by the probability of its leaf node.
Ns Set of nodes belonging to scenario s ∈S . Note that a node can belong

to more than one scenario; in particular, {τ,α} ⊂Ns for all s ∈S .

The objective is then to solve

min∑
n

pn ∑
k

(
∑

j
Cn

jkxn
jk +∑

j
Hkzn

jk +∑
i j

cn
i jw

n
i jk +

3

∑
l=1

N jk,l ∑
j

rn
jk,l

)
(11)
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0≤ rn
jk,l ≤ bl dt(n)

jk ∀n, j,k, l ∈I (22)

Here the objective function (11) is the financial representation of the operational ac-
tivities; it is the same as in the deterministic model except for the obvious addition of
probabilities. Constraints (15), (16), (18), (21) and (22) are exactly the same as their
deterministic counterparts (5), (6), (8), (9) and (10).

For constraints that point one period back, we have to treat the converging node sep-
arately, since it does not have one given parent, but a whole set of parent nodes—the set
of leaves. In the model, these pairs of constraints share the same equation number, with
the converging-node variant having ‘c’ added to the number. Apart from this, these con-
straints remain unchanged from the deterministic case. In particular, constraints (12)–(14)
are the same as respectively (2)–(4).

The budget constraint (17) differs from its deterministic counterpart (7) in the sense
that we require it to hold for every scenario.
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The first constraints without any deterministic counterpart are constraints (19), which
take care of our first stage variables by forcing inventory in the control nodes to be equal
to the steady-state inventory. The set of control nodes includes all the nodes in the quiet
periods, the converging node, the leaf nodes, and those nodes where inventory would
otherwise dip to minimal levels as explained earlier.

Finally, constraints (20) make sure that purchases in the root node for depots which
are two days away from their refineries equal the average of the purchase in the steady-
state nodes of the model. This is included to make sure that extra-ordinary purchases are
not made on the day preceding the event. Such purchases would contradict the logic of
the model.

6.1 Random events

In this section, we discuss the different possible random events that may occur and then
present the scenarios used in our numerical tests. Note that the scenario names are the
same as in Table 1.

Among many possible uncertainties in the supply chain of NOC, we discussed a few
which occur with a reasonable frequency. Landslides often block road links between
depots. Another common event is strikes called by truck owners or drivers. This can
be isolated to a region or affect the whole system. Accidents may also block parts of
the network. Political disturbances have been a major reason for blocked road in recent
years. Again this can be local or affect the whole network. Breakdown of refineries is also
a source of uncertainties that NOC faces. We consider a few scenarios of these random
events for our analysis.

6.1.1 Scenarios due to road problems.

Scenario R1. The road link between Kathmandu and Amlekhganj breaks down due to
landslide for a week. Here the inter-depot transport to Kathmandu is affected from
Amlekhganj and Biratnagar. These are now routed through Birgunj. Also because
of this breakdown the supply to Kathmandu from Raxaul is via Birgunj.

Scenario R2. The road to Kathmandu closes down due to an accident for 5 day and
makes Kathmandu isolated from the rest of the country. In this scenario supply to
and all inter-depot movement from and to Kathmandu are stopped.

Scenario R3. The road link between Kathmandu and Amlekhganj breaks down due to
strike of truck drivers for 3 days. In this scenario the inter-depot link from Am-
lekhganj and Biratnagar is affected and now will be routed through Birgunj. Also
the supply to Kathmandu from Raxaul will be through Birgunj.

Scenario R4. The road link between Raxaul refinery and Amlekhganj depot breaks down
due to accident for 2 days. Here inter-depot movement is not affected and only the
supply to Amlekhganj is routed through Birgunj. In doing so the supply to reach
Amlekhganj takes two days instead of one day. To be able to model this, we have to
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let the sets D1,D2 depend on node n and change the appropriate part of constraints
(12) and (12c) to

1Dn
1
( j)xn

jk +1
D

pa(n)
2

( j)xpa(n)
jk .

Note the pa(n) index on the D2 set. This way, we can properly model the fact that
there is no delivery on the first day and two deliveries on the third day: the delayed
delivery from the second day of the break-down, and the one-day delivery ordered
on the third day.

Scenario R5. The road link between Biratnagar depot and Barauni refinery breaks down
due to flood for one or two weeks with equal probability. Since the Barauni refinery
supplies all products except ATF to Biratnagar, the new source for Biratnagar for
those products will be Raxaul, as this is the nearest refinery available.

Scenario R6. The link between Allahabad refinery and Bhairahawa depot breaks down
due to damage of a bridge for 15 days. Since Allahabad is the source for ATF
(air fuel), the breakdown affects the flow of ATF to Bhairahawa. Here the nearest
refinery or depot of IOC after Allahabad will be Raxaul and the route will be via
Birgunj.

6.1.2 Scenario due to refinery breakdown.

Scenario S1. Barauni refinery is down for 15 days. As Barauni is down, the next nearest
source point for Biratnagar is Raxaul.

6.1.3 Scenarios due to political disturbance.

Scenario P1. The link to the Kathmandu depot from Amlekhganj is down for one week
with a probability of 60 percent or down for 12 days with probability of 40 percent.

Scenario P2. The link to the Kathmandu depot from Amlekhganj is down for one week
or for 10 days with probability of 60 and 40 percent, respectively.

Scenarios P1 and P2 are structurally the same (only durations vary). This reflects the
importance of this link in connection with political disturbances.

Scenario P3. All the links to Biratnagar, Kathmandu and Pokhara depots are down for
one week. In this scenario these depots are not reachable from any other depots or
refineries.

Here we can see that when the scenarios R1, R2, R3, R4, R6, S1, and P3 occur we
know their durations and hence these scenarios can be represented in a fan structure. But
scenarios R5, P1 and P2 have random durations, and hence can be represented in a tree
structure. In total, we end up with the scenario structure presented in Figure 3.
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7 Computational Results

The model has been implemented using AMPL modelling language , and solved using
CPLEX. 9.0.0 on a 3 GHz PC with 1 GB of RAM. Solution times were mostly less than
2 minutes (the base case takes 10 seconds), with one case using 15 minutes, all with cold
starts, while warm starts would mostly take just a couple of seconds.

The cases we are about to present are realistic. However, our goal is not to provide
specific advice in a specific case, but rather to illustrate how optimal inventories depend
on different model parameters. We have used real data, collected on the ground in Nepal,
for transportation costs, inventory costs (mostly capital costs), truck capacities, network
structure, and demand. Our base case for the budget covers about 78% of demand (which
is reasonable), and we have used all fairness factor gn

jk the same and equal to 0.7.
For penalties, we have used three intervals with b= {0.12,0.20,0.68}. In other words,

the break points are at 12% and 32% of unsatisfied demand, which corresponds to the
average level of unsatisfied demand (100% - 78% = 22%) plus/minus 10%. Base case
penalties are such that penalties do not drive the solution, but enough to make sure non-
deliveries are evenly distributed (the non-deliveries which are not governed by the fair-
ness). This is the hardest parameter to set. We observe, though, that within reasonable
(and large) intervals, the sensitivity to penalties is low for the other parameters at their
base values.

Let us start by showing how total inventory develops over time (averaged over the
events) for our base case. It is shown in Figure 4. We have distinguished between inven-
tory (to be named technical inventory) that would be there even if there were no events at
all (caused by (4)), and what is added due to the events (hereafter called event inventory),
i.e. the inventory of interest for this paper. As can be seen, inventory is kept in expecta-
tion of events, then when events start, inventory drops, and is then rebuilt. Although not
shown in the figure, for each inventory, there is at least one event (scenario) for which the
event inventory goes to zero. If that had not been the case, we would have been keeping
inventory (at a cost) that was never needed, and that could not be optimal.
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Figure 4: Optimal inventory over time for the base case. The bottom part shows
technical inventory caused by (4) in the deterministic case, the top part event
inventory that we keep for the random events.
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7.1 Budget
Inventory is kept in anticipation of events and deliveries. If the budget is increased, we
can deliver more, and this will of course increase technical inventory as deliveries have to
come from inbound inventory. But also the event inventory will increase. This is simply
because the amounts to be handled during events have also increased. There are two
driving factors here, the penalties and the fairness. If deliveries in some important depot
drops substantially during an event, the piece-wise linearity of the penalties will force
inventory to prevent that from happening. But g also have some interesting effects. Some
of these effects can be found in Figure 5. In the left part g = 0.25, in the right g = 0.95.
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Figure 5: Steady-state inventory as function of budget for low and high g. Bud-
get is measured relative to our base case (corresponding to 1 on the horizontal
axis). The bottom part shows technical inventory caused by (4) in the determin-
istic case, the top part event inventory that we keep for the random events.

In the figure, we can see that for all but rather high budgets a low g yields higher
inventories than a high g. How can that happen? With a low g, deliveries are driven
mainly by costs and penalties, so some depots can be treated very badly. The effect is that
we supply mainly Kathmandu, as it has large demands and the highest penalties (except
for the first interval, where the penalties N jk,l are the same for a given product k over all
depots j).

This reflects that Kathmandu has more critical infrastructure than the rest of the coun-
try. As g increases, we are forced to supply also other depots, so the sales in Kathmandu
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go down. Now, because of its location and its status as the capital of Nepal, Kathmandu is
exposed both to the physical and the political disturbances—most of the scenarios harm
Kathmandu and/or its neighbours. As a result, Kathmandu needs the largest event inven-
tory relative to sales. Hence, as g forces more and more sales out of Kathmandu, the
overall inventory goes down.

These results are stable over penalty levels. The reason is that in all runs Kathmandu
has higher penalties than the other depots, whether the penalties are high or low, so the
qualitative arguments above hold. The objective function is of course dependent on the
level of the penalties, but the solutions are not. This was the intended effect of penalties.

The effects of g are reasonable. If fairness is given low importance, the pressures
from the major depots, caused by their importance, will guide the deliveries. Fairness is
therefore needed to reflect that NOC is not mainly there to make a profit, but to efficiently
distribute oil in a socially acceptable way.

7.2 Political unrest
The relationship between the level of political unrest and steady-state inventory illustrates
how the model prepares for the random events. This is illustrated in Figure 6.

We ran the model by increasing the probabilities for the political disturbances propor-
tionally and reducing equally that of the non-event scenario, keeping the probability of all
other types of risks fixed. We expected inventory levels to be monotonously increasing
with the level of political unrest. This is also what we observe, but the effect is very mod-
erate. Why is the curve so flat for all but the lowest probabilities? The reason is that most
of the event inventory is driven by fairness (which acts as a constraint) and penalties. The
fairness aspect does not depend on probabilities: the nodes are treated equally irrespec-
tive of their probabilities (except when zero). Penalties are of course more serious when
probabilities are high, but the effect is marginal as the relative sizes of penalties are not
changed, only the level. The higher is g, the more this effect is true: as soon as events
exist and must be protected against, we act even if probabilities are low.

We are careful about using precise numbers here, as we are generally looking for
qualitative understanding. But even so, it is worth noting that already at 0.25% probability
of political unrest, the event inventory increases by 58% (from 1477 to 2336), compared
to the case without any political risk. And for 16% risk, the event inventory is up 107%
(from 1477 to 3060).

Conclusion
We have formulated, solved, and analyzed the problem of distribution and inventory man-
agement in an infinite horizon problem with random disturbances in the flow network. A
unique modelling approach is used to find the optimal inventory positions. It is based on
looping the network back on itself and changing the time line so as to create a three stage
model out of what is, in reality, an infinite horizon problem.

The present approach is unique in the sense that it can incorporate any type and in-
tensity of disturbances in the flow network and can show their affect on the steady-state
inventory positions.
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Figure 6: Steady-state inventory as a function of the probability of political
unrest. The bottom part shows technical inventory caused by (4) in the determin-
istic case, the top part event inventory that we keep for the random events. The
smaller figure to the right presents a detail view of probabilities close to zero.
We can see that already at 0.25% probability, the inventory reaches a level that is
sufficient for probabilities up to 10%.

Our numerical test results from Nepal show that management can get useful insights
into the steady-state inventories to be maintained during normal periods in anticipation
of random events. Also this approach may be used for analyzing the effects of any new
plans, like adding a pipeline or a new road link, to the existing flow network.
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Abstract

Stochastics affects the optimal design of a network. This paper examines the
single-source single-commodity stochastic network design problem. We characterize
the optimal designs under demand uncertainty and compare with the deterministic
counterparts to outline the basic structural differences. We do this partly as a basis
for developing better algorithms than are available today, partly to simply understand
what constitutes robust network designs.

Keywords: Single-commodity network design, Stochastic, Correlation, Robust-
ness

1 Introduction
There are many real-life problems that can be described as network flow problems and for
most (if not all) of them there is an underlying design problem. The purpose of this paper
is to study the relationship between the stochastic and the deterministic single commodity
network design problem, all the time under the assumption of a single source.

The traditional approach to network design is to formulate deterministic models. The
demand is usually set to its expected value or sometimes some other, somewhat higher,
value, to cater for “normal variation”. In almost all cases, it is understood that the de-
mand is actually stochastic, but the handling of stochasticity is deferred to the operational
planning level. The reasons for doing so can be many: computational complexity even
of the deterministic network design model; a view that modeling wise, we know too little
about demand while still being at the network design level of the planning; or simply that
it is appropriate to postpone such details of the plan. After all, the goal is to set up the
network, not decide how to route the flow.
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†Norwegian University of Science and Technology (NTNU), Trondheim, Norway
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The question we ask here is: For the single-source single-commodity stochastic net-
work design (SSSND) problem, how much do we lose by not taking stochasticity in de-
mand into account already at the design level? Could it be that the design coming from
a model which is explicitly told that the future demand is uncertain is substantially better
than a design not based on this knowledge? Given the distributional information used in
the stochastic formulation, the design coming from the stochastic model will by defini-
tion be better (measured by the objective function) than the design from any deterministic
model. Of course, if the distributional information is substantially incorrect, a determin-
istic design might (by chance) behave better in the real world. That, however, is not the
focus of this paper. Rather, what we are interested in is, given distributional informa-
tion, how much better is the stochastic design, and even more importantly: In what way
does the stochastic design differ from its deterministic counterpart, that is, what is it that
makes one design better than the other? We know it is related to investment in flexibility,
see Wallace (2009) for a discussion in the framework of option theory, but we would like
to know rather precisely what this investment in flexibility consists of. And conversely,
we are also interested to see if some structures from the deterministic design actually
carry over to the stochastic counterpart.

We thus study the structural difference between the deterministic and stochastic for-
mulation to better understand the phenomenon of investing in flexibility. We also hope to
use the results to develop algorithms to solve the problem approximately (for large cases)
or potentially to optimality (for moderate cases).

Our work is related to that of Lium, Crainic, and Wallace (2009). They study the
multi-commodity problem (and hence have several sources and several sinks for the flow).
They identify two major structural differences: In the stochastic solution it is valuable to
have several paths for each commodity and each of these paths should be shared with
other commodities. Sharing is particularly useful in the case of negative correlations be-
tween demands. Without enforcing consolidation, their networks end up as consolidation
networks, often hub-and-spoke. Contrary to conventional deterministic design, consolida-
tion is a hedging device, not a volume related undertaking. Hence, they identify structures
that can be seen as investments in flexibility, that is, options, along what is discussed in
Wallace (2009). Deterministic models would not produce such results.

We are studying the single commodity case. And we are limiting ourselves to a single
supply node (or alternatively a single demand node). We chose to look at the single supply
node case in order to have a simpler (structurally speaking) problem, so that it is easier to
see what structures emerge in the solutions.

From a linear programming perspective, single commodity flow problems are simpler
to solve than multi-commodity flow problems since classical network flow algorithms
can be applied directly, see for example Ahuja, Magnanti, and Orlin (1993). However,
this simplicity of the single commodity case in terms of flow problems does not carry
over to the problem we are studying: The structure of the designs. In fact, we believe
that single commodity design is structurally more complicated to interpret than the multi-
commodity counterpart. In the multi-commodity case, the commodities share edge capac-
ities, while in the single commodity case with a single source node, the different demand
nodes (which is the closest we can get to something that corresponds to a commodity in
the multi-commodity case), certainly share edge capacities, but also experience cancel-
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lation of flow. That is, if two commodities in the multi-commodity case need to use the
same edge, but in opposite directions, we must cater explicitly for both, while if the same
occurs for two demand nodes in the single-commodity case, flow cancellation occurs and
we must cater only for the difference. It is our experience that this cancellation of flow
increases the complexity of interpretation, and this is why we in this paper start with the
simpler single source case.

The use of network optimization occurs in many different fields. Production-distribution
systems, economic planning, energy systems, communication systems, material handling
systems, water distribution, traffic systems, railway systems, evacuation systems, and
many others use network optimization models. Aronson (1989) surveys applications of
network design problems in different fields. Most existing works are focused on the multi-
commodity case, whereas much less attention is given to the single-commodity setting.
This is, at least partly, caused by the assumption that single-commodity network prob-
lems are not very rich in applications. However, when we look into the single-commodity
network design problems, we see that this is not totally true. The single-commodity
network design problem is encountered in various applications, like the design of water
distribution system (Sherali and Smith, 1997), oil pipeline design (Hochbaum and Segev,
1989, Rothfarb, Frank, Rosenbaum, Steiglitz, and Kleitman, 1970), sewer network design
(Liang, Thompson, and Young, 2004), one-terminal telpak problems (Rothfarb and Gold-
stein, 1971), local access design problems in telecommunications networks (Hochbaum
and Segev, 1989), and feeder-bus network design problems (Kuah and Perl, 1989, Kuan,
Ong, and Ng, 2006), to name a few. The richness of the problem class also increases with
the transformation of certain multi-commodity network problems to a single-commodity
setting as discussed in Evans (1978).

The remainder of the paper is organized as follows. Section 2 explains the problem in
detail with its mathematical formulation. Section 3 explains the set-up of our experiments
and lists the computational results with discussions. Section 4 concludes the paper.

2 Problem description
Given a set of potential undirected edges connecting a set of nodes, one of which is the
supply node and the rest are demand and transshipment nodes, determine which edges
to open (including their capacities), such that the edges can carry flow from the source
node to fulfill the demand at the demand nodes. The design is based on minimizing
the sum of the fixed costs of selecting edges connecting the nodes, linear costs to open
capacities on the edges, per unit costs of flows on the edges, and per unit penalty costs
for not satisfying demand. Lack of satisfaction of demand could amount to using another
transportation mode, using the same mode, but delayed, using a competitor, or simply
rejecting the demand.

It is important to include the possibility of rejecting flow in the model. The main rea-
son is that reality dictates, except in extremely particular situations, that it is prohibitively
costly to build a network that can meet any possible demand—however unlikely it might
be. Deterministic models, operating on expected demand, may reasonably operate under
the assumption that (average) demand must be met. But even there, there will normally
be an understanding that some demand may end up being turned down in reality. When
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working with stochastic demand, there is also the problem that requiring demand to be
met turns the model into a worst-case model, where the worst-case in most cases is not
even well understood. So, in total, we find it crucial to include the possibility of not sat-
isfying all the demand. We use the same formulation also in the deterministic models, to
make the results comparable.

The stochastics in the problem arises in the form of demand uncertainties. It is rare
that demand is fully known when the design is determined, be it a distribution network or
a pipeline network.

This problem is formulated as a two-stage stochastic programing model where the
first-stage decisions are which edges to open, and which capacities to install. The second-
stage decisions are the flow decisions in the given network. The recourse actions, which
are performed in the second stage, are described by a penalty cost incurred for unsatisfied
demand.

In the deterministic case, the demand in each node is fixed at the mean demand for the
stochastic case. We do not discuss edge failures here, but leave that for a later paper.

2.1 Mathematical formulation
Let G = (N ,E) be a network defined by a set N of n nodes, where one of them is
a source node and rest are demand nodes and transshipment nodes, and a set E of m
undirected edges, where

E ⊂ {k = (i, j) : i ∈ N, j ∈ N and i < j} .

Each edge is indexed either by i, j or by k. We assume that supply equals demand in
all scenarios. The notation for the sets, parameters, and variables associated with this
problem is as follows:

Sets:
D set of all nodes with non-zero demand;
T set of all nodes with zero demand (transshipment nodes);
C singleton set containing the supply node so N = D

⋃
T
⋃

C ;
S set of all scenarios s .

Variables:
xs

k = xs
i j flow on edge k = (i, j) ∈ E going in direction i→ j, in scenario s ∈S ;

zs
k = zs

i j flow on edge k = (i, j) ∈ E going in direction j→ i, in scenario s ∈S ;
uk new capacity that is developed on edge k ∈ E;
es

i for i ∈D , this is the unsatisfied/lost demand in node i in scenario s ∈S ;
for i ∈ C , this is the unused capacity of source node i in scenario s ∈S ;

yk 1 if edge k ∈ E is developed, 0 otherwise.

Parameters:
M maximal arc capacity; used for linking capacities and open arcs in (4);
R unit cost of unsatisfied demand;
ps probability of scenario s ∈S ;
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ck flow cost on edge k ∈ E;
gk fixed setup cost for edge k ∈ E;
hk variable setup cost; the cost for adding one unit of capacity to edge k ∈ E;
vk initial/existing capacity on edge k ∈ E ;
ds

i demand (ds
i < 0) or supply (ds

i > 0) in node i ∈N in scenario s ∈S .

Our overall problem is hence:

min∑
k

gkyk +∑
k

hkuk +∑
s

ps

{
∑
k

ck (xs
k + zs

k)+R ∑
i∈D

es
i

}
(1)

Subject to:

∑
j:(i j)∈E

(
xs

i j− zs
i j
)
− ∑

j:( ji)∈E

(
xs

ji− zs
ji
)
=





0 ∀i ∈T ,∀s ∈S

ds
i − es

i i ∈ C ,∀s ∈S

ds
i + es

i ∀i ∈D ,∀s ∈S

(2)

xs
k + zs

k ≤ uk + vk ∀k ∈ E ∀s ∈S (3)
uk ≤Myk ∀k (4)
ds

i ≥ es
i ≥ 0 ∀i ∈D ; ∀s (5)

xs
k,z

s
k,uk ≥ 0 and yk ∈ {0,1} ∀k;∀i;∀s (6)

The objective function (1) minimizes the total expected cost of the network. The first
part is the costs of constructing the new edges, the second part, the costs of building the
new capacities, the third part, the flow costs through all the edges, and the fourth part is
the penalty costs of not fulfilling demand.

Constraints (2) model conservation of flow at nodes. The left-hand side is the net
outflow from node i, which must be zero for all the transshipment nodes i ∈ T and is
equal to the unused capacity for the single source node i ∈ C . For the demand nodes,
the net outflow must be equal to the satisfied demand; since ds

i is negative in this case,
the right-hand side is the difference between the scenario demand ds

i and the (positive)
unsatisfied demand es

i .
Notice that in an optimal solution, we will never have flow in both directions of an

edge, consequently Constraints (3) represent the flow limit on each edge. The left hand
side of the equation is the net flow on edge k which should be less then or equal to the
total capacity of the edge. Constraints (4) show that new capacity uk can be developed
only if edge k is built. Constraints (5) shows the bound for the rejection and, finally, (6)
ensure that all variables are non-negative and the edge construction variables are binary.

We model the problem in AMPL and solve it to optimality using CPLEX 9.0. The
solution times varied from few seconds to 18 hours depending on the case, on an Intel R©
CoreTM Duo running at 2.2 GHz with 3.5 GB of RAM.
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3 Experimentation and Computational Results
In this section, we begin by describing how we generate our random test instances, and
then present our computational results.

3.1 Test instance generation

We used six different type of network instances taken from two different libraries. The
first four instances, namely Atlanta, France, Nobel-EU, and Pdh are telecommunication
examples from the SNDlib1 library, with some modification to suit our problem’s needs.
The fifth instance was generated by us and named Molde and the sixth (Montreal) was
obtained from CIRRELT2, Montreal. The names of the instances as such do not mean
anything particular in this computational setup.

The Montreal test instance does not have node coordinates, so we used Graphviz3 to
draw the graph using fixed setup cost as distance measure. This resulted it in a non-planar
graph. The graphs of the test instances Atlanta, Nobel-EU and Molde are all planar.
From each of them, we created non-planar instances by randomly adding a few extra
edges. This gave us a total of nine problems. For each of the nine problems, we picked
3 nodes (2 in the cases of Nobel-EU nonplannar and Pdh) as possible source nodes, thus
creating in total 25 base test instances. These 25 different versions of the test cases are
presented in Table 1. Given the difficulty of solving the stochastic network design problem
to optimality, we kept n (the number of nodes) below 20 and m (the number of edges)
below 40.

Table 1: The list of different versions of the test cases used for computation.

Problem name alt. sources # nodes # edges # demand nodes

Atlanta 1, 2, 11 15 22 12
Atlanta nonplanar 1, 2, 11 15 29 12
France 12, 13, 16 16 29 13
Nobel-EU 1, 9, 12 19 28 16
Nobel-EU nonplanar 1, 9 19 32 16
Pdh 1, 2 11 30 9
Molde 2, 9, 14 15 30 12
Molde nonplanar 2, 9, 14 15 38 12
Montreal 5, 8, 10 10 29 7

Out of the three potential supply nodes (or two nodes for some problems), when one
of them is the source node, the other two (or one) are transshipment nodes. The possi-
ble source nodes are listed in the second column of Table 1. We know from the work of

1SNDlib is a library of test instances for Survivable fixed telecommunication Network Design, available
from http://sndlib.zib.de/.

2CIRRELT is an Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation
in Montréal, Canada, see http://cirrelt.ca.

3 Graphviz is an open-source graph-visualization tool, see http://graphviz.org.
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Lium, Crainic, and Wallace (2007) that correlations are important in shaping the structure
of the network. Hence, we further create 3 cases from each problem instance: one with
uncorrelated demands, one with positively correlated demands and one with mixed corre-
lated demands. In positively correlated demand case all correlations are set to 0.7 and in
mixed correlated demand case: the demand nodes are divided into two groups such that
each group contains about half of the nodes. All correlations within a group are set to 0.7,
while between groups we use−0.7. Thus we have in total 75 test cases. It is worth noting
that all the cases from the SNDlib and Montreal test instances are multi-commodity net-
work design problems, so not all parameters can be used directly by us. We only kept the
coordinates (where available) for the nodes and the fixed setup cost gk for the edges. The
values for the other parameters – variable setup costs hk and flow costs ck – are all chosen
proportional to the Euclidean distance between the node pairs. The cost of unfulfilled
demand R is selected with trial and error until we felt that it did not drive the solution in
an unreasonable way. We chose R so that we do not get more than 5% of total demand
rejected. Mostly we saw rejections around 2–3 percent. The results in the first part of
Section 3.3 are based on test cases with these cost structures. In the second part of the
section, we changed the fixed costs (as discussed in the Section 3.3) to understand their
relative importance.

In the absence of reference to a particular distribution representing the random de-
mand we chose to use normal distributions with mean equal to the deterministic demand
(from the underlying cases) and standard deviation equal to 25% of the mean to rep-
resent its stochasticity. As stochastic programs need discrete distributions to represent
the stochastics, we discretized the chosen distributions by creating scenarios each having
equal probabilities to occur. This process of creating scenarios to discretize the distribu-
tion representing the stochastics is known as scenario generation. We generated scenar-
ios using the moment-matching method from Høyland, Kaut, and Wallace (2003). This
method generates scenarios with a given correlation matrix and marginal distributions
specified their first four moments (mean, variance, skewness and kurtosis). Since we use
standard deviation equal to 25% of the mean, negative values happen with probability
0.000032, or 1 in 31574. Thus when we generate scenarios, the possibility of getting
extreme values are very low. But we have seen that when the mean value is a very small
positive number we might observe demands with the wrong sign, and if so, we manu-
ally replace them with zero. Thus, in practice, we use truncated normal distributions to
represent the stochasticity of demand.

The decision on the number of scenarios used to represent the stochastics is critical as
we want to be sure we study the effects of randomness on our model, and not some random
effect of the scenario generating procedure. There is a trade-off between the quality of
scenarios representing the underlying distribution reasonably well and the time needed to
solve the stochastic program to optimality. As we increase the number of scenarios, we
increase the quality of the representation of the distribution, but also decrease the chance
to solve the model to optimality within a manageable time. In our case, we generated
100 scenarios to represent the distributions as this gives us in-sample stability (solving
the same problem on a large number of 100-scenario trees gives only a 2% difference
between the highest and the lowest optimal objective-function values, except the case
‘Molde’ where it was 3.5%) and manageable solution times. For more discussion on this
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subject we refer to Kaut and Wallace (2007).

3.2 Comparison Tests

It is well known that, in general, the solutions from the deterministic versions of a problem
can behave rather badly in a stochastic environment. The reasons are outlined in some
detail in Wallace (2000) and Higle and Wallace (2003). If the scenario tree used when
solving the stochastic version of the problem is considered the “truth”, then, by definition,
the stochastic solution is always better than the deterministic one. But even though the
objective function values corresponding to deterministic solutions at times were extremely
bad, we seemed to observe that the structure of the deterministic solutions were retained
in the stochastic solutions (see Section 3.3), an observation that is not common. We
have thus devised three different tests to better understand the relationship between the
deterministic and stochastic solutions.

A The classical test where the deterministic solution is evaluated using the scenario
tree from the stochastic version of the problem. This amounts to solving the stochas-
tic program with all first-stage variables fixed.

B Only edge information is imported from the deterministic case, the fixed setup costs
gk being set to zero for the edges opened in the deterministic case, while all other
fixed setup costs are set to infinity (i.e. we do not allow these edges to be opened).
The stochastic model is then solved.

C The deterministic solution (both edges and capacities) is taken as an input to the
stochastic program. Then, for the stochastic program, these edges with correspond-
ing capacities are “free”. Both fixed setup costs gk and variable setup costs hk are
paid for the installed capacities. The stochastic program can then add new edges
(paying both fixed and variable setup costs) and new capacities on already opened
edges (paying only variable setup costs). No premium is given for not using capac-
ities opened in the deterministic case.

In all cases, for each of the comparisons, all costs are added up, both those inherited
from the deterministic solution and those incurred via the stochastic program. All costs
are therefore comparable.

The purpose of Comparisons B and C is to check whether the structure from the de-
terministic solution really is good for the stochastic case. By making edges from the
deterministic case “free” in two different ways, the stochastic program is guided toward
the deterministic solution. If this is not a good idea, the result will be a solution with
a behavior which is much worse than that of the stochastic program which has no de-
terministic input. Note that, while Comparison B also represents an alternative solution
procedure (use a deterministic model to determine which edges to open and then a con-
tinuous two-stage stochastic program to set the capacities), Comparison C does in itself
imply the solution of a problem of the same type as the original problem, albeit with some
discrete variables fixed.
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3.3 Inheritance from the deterministic solutions
We focus on the major findings, while details of the results are given in the appendix.
Our first need is to understand the relationship between the stochastic and deterministic
designs. We therefore perform Comparisons A, B, and C from Section 3.2. That is, for
all 25 deterministic cases, we solve the corresponding network design problem. Also,
we solve all 75 stochastic cases, representing the stochastic versions of the deterministic
cases (each with three different correlation structures).

Then, each of the 25 deterministic solutions are imported into its three stochastic
counterparts (three different correlation matrices). This is done for all three comparisons.
Figure 1 shows the results.
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Comparison A

Comparison B

Comparison C

Figure 1: Ratios of the expected value of the deterministic solutions (25 base test
instances) imported into the stochastic setting divided by the optimal objective
function value for the stochastic program, for all three comparisons.

The deterministic solution is rather bad in the stochastic environment, while inherit-
ing the structure seems to be rather good. For Comparison A, the deterministic solutions
have expected objective function values which are from one percent to almost 400 per-
cent higher than that of the stochastic counterpart. But Comparisons B and C show that
inheriting the structure of the deterministic solution is surprisingly good. Errors ranges
from 0% to 5%, and larger values are observed for the mixed and zero correlation cases.
This is not unreasonable since these are the cases where we see, to the largest extent, the
different demand nodes interact. We shall see more of that in Section 3.4.

We believe that a major reason for the somewhat surprising result that forcing the de-
terministic solution structures upon the stochastic program has so little effect is the fact
that we are studying the single source case. In that case, all demand nodes are supplied
from the same single node, which therefore becomes the root of a tree in the deterministic
case. Since the whole point of network design is the fixed charges (particularly the fixed
setup costs, but also the capacity costs) discouraging the opening of edges, this tree is also
useful for the stochastic case, although it might have preferred a slightly different one (the
stochastic solution must contain a tree rooted in the supply node). Hence, forcing it upon
the solution of the stochastic program is not too serious. Note that the deterministic solu-
tion itself is at times very bad. It is only after capacities have been adjusted (Comparison
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B) or new edges and capacities have been added (Comparison C) that the deterministic
structure is good in most cases.

Let us turn next to testing these results when we vary the way setup costs are dis-
tributed between the fixed setup cost gk and the variable setup cost ht . Let M be the
maximal capacity of an edge, as defined in our parameter list. For each of the 25 test
cases, we calculate for each edge Ck = gk +Mhk. Then we redistribute Ck in following
five different ways:

a Fixed setup cost 0.1% of Ck and variable setup cost 0.999Ck/M

b Fixed setup cost 5% of Ck and variable setup cost 0.95Ck/M

c Fixed setup cost 25% of Ck and variable setup cost 0.75Ck/M

d Fixed setup cost 50% of Ck and variable setup cost 0.5Ck/M

e Fixed setup cost 99.9% of Ck, and variable setup cost 0.001Ck/M.

All tests described earlier were performed for each of these five cases and results are
shown in Figure 2. We find that the deterministic solution is, as before, rather bad in
the stochastic environment (with errors up to over 400%), while inheriting the structure
is no longer as good as it was, in particular when the fixed setup cost is low and the
capacity cost is high. This is natural, since in that case, the cost of opening one edge
with a given capacity costs basically the same as opening two edges with the same total
capacity. Hence, the structures enforced upon the solutions in Comparisons B and C
become costly and make robustness more expensive to achieve. We see errors up to 18%,
which in most real terms is rather high, but not in comparison to the behavior of the
deterministic solution. The results seem little dependent on correlations.
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Figure 2: Ratios of the expected value of the deterministic solutions imported
into the stochastic setting divided by the optimal objective function value for the
stochastic program, for all three comparisons, taken over all ways to distribute
costs between fixed setup costs and capacity costs
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3.4 Structural differences

In Lium et al. (2009), some structures are observed for a multi-commodity case. These
structures are very general and applicable across many different parameter settings. We
were not able to find equally simple and general rules in the SSSND case and believe the
reason to be the structural complexity of flow cancellation. But we do observe differences
in design between the deterministic and stochastic formulations, which gives insights into
what constitutes a robust design. Hence, what we shall do in this section is to provide a
number of specific examples, all taken from the collection of problems in Section 3.1, and
show in detail how the stochastic solutions differ from their deterministic counterparts.
By doing so, we provide examples of how to think about flexibility in routing flow, and
hence robustness in design. That, after all, is the goal of this paper. This structural
knowledge can be used to develop heuristics as well as, and maybe more importantly, help
researchers and practitioners alike to understand how to look at a given design and check
its quality, even when no quantitative tool is involved. We want to develop a qualitative
understanding of a robust design for SSSND. Some of the results are “obvious”. Rather
than this being a problem, we view it as a very desirable property. It means that robust
designs are, at least structurally, not so difficult to understand.

Similarity

Let us first look at Figure 3 which covers two cases with uncorrelated demand where the
fixed setup costs gk are rather high. (Thick lines denote installed edges, with capacities
given by labels, while thin lines denote edges that are not installed. The supply node is
marked by a filled rectangle and the filled rounded nodes denote the demand nodes. The
rest, i.e. the unfilled nodes, are the transshipment nodes. This color scheme is followed
in all the subsequent figures.) The deterministic solutions are, of course, trees; we do
not necessarily have spanning trees due to the presence of transshipment nodes. These
trees are contained in the stochastic designs, but with different capacities. Generally, the
capacities are higher in the stochastic case to cater for the high-demand scenarios. To
what extent this happens (rather than high demands not being fully served) of course
depends on the relationships among the different cost elements. The reason we get the
same trees in these cases is that they represent the cheapest way of connecting all demand
nodes with the source node (at least for the expected demand case). This becomes such
a forceful property of the network that even in the stochastic case this structure is kept
as long as the fixed setup costs are reasonably high. However, consider the bottom two
graphs in Figure 3. They show the solutions corresponding to Comparison B, that is, when
only edges opened in the deterministic case are allowed, but capacities can be set freely.
What we see is that capacities generally are much higher than in the deterministic case.
That is natural as one wishes to cater for high demand scenarios. But capacities are also
generally higher than for the stochastic case, showing that even though the deterministic
tree is present in the stochastic design, it is certainly valuable to add cross-over edges
rather than just increasing capacities on the deterministic tree.

The advantage of test cases like this one, where the structure is similar, is that it
is easier to see how the stochastics updates the tree and thereby what constitutes a robust
design. Later we will see cases where the tree within the stochastic solution (there must be
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Figure 3: Deterministic, stochastic, and Comparison B solutions of Nobel EU
(left) and Molde (right) test cases showing presence of deterministic structures
in the stochastic solutions.

one because we have only one supply node) is different from the tree of the deterministic
solution.

Connecting branches

Sometimes branches in the deterministic design are connected in the stochastic design.
Consider the Molde test case (right) in Figure 3. Note how an edge has been added
between nodes 1 and 3, serving two purposes: If node 1 has a particularly large demand,
it can be supplied via node 3. On the other hand, if demand in node 1 is small, the path
via node 1 can be used to supply all nodes downstream from node 3. Also note how
nodes 7, 10, 11 and 12 have been connected downstream from the supply node. This
way less capacity needs to be added close to the source node on several branches since
the branches can share capacities using these new edges. Also this makes evident that in
stochastic design the tree actually splits farther from the source node as compared to the
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deterministic design and this is to benefit from available installed capacities.
We can see the importance of these cross-over edges by comparing the stochastic

solutions with the Comparison B solutions. As we just noted, the Comparison B solutions,
which do not have cross-over edges, have higher capacities than the stochastic solution,
as we see in Figure 3.
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Figure 4: Deterministic (top left), stochastic (top right), and Comparison B (bot-
tom) solutions of the Molde test instance showing connections between leaves of
the deterministic solution tree in stochastic solution

In the deterministic solution of Figure 4, we see two major branches connecting the
demand nodes with the source node. One of them (named branch-1) connects demand
nodes 1, 3, 5 and 6 with source node 9, while the other (branch-2) connects 7, 10, 11, 12,
and 15. In the stochastic solution we see that these two branches are connected by edges
6–10 and 3–7 (while 1–3 connects branches within branch-1). Branch-1 and branch-2
have 301 and 345 units of demands respectively in the deterministic case. In the stochas-
tic case, branch-1 and branch-2 have maximal demands of 378 and 441 units, respectively.
But if we compare the capacities of the edges coming out of the source node, we observe
that in the deterministic case it is 646 in total, while for the stochastic case it increases
by 16.5% to 753. The capacities installed on these branches in Comparison B, shown in
Figure 4, is 819 units in total. This is an uncorrelated stochastic case, and there is no
scenario with such a total demand (as it is very unlikely to happen given the distributional
assumptions). So we can see that in the stochastic case, instead of installing a total of
819 units, the demand is managed by installing less (only 753 units in total plus some
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assistance via node 4) and this is possible due to the edges 6–10 and 3–7 which help shar-
ing installed capacity between the nodes of the two branches. The fact that the maximal
branch demands cannot occur at the same time cannot be utilized in Comparison B.

Connecting leaves

In some cases the cross-over edges occur at the leaves of the deterministic tree, usually
with moderate capacities. This typically happens when the nodes have comparable varia-
tion in demand. (In our test cases, where standard deviation is set at 25% of mean demand,
it means we see nodes with similar mean demands). Two examples can be found in Fig-
ure 4 with the edges between nodes 1, 3 and 7 helping out all three leaves of the tree. The
reason is that in these cases all three nodes can handle most of their high demand sce-
narios (which in this example occur independently of each other) using these moderate
cross-over edges. If the variation in demand is very different between two leaf nodes, then
we do not see this cross-over (discussed in detail in the next heading). However, gener-
ally, if the leaves are far from the source node the chances of edge formation is highest as
then it becomes cheaper to open a new edge between them and share the capacity of the
cross-over edge rather than increasing the flow capacity all along the two paths from the
source node. This can be seen in the stochastic structure (link between demand nodes 13
and 15 via transshipment node 14) of Molde in Figure 3.

Balanced variation

We mentioned earlier that leaves of the tree are typically connected if the variation in
demand are of comparable size, since the edge can then help out both the connected
nodes. This is illustrated in Figure 5.

In the top right graph, we see a connection between leaf nodes 13 and 14, while there
is none between 10 and 12. The mean demands are 9239 and 5582 for nodes 10 and 12.
In the bottom graph we have changed the mean demands to the fairly similar values of
6639 and 5582. Then the cross-over edge appears. This is due to the fact that when the
fixed setup costs are high (as they are here), these linking edges are economically useful
only when used to resolve demand variation in both ends. If the variation in demand is
very different between two leaf nodes, only the smaller of the nodes can fully utilize the
cross-over edge (the other one needs more help), and then we typically do not see the
cross-over edges. Remember that in our tests standard deviation is 25% of mean demand
for all demand nodes.

Mixed correlations

Let us next turn to some cases where we face mixed correlations, that is, some correla-
tions are positive, some negative, still with fixed setup costs relatively high. We have set
up the correlation structure as follows: The demand nodes have been put into two groups
such that each group have almost equal number of nodes. Within each group all demands
are strongly positively correlated, while all correlations between pairs of node in different
groups are strongly negatively correlated. So the assumption is that there is some underly-
ing phenomenon that causes low demands in one group to typically match high demands
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Figure 5: Deterministic (top left) and stochastic (top right) solutions of Atlanta.
The bottom figure is the stochastic solution when demands at nodes 10 and 12
are changed to be of the same magnitude. The installed capacities are divided by
one hundred for better readability.

in another group. For example, water demand tends to be high in residential areas on
warm, dry days, while colder, wetter days cause high demand in indoor sports facilities.

The structure of the deterministic solution is apparent in the stochastic solution in
most cases. But some of the edges become weaker in terms of capacities and some even
disappear. The latter happens when the demand nodes can connect with other nearby
negatively correlated demand node(s) more beneficially.

The new edges help demand nodes with negatively correlated demands fulfill their
needs while opening lower capacity overall. This we see in the upper right graph of Fig-
ure 6 where edge 3–4 in the stochastic solution is between negatively correlated demand
nodes. Similarly, edges 5–6 and 5–10 in the stochastic solution in the lower right graph
are between negatively correlated demand nodes. The more negative the correlations, the
more often we see this effect. When negatively correlated nodes are connected this way,
alternative edges from the deterministic tree may disappear. This we can see in the lower
left graph of the Figure 6 where edge 5–9 in the deterministic solution does not exist in the
corresponding stochastic solution (lower right), due to new edges connecting negatively
correlated nodes nearby.

With negative correlations present, most leaf nodes in the deterministic tree get con-
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Figure 6: Deterministic (left) and stochastic (right) solutions of Pdh and Molde
test instances showing connections between negatively correlated demand nodes.
The two different shades denote the two groups of demand nodes.

nected to some other leaf nodes, where connections are guided by negative correlations.
Further we observe that leaves from different branches are linked in the stochastic solu-
tion if they have similar variation in demand or if they are far from the source node as in
the previous cases.

Positive correlations

Note that even positively correlated nodes may be connected. Typically, the connection
is of moderate size, while the variations in demand are reasonably large (but of same
size) for both nodes, so that even variation consistent with positive correlations can use
a new edge in a balanced way. In addition, positively correlated demand nodes may be
connected, because one of them (or both) are connected to negatively correlated nodes,
creating a pool of nodes that can share capacity.

But generally, we observe that the solutions are very similar to the deterministic case.
The reason is that the stronger are the correlations, the less likely it is that one demand
node has low demand when another has it high, which removes incentives for capacity
sharing. Because of the variable demand, the installed capacities are higher than in the
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Figure 7: Deterministic (left) and stochastic (right) solutions of Atlanta test in-
stance with positive correlations showing that structure is same, only with higher
capacities. Note that here capacities are one hundredth of the actual values.

deterministic case (Figure 7), with the difference depending on the rejection costs. With
weak positive correlations the solutions are close to the ones from the uncorrelated case
which we already discussed.

No similarity

We have seen that in most cases the deterministic tree is kept in the stochastic solution (but
with different capacities). We have also seen cases where a few edges disappear. Test case
“Montreal” in Figure 8 illustrates a case where the stochastic solution has a sub-structure
which differs from its deterministic counterpart. It concerns how node 3 is connected to
the source (node 5). In the stochastic solution, robustness is achieved by letting nodes
3 and 7 share the edge leaving the source. For that sub-structure, Comparisons B and C
end up with the same solution, which is the deterministic structure with added capacities.
So, with the deterministic structure as a starting point, we do not get the robust structure
of the stochastic solution. In terms of cost, we saw deviations up to 4 percent from the
optimal solution. The stochastic solution is by definition the best one, so we see that by
starting from the deterministic case, we miss the optimal structure, but for these problems
with only one source node, these errors are low.

4 Conclusion
The purpose of this paper has been to better understand what constitutes a robust de-
sign for a single-source single-commodity stochastic network design problem. The single
commodity case is, structurally speaking, more complex to understand than the multi-
commodity case due to the phenomenon of flow cancellation. For that reason, we chose
to start our investigation of the single commodity case with just a single source, to increase
the chance of capturing the structural properties of robust designs.

Not very surprisingly, we find that the deterministic solution can be very bad indeed in
terms of expected behavior. However, we also find that in most cases, the structure from
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Figure 8: Deterministic (top left), stochastic (top right), Comparison B (bottom
left) and Comparison C (bottom right) solutions of Montreal test instance where
the stochastic solution structure is different from the deterministic one.

the deterministic solution tends to be good also in the stochastic setting, if we can adjust
the capacities and/or add new edges.

Apart from this, it is impossible to make totally general conclusions. The results
will always depend on the chosen numbers. However, there are certainly lessons to be
learned. First, note that the deterministic solution will always be a tree as long as any
amount of capacity can be opened on an edge. Secondly, if the fixed setup costs are large
enough relative to the capacity and flow costs, also the stochastic solution will be a tree,
as creating loops will simply be too expensive. It is not clear that we shall get the same
tree, but since the deterministic tree carries the expected flow at minimal cost, it is also
likely to carry the stochastic flow most cheaply. As the variance in demand increases,
particularly when there are negative correlations, the stochastic tree will tend toward one
where negatively correlated demand nodes sit on the same branches of the tree. If this
was not the case in the deterministic solution (which is a fully random phenomenon), the
trees will tend to be different. With high fixed setup costs, this will only happen if several
trees have about the same fixed setup cost.

As the fixed setup costs decrease, we still get a tree in the deterministic case. And the
very fact that this tree (where now capacity and flow costs count relatively more than be-
fore) carries the expected flow at minimum cost still carries weight in the stochastic case.
Therefore, the deterministic tree tends to remain in the stochastic solution. However, in
this case, where capacity costs are relatively more important than the fixed setup costs,
it is much less costly to add new edges, creating circuits in the solution. We also occa-
sionally see the structure change totally, and edges from the deterministic tree disappear.
Important phenomena, which makes the stochastic structure different from determinis-
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tic structure, are the size of the variation (the variance) representing how stochastic the
problem really is, and the correlation structure.

A case where all correlations are positive and large is similar to a deterministic case
with demands higher than the expected demands. We typically get a tree with higher
capacities than in the deterministic case to facilitate the high demand scenarios. As before,
if fixed setup costs are high, we tend to get the same tree, but if capacity costs dominate,
the tree might be different. Positive small correlations are similar to the uncorrelated case.

With uncorrelated demands and moderate fixed setup costs, a number of important
phenomena occur. If variance in demand is moderate, the deterministic tree is still a good
candidate for carrying a major portion of the flow. However, in addition we observe cross-
over edges between branches in this tree in the stochastic solution. The placement of these
cross-overs will depend on the following factors: Firstly, nodes with similar variation in
demand, if far from the source node, will tend to be connected with edges of moderate
capacity, taking care of much of the (uncorrelated) variation between them. We may
also see a group of nodes, lying far from the source node, connected that way. Secondly,
somewhat downstream from where two branches split, we tend to see high capacity cross-
over edges, used to make the branches help each other when demand varies. However,
connecting two large branches (in terms of the number of demand nodes) too close to the
node where the branches split is not useful, as each branch will tend to have a rather fixed
demand due to the law of large numbers. Also, too close to the split it might be better to
add capacity to both branches to avoid the fixed setup cost of the cross-over. So cross-
over edges must be placed such that there is genuine (and preferably comparable in size)
variation in demand downstream or upstream (or both) from the cross-over. In addition it
is worth noting that in the stochastic case, there is a tendency for branches to split later
than in the deterministic case, as that will tend to utilize the installed capacity better.

With negative correlations present, we see the phenomena from the uncorrelated case
strengthened. In particular, cross-over arcs connect, when possible, nodes or clusters of
nodes, with negatively correlated demand upstream or downstream (or both). The more
negative, the better. A typical setting is a collection of leaf nodes, with some pairs having
negatively correlated demands, being connected with moderately large edges, basically
facilitating the demand variation in the whole collection.

So, what brings us furthest away from the deterministic tree is a case with large neg-
ative correlations, moderate fixed setup costs, and large variation (large variance) in de-
mand.

We plan to follow up this work by studying the case of multiple source, as well as
random edge failures.
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Appendix

Results of the numerical tests
This appendix provides detailed results from the tests in Section 3. We provide the num-
bers used to generate Figures 1 and 2 in Section 3.3. Also the discussions in Section 3.4
are based on these computations, but the individual cases cannot be reproduced from these
tables.

Table 2: The numbers corresponding to Figures 1 and 2

Figure 1 Figure 2

A B C A B C

Minimum value 1.011 1.000 1.000 1.011 1.000 1.000
Geometric mean 1.991 1.011 1.002 1.718 1.010 1.004
Maximum value 4.912 1.047 1.015 5.188 1.180 1.180

Since the results, particularly for Figure 2, depend on correlations, we also show the
ratios in Table 2 split by correlation structures – see Tables 3 and 4. Finally, the full
computational results for Figure 1 are presented in Table 5.

Table 3: The numbers corresponding to Figure 1 split by correlation structure.

Zero correlations Mixed correlations Positive correlations

A B C A B C A B C

Minimum Value 1.017 1.004 1.000 1.022 1.000 1.000 1.011 1.000 1.000
Geometric Mean 1.973 1.016 1.003 1.994 1.017 1.003 2.005 1.001 1.001
Maximum value 4.721 1.047 1.011 4.910 1.040 1.015 4.912 1.007 1.007

Single source single-commodity SND 53



Table 4: The numbers corresponding to Figure 2 split by correlation structure.

Zero correlations Mixed correlations Positive correlations

A B C A B C A B C

Minimum Value 1.013 1.000 1.000 1.019 1.000 1.000 1.011 1.000 1.000
Geometric Mean 1.705 1.011 1.002 1.737 1.011 1.002 1.712 1.009 1.008
Maximum value 5.013 1.075 1.048 5.188 1.081 1.018 5.059 1.180 1.180
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Table 5: The numbers corresponding to Figure 1 split by correlation structure.
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Abstract

This paper examines the single-commodity stochastic network design problem
with multiple sources and sinks. We characterize the structures of the optimal designs
and compare with the deterministic counterparts. We do this primarily to understand
what constitutes good robust network designs, but hope that the understanding can
also be used to develop better heuristic algorithms than those available today.

Keywords: single-commodity network design, multiple sources and sinks, stochas-
tic, correlations, robustness

1 Introduction
Many operations-research (OR) applications, as well as problems in computer science,
applied mathematics, and many fields of engineering and management are based on net-
work formulations with an underlying design problem, see for example Ahuja, Magnanti,
Orlin, and Reddy (1995). Today’s complex supply chains require goods and informa-
tion to be distributed in many layers and in integrated ways. Increased competition force
decision-makers to study the whole supply chain, all the way from suppliers to end con-
sumers, trying to achieve overall optimality.

Network design has been a major area of research for the last four or five decades and
shows great diversity in methodology, see for example Scheibe and Ragsdale (2009). But
still we know very little about the structural characteristics of the optimal designs. We are
interested in revealing structural properties of the designs that can be used to understand
/ evaluate designs even without solving the corresponding design problems.

It is evident that in most cases, at the time when a network is designed (or expanded),
the demand or supply that it will later face is uncertain. Traditionally this is not taken
into account during the design phase, but rather, the handling of uncertainty is postponed
∗Molde University College, biju.k.thapalia@himolde.no
†University of Quebec at Montreal
‡Norwegian University of Science and Technology
§Lancaster University Management School



to the operational phase of the problem at hand. While it is true that the actual handling
of uncertainty – meaning the reaction to revealed information – by definition, must take
place when it occurs, it is equally clear that different designs offer different opportunities
for how the uncertainty is handled, in particular, how costly the handling might be. This
principle is well explained in for example Yen and Birge (2006). A discussion may also
be found in Ball, Barnhart, Nemhauser, and Odini (2007). So apart from understanding
designs in general we are particularly interested in understanding how designs stemming
from assuming deterministic demands differ from designs where uncertainty is included
already in the design phase of a project. We ask: Does it matter? Are there recognizable
differences between the two designs? Technically speaking, we shall compare, in different
ways, designs coming from two-stage stochastic programs (where the design is stage 1
and the commodity flows stage 2) and their deterministic counterparts (where random
demand is replaced by expected demand).

A common way to handle this situation is to perform single- or multi-parameter sen-
sitivity analysis in order to understand how the optimal solution changes as a function
of demand. This approach might seem appropriate, but in fact it is not. This is outlined
in detail in Wallace (2000) and Higle and Wallace (2003). Logically, when performing
sensitivity analysis, one is assuming that the design can be postponed until after demand
has become known. So, whether sensitivity analysis is performed or not, we end up with
a solution not created to handle uncertainty, and hence, we may have to face difficult
operational decisions when demand is revealed.

It is old news that a deterministic solution might perform very badly in a stochastic
environment. The reason is simply that it is not made to handle variation in parameters
such as price or demand in a good way. This argument often follows the logic of ”The
value of the stochastic solution”, see Birge (1982). In the network design case, good
designs stem from flexibility in the commodity flows, i.e., the ability to utilize installed
capacity across very different demand realizations. We have illustrated this in Thapalia,
Crainic, Kaut, and Wallace (2009): the deterministic solution is itself badly suited to
handle stochastic demand for the single commodity, single source, multiple sink network
design problem. However, in the same paper we also observed that the structure (i.e.,
which edges to open) might be similar in the deterministic and stochastic cases, albeit
with rather different capacities installed. Even this kind of similarity is unusual.

Lium, Crainic, and Wallace (2009) found consolidation to be a way to hedge against
uncertain demand in their multi-commodity stochastic service network design model.
This cannot (of course) be observed in the solution to the corresponding deterministic
model, as the model has no reason to hedge against uncertainty. The deterministic design
might contain volume-related consolidation, but that is not enough to cater properly for
uncertainty. So in that case, not only is the expected behavior of the deterministic design
bad, but also the structure (i.e. information about which edges to open) is of limited value.
A question for this paper is therefore: As we pass to the case of multiple sources for the
single-commodity case, shall we observe that the structure of the deterministic solution
is good (as we observed in the single-source single-commodity case) or bad as in the
multi-commodity case?

Hence, while we focus on comparing stochastic and deterministic designs, it is not
primarily to (once again) show the weaknesses of the deterministic solution, but to really
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understand in what ways (if any) the deterministic solution is good and in what ways it is
bad. We also hope that this can be used not only to obtain a deeper understanding of the
effects of uncertainty on design, but also to develop heuristics for the stochastic case.

2 Problem description

Given a set of nodes (divided into source nodes, demand nodes, and transshipment nodes)
and a set of potential edges connecting these nodes, the single-commodity stochastic net-
work design problem with multiple sources and sinks (MSSND) is the problem of deter-
mining a subset of the edges to open (including the edges’ capacities), so as to fulfill the
demand at the demand nodes at minimal cost, taking into account capacities of the source
nodes.

In general, the stochastics in this problem arises in the form of demand uncertainties
at the demand nodes, supply uncertainties at the source nodes, and failure of connections
(or failure of certain proportion of capacities in the edges) between the nodes. Demand
uncertainties and edge failures are observed in most real life problems, as it is rare that
demand is fully known when the design is determined or that edges never fail. In this
paper, we discuss only random demand. The design is based on minimizing the sum of
the fixed costs of selecting edges connecting the nodes; linear costs to open capacities
in the edges; per unit flow costs of flows on the edges; and per unit penalty costs for not
satisfying demand. Not satisfying demand can have many interpretations, such as sending
the flow at a later point in time, with another mode, or a straightforward rejection. In any
case, in the model, it takes the form of a penalty cost per unit of unsatisfied demand.

It is important to include the possibility of flow being rejected in the model. The
main reason is that in real life, except in extremely particular situations, it is prohibitively
costly to build a network that can meet any possible demand—however unlikely it might
be. Deterministic models, operating on expected demand, may reasonably operate under
the assumption that (average) demand must be met. But even there, there will normally
be an understanding that some demand may end up being turned down in reality. When
working with stochastic demand, there is also the problem that requiring demand to be
met turns the model into a worst-case model, where the worst-case in most cases is not
even well understood. So, in total, we find it crucial to include the possibility of not
satisfying all the demand. We use the same formulation also in the deterministic models,
to make the results comparable.

We shall let all source nodes have the same capacity so that our focus will be on the
random demand. Hence, our assumption is that a set of demand nodes will have their
random demands satisfied from a set of equally-sized source nodes.

In the deterministic case, the demand in each node is fixed at the expected demand
from the stochastic case. This corresponds to the classical case of a single-commodity
multiple source network design problem. The first stage decisions in this problem are to
decide which edges to open and what capacities to install. The second stage decisions
are the flow decisions in the given network. The recourse action here is described by a
penalty cost incurred for not satisfying demand.
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2.1 Mathematical formulation
Let G = (N ,E ) be a network defined by a set N of n nodes and set E of m edges
(undirected arcs), where

E ⊂ {k = (i, j) : i ∈N , j ∈N and i < j} .
Each edge is indexed either by i, j or by k.

The random demand is described by a set of scenarios S , where each individual
scenario s ∈S has one demand realization for each demand node. We shall discuss in
Section 3.1 how the scenarios were generated. The notations for the sets, parameters, and
variables associated with this problem are as follows:

Sets:
C set of all source nodes;
D set of all demand nodes;
T set of all nodes with zero demand (transshipment nodes); T = N \ (C ⋃D);
S set of all scenarios s.

Parameters:
M maximal arc capacity; used for linking capacities and open arcs in (5);
R unit cost of unsatisfied demand;
Ps probability of scenario s ∈S ;
Ck flow cost on edge k ∈ E ;
Gk fixed setup cost for edge k ∈ E ;
Hk variable setup cost; the cost for adding one unit of capacity to edge k ∈ E ;
Vk initial/ existing capacity on edge k ∈ E , if any;
Ds

i demand (Ds
i < 0) in node i ∈D in scenario s ∈S ;

D supply in each source node, D > 0.

Variables:
xs

k = xs
i j flow on edge k = (i, j) ∈ E going in direction i→ j, in scenario s ∈S ;

zs
k = zs

i j flow on edge k = (i, j) ∈ E going in direction j→ i, in scenario s ∈S ;
uk new capacity that is developed on edge k ∈ E ;
es

i for i ∈D , this is the unsatisfied/lost demand in node i in scenario s ∈S ;
for i ∈ C , this is the unused capacity of source node i in scenario s ∈S ;

yk 1 if edge k ∈ E is developed, 0 otherwise.

We assume that total supply from equally-sized source nodes equals maximal demand
in the network, so that

D = max
s
{∑

j∈D
{Ds

j}}/|C | (1)

where |C | is the number of source nodes.
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Our overall problem is hence:

min∑
k

Gkyk +∑
k

Hkuk +∑
s

Ps

{
∑
k

Ck (xs
k + zs

k)+R ∑
i∈D

es
i

}
(2)

Subject to:

∑
j:(i j)∈E

(
xs

i j− zs
i j
)
− ∑

j:( ji)∈E

(
xs

ji− zs
ji
)
=





0 ∀i ∈T ,∀s ∈S

D− es
i ∀i ∈ C ,∀s ∈S

Ds
i + es

i ∀i ∈D ,∀s ∈S

(3)

xs
k + zs

k ≤ uk +Vk ∀k ∈ E ∀s ∈S (4)
uk ≤Myk ∀k (5)
0≤ es

i ≤−Ds
i ∀i ∈D ; ∀s (6)

xs
k,z

s
k,uk,es

i ≥ 0 and yk ∈ {0,1} ∀k;∀i;∀s (7)

The objective function (2) minimizes the total costs of the network. The first part is
the costs of constructing all new edges, the second part the costs of building all the new
capacities, the third part the expected flow costs through all the edges and the fourth part
is the expected penalty costs of not fulfilling demand. Constraints (3) model conservation
of flow at nodes. The left-hand side is the net outflow from node i, which must be zero for
all transshipment nodes i ∈T and is equal to the unused capacity for source node i ∈ C .
For the demand nodes, the net outflow must be equal to the satisfied demand; since Ds

i is
negative in this case, the right-hand side is the a difference between the scenario demand
Ds

i and the (positive) unsatisfied demand es
i .

Constraints (4) represent the flow limit in each edge. The left hand side of the equation
is the net flow on edge k which should be less then or equal to the total capacity of the
edge. Since we do not start with any initial/existing capacity in our test cases, we always
have Vk = 0. Note that in an optimal solution, an edge will never have flow in both
directions. Constraints (5) show that new capacity uk can be developed only if edge k is
built. Constraints (6) give bounds for the rejection amount and finally, (7) insure that all
variables are non-negative and the edge constructions binary.

For the deterministic counterpart we replace the stochastic demand by its expectation.
We model the problem in AMPL and solve it to optimality using CPLEX 9.0. The

solution time varies from few seconds to 5 hours depending on the case, on a PC with
3 GHz Intel R© CPU and 8 GB of RAM.

3 Experimentation and Computational Results
The tests have two related goals. First we primarily focus on the quality of the determin-
istic designs by trying to understand how they differ from their stochastic counterparts,
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and to what extent solving a deterministic problem will guide us toward a good design in
a stochastic environment. Does the deterministic design contain useful information, or is
it totally misleading if the real setting is that of stochastic demand? In the second part we
try more directly to characterize good designs, assuming that the stochastic design model
is the appropriate one. Our goal is to make qualitative statements about what characterizes
of a good design in light of random demand. These two questions are of course related,
but we find it useful to have these two focuses.

In order to answer these problems we have constructed a number of test cases. These
are now described together with our scenario generation approach.

3.1 Test instance generation

We have used seven different network instances. The first four instances, namely Ger-
many, Nobel-EU, NY, and US are telecommunication examples from the SNDlib library
(Orlowski, Pióro, Tomaszewski, and Wessäly, 2009), with some modification to suit our
problem’s needs. The fifth case was generated by us and named Molde and the last two,
Montreal r06.1 and Montreal r10.1 were obtained from CIRRELT (Interuniversity Re-
search Center on Enterprise Networks, Logistics and Transportation), Montreal. The
names of the instances do not mean anything particular in our computational setup.

It is worth noting that in all cases from SNDlib and Montreal, the test instances are
multi-commodity network design problems, so not all parameters can be used directly by
us. We only kept the coordinates (where available) for the nodes and the fixed setup cost
Gk for the edges. The values for the other parameters – variable setup costs Hk and flow
costs Ck – are all chosen proportional to the Euclidean distance between the node pairs.
The cost of unfulfilled demand R is derived for each test case using some multiple of the
highest value of the fixed plus variable setup cost for an edge in the network. We made
sure that R is not driving the solution. The results in the first part of Section 3.3 are based
on test cases with these cost structures. In the second part of the section, we changed the
fixed costs to understand their relative importance.

The Montreal test instance does not have node coordinates, so we used Graphviz
(Gansner and North, 2000) to draw the graph using fixed setup cost as distance measure.
The graphs of the test instances Nobel-EU, US and Molde are planar whereas the graphs
of the test instances Germany, NY, Montreal r06.1 and Montreal r10.1 are non-planar.

For each of the seven problems, we picked 3 sets of nodes (2 in the case of Mon-
treal r06.1) as possible source node sets, thus creating in total 20 base test instances.
These 20 different versions of the problem instances are presented in Table 1. A set of
source nodes contains three or four nodes depending upon the test instances; the number
of source nodes for each test instance is listed in the fifth column of Table 1.

Given the difficulty of solving the stochastic network design problem to optimality we
kept n (the number of nodes) below 30 and m (the number of edges) below 50 for the first
six cases, while for the Montreal r10.1 cases we have up to 87 edges.

We know from the work of Lium, Crainic, and Wallace (2007) that correlations might
be important in shaping the structure of the network. Hence, we further create 3 cases
for each problem instance: one with uncorrelated demands, one with positively correlated
demands (all correlations are set to 0.7), and one with mixed correlated demands: the
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Table 1: The different test cases. Test case Molde is generated by us. For the
others, the names have been kept, even though the cases are adjusted to our needs.

Problem name # nodes # edges # demand nodes # sources # source sets

Germany 29 48 9 3 3
Nobel-EU 28 41 8 4 3
NY 16 41 7 4 3
US 26 42 9 3 3
Molde 22 45 8 4 3
Montreal r06.1 10 37 5 3 2
Montreal r10.1 20 87 6 4 3

demand nodes are put into groups such that each group contains about half of the total
number of nodes. All correlations within a group are set to 0.7, while between groups we
use −0.7. All of this leads to positive definite correlation matrices. Thus we have in total
60 test cases.

As stochastic programs need discrete distributions to represent the stochastics, we
discretized the chosen distributions (discussed below) by creating scenarios each having
equal probabilities to occur using the moment-matching method from Høyland, Kaut, and
Wallace (2003). In the absence of reference to a particular distribution representing the
random demand we chose to use truncated normal distributions with mean equal to the
deterministic demand (from the underlying cases) and standard deviation equal to 25% of
the mean to represent its stochasticity.

The decision on the number of scenarios used to represent the stochastics is critical as
we want to be sure we study the effects of randomness on our model, and not some random
effect of the scenario generating procedure. There is a trade-off between the quality of
scenarios representing the underlying distribution reasonably well and the time needed to
solve the stochastic program to optimality. As we increase the number of scenarios, we
increase the quality of the representation of the distribution, but also decrease the chance
to solve the model to optimality within a manageable time. In our case, we generated 100
scenarios to represent the distributions as this gives us in-sample stability and manageable
solution times. The in-sample stability is checked by solving the same problem repeatedly
with different 100-scenario trees. This lead to a coefficient of variation (the standard
deviation divided by the mean) of less than 1%, except for the cases of ’NY’, ’Molde’ and
’Nobel-EU’ where it was 1.2%, 3.9%, and 4.8% respectively. The cases of ’Molde’ and
’Nobel-EU’ have very high rejection costs, so even a minor change in rejection volume
results in a large change in objective function value.

With these values we are satisfied that we have in-sample stability for the problems
at hand. Since this is a necessary, but not sufficient, property of a satisfactory scenario
generation procedure, we also check out-of-sample stability. Out-of-sample stability is
checked by creating scenario trees with 1000 scenarios using sampling and then evaluat-
ing the solutions over those scenarios. The evaluation is performed by re-optimizing the
flow in the network with given designs i.e., fixing the first stage variables of problem (2)
to (7), representing the network design under evaluation. The procedure is repeated 10
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times for a given network design and the objective values are compared by again calcu-
lating the coefficient of variation. For our problem, out-of-sample stability was achieved
as the coefficient of variation for all the test instances was less then 0.2%, except for the
cases ’NY’, ’Molde’ and ’Nobel-EU’ where it was 2.9%, 1.4%, and 2.6% respectively.
For more discussion on this subject we refer to Kaut and Wallace (2007).

Finally, we have to reconsider the definition of the supply D given in (1): since it
depends on the actual realizations of the stochastic demands Ds

j, it would be different for
the three versions (with different correlations) we generate for each test case, making it
difficult to compare the results. To avoid this problem, we calculated D for each of the
three correlation versions of a given case and used the median of the three D’s as our
demand size in all three versions.

3.2 Comparison Tests
As outlined in the Introduction, the deterministic solution, by its nature, has a worse
expected behavior than its stochastic counterpart. However, we would like to understand
more about why this is the case, and in what sense it is worse.

In order to check the quality of the deterministic designs, as well as comparing them
to the stochastic ones, we have set up three tests, named comparisons. Whenever a com-
parison is performed, we take the deterministic and stochastic designs – or parts thereof
– (i.e. the first-stage solutions) and evaluate them using reference trees – in our case trees
with 1000 scenarios, to make sure we have good approximations of the true distributions.
The costs from the design and evaluation phases are added up, making the reported costs
comparable across all tests.

A word of warning might be worthwhile here. If a stochastic programming problem,
as well as its deterministic counterpart, use hard constraints in the formulation, the de-
terministic solution will normally be infeasible in the stochastic formulation (caused by
capacity problems when demand is high), and hence, its expected cost will be infinitely
large. On the other hand, if soft constraints are used, the deterministic solution will nor-
mally be feasible in the stochastic model, but its expected performance can be made ar-
bitrarily bad by choosing large penalties on the soft constraints. This way, it is always
possible to make the deterministic solution look bad. We shall, however, set the penalties
at reasonable levels, and our goal is to understand how the deterministic solutions relate
to their stochastic counterparts. So, we shall certainly present numbers, and we do believe
the numbers are informative. But there will never be really objective numerical results in
this setting.

The three comparisons are:

A The classical test where the whole first-stage solution is evaluated out-of-sample.
This amounts to solving a 1000-scenario stochastic program with all first-stage vari-
ables (designs and capacities) fixed, so in fact this equals the solution of 1000 inde-
pendent second-stage problems. Since the second stage does not involve any integer
variables, this is very fast.

B Only edge information is imported from the first stage. So, in a 1000-scenario
stochastic program, all discrete variables y describing opened and closed edges—
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we call it a skeleton—are fixed and the stochastic program is run. So the model is
allowed to install any capacity on the opened edges (also lower than in the deter-
ministic case), but not to open new ones.

C The whole design (both the skeleton and its capacities) is taken as input to the 1000-
scenario stochastic program. The stochastic program can then add new capacities
on already opened edges (paying only variable setup costs) and new edges (paying
both fixed and variable setup costs). Hence, all capacities opened in the determin-
istic case add cost to the objective function, even if these are not needed in the final
design.

The purpose of Comparisons B and C is to check if the design from the deterministic
solution really is good for the stochastic case, and if it bad, in what way it is bad. By
making edges from the deterministic case “free” in two different ways, the stochastic
programs (as defined in the comparisons) are guided toward the deterministic solution.
This way we compare if stochastic programs solved with input from the deterministic
solutions behave much worse than stochastic programs which have no deterministic input
(they will never behave better).

So, Comparison A is the classical test of the quality of the deterministic solution.
Comparison B, on the other hands, checks if we can use a deterministic method to de-
termine the skeleton and then solve a stochastic linear program to set the capacities. If
Comparison B comes out with good results for the deterministic solution, it points to
an alternative solution procedure that avoids solving a stochastic mixed integer program:
First use a deterministic method to find the skeleton, then a stochastic linear program to
set capacities. This represents a severe saving in computation (if it works well, of course).

Comparison C can be seen as testing what happens if we first solve the deterministic
design problem and implement the solution, but then discover that it is not very good,
and wish to update it. If Comparison C comes out well for the deterministic solution, a
deterministic design can be corrected and become almost optimal for the stochastic case
provided setup costs must not be paid again. If Comparison C comes out badly, the costs
of updating a deterministic design in light of uncertainty in demand will be high. Note
that Comparison C is itself a stochastic mixed integer program, so in most cases it does
not represent an alternative solution approach. In our tests, though, Comparison-C with
1000 scenarios is faster than the original stochastic problem with 100 scenarios. But for
large problems, both are unsolvable.

In what follows of this section, we discuss the major findings, details are given in
the Appendix. Our first need is to understand the relationship between the stochastic and
deterministic solutions. We therefore perform Comparisons A, B and C as discussed in
Section 3.2. That is, for all our 20 deterministic cases, we solve the corresponding net-
work design problem. Also, we solve all 60 stochastic cases, representing the stochastic
versions of the deterministic cases (each with three different correlation structures).

Then each of the 20 deterministic designs are imported into its three stochastic coun-
terparts (the three different correlation matrices). This is done for all three comparisons.
In all cases, as outlined earlier, the evaluations are done out-of-sample using 1000 sce-
narios. Figure 1 shows the results, where also the stochastic designs are evaluated out-of-
sample.
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Figure 1: Results of the Comparison Tests. Ratios between the expected objec-
tive values, obtained from importing the deterministic solution into the stochastic
setting, and the expected objective function value of the stochastic solution.

3.3 Inheritance from the deterministic solutions

The deterministic solution is bad in the stochastic environment, and inheriting the struc-
ture (the skeleton) is also not good, see Figure 1. For Comparison A, the deterministic
solutions have expected objective function values which are from five up to almost 1600%
higher than that of their stochastic counterparts with mean value of 200%. For Compar-
ison B errors are from 0% up to little over 300% with mean value of 61%. On the other
hand, for Comparison C the errors are very low, from 0% up to just 9% with mean value
of 2%. This shows that when we allow to add new edges and open new capacities, the
deterministic design can be updated to become almost as good as the stochastic design.
(Note that in these tests we might observe that the deterministic design is better than the
one coming from a 100-scenario stochastic model, since both designs are evaluated out-
of-sample with 1000 scenarios. We have observed one single case which can be seen in
Figure 1.)

Now, if we look at Figure 2, which compares the cases where the costs of the first
stage decisions (the fixed and/or variable setup costs) are highest (the test instances of
Molde, Nobel-EU, and NY), then we see that the best design for Comparison A is 4.17
times more costly than its stochastic counterpart. And on average, the deterministic design
produces expected costs that are 10.22 times what a stochastic model would produce. If
we further look only at certain components of the overall costs for these cases, which are
presented in Figure 3, we find that on average, the costs for opening edges are just 74%,
and capacity built is just 62%, of that in the stochastic designs. This indicates that the
solutions are far from the optimal structure both in terms of edges opened and capacities
built.

So what do we see? Not very surprisingly we observe that the deterministic solution
behaves rather badly in a stochastic environment, implying that the common practice of
creating a design based on expected values and then handling randomness operationally is
not a very good idea—the costs can be astronomical. One reason for this is simply that the
deterministic design does not install enough capacity – even in our case where the penalty
is set at a very reasonable level. So what if only the skeleton – the edges to be opened –
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Figure 2: Results for cases with higher cost of first stage decision. Ratios be-
tween the expected objective value, obtained from importing the deterministic
solution for the test cases with high fixed and variable setup cost into the stochas-
tic setting, and the expected objective function value for the stochastic solution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

minimum g. mean maximum minimum g. mean maximum

Fixed setup costs Variable setup costs

Compare A Compare B Compare C

Figure 3: Components of result. Ratios of the fixed and variable setup costs
obtained from importing the deterministic solution, for the test cases with high
fixed and variable setup cost, into the stochastic setting divided by the fixed and
variable setup costs for the stochastic solution.

is imported from the deterministic design, and the capacities are set as in Comparison B?
This is computationally effective, as solving the stochastic program of Comparison B is
very simple even for huge problems (it has no integer variables). It helps, of course, but
we can still be several hundred percent off, which in most cases is not acceptable. There
are situations where Comparison B does well, but it isn’t easy to know upfront if a given
case is of that type.

The results of Comparison C are worth an extra comment as they do not represent a
very common situation: if the deterministic design is taken as a starting point, a very good
(even if not optimal) design can be found by adding extra edges and capacities on top of
the deterministic one. In our test cases, we never lost more than 9% that way. This is still
a large number in many cases, but given the uncertainty in the model (which of course
is always there) this is not bad. Computationally, we must then solve a deterministic
design problem first, and then a stochastic one (Comparison C). This stochastic program
has substantially fewer integer variables than the original one, but can still be expected to
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Figure 4: Results for Comparison A for the cases with higher cost of first stage
decision. Ratios between the expected objective value, obtained from importing
the deterministic solution into the stochastic setting, and the expected objective
function value for the stochastic solution.

be as unsolvable as the original one for practical problems. This is not the main point,
though. The main observation is that the deterministic solution can be updated to become
very good even in a stochastic environment.

It is worth mentioning that the results in Comparison C are not in line with the gen-
eral observation that a stochastic solution is normally not the deterministic one “plus
something”—see Wallace (2009) for reasons why. In our case that is exactly what we
observe (genuinely or as a good approximation): the stochastic design equals the deter-
ministic design plus “something”.

For the single-source case, as described in Thapalia et al. (2009), Comparison B came
out rather well contrary to what we observe here. This difference can mainly be attributed
to the fact that we now have many source nodes with limited supply capacity. As we min-
imize costs, the deterministic skeletons have many short paths, we term them arms, con-
necting individual source nodes to nearby demand nodes. If not generally, this typically
gives us a forest of small trees. Just adjusting the capacities of these trees is not enough
to find good designs. When there is only one supply node, the deterministic skeleton is a
tree, and hence, all nodes are connected, even if the connections are not optimal. When
the skeleton is a forest, there are simply too few connections.

We know from Lium et al. (2007) that correlations may play important roles in shap-
ing the solution structure of the stochastic problem in terms of sharing capacity and tak-
ing benefit from variation in demand. By importing the deterministic solution into the
stochastic problem, the deterministic solution structure with short arms from each source
node cannot benefit from this variation in demand. Hence we see poor performance in
Comparison A. This is more evident in the cases where we have higher setup costs (fixed,
variable, or both) as these result in deterministic designs with particularly short arms.
Consider Figure 4, where we observe that it is worse in the uncorrelated and mixed cor-
related cases as compared to the positively correlated cases. This is natural since with
strong positive correlations there is less to be gained from joint use of edges in any case.
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Relation between the number of source nodes and inheritance

The extreme case—one source node—was covered in Thapalia et al. (2009). In that case
both Comparisons B and C were rather good. We have already seen that for three or four
source nodes - as in this paper - Comparison B is no longer very good, while Comparison
C remains very strong. With high setup costs this is even more evident, as that will cause
the skeleton to be as minimalistic as possible in terms of the number of edges. We wonder
if also Comparison C will become weak as we get more source nodes.

Some of this we already understand: With one source node, the deterministic skele-
ton is a tree (not necessarily spanning because of the transshipment nodes), while as the
number of source nodes increases, we tend to get several trees, in the extreme case, one
for each source node, and the ability to share capacity when randomness hits becomes
steadily lower. Comparisons A and B, limited by the deterministic skeleton, suffer from
this lack of connectedness – as it prevents sharing of supply capacity – and hence they do
not do very well.

In order to better understand the effect of the number of source nodes, we have in-
creased the number of source nodes for a few cases. What we observe is that Comparison
C gets steadily worse as the number of source nodes increases. However, be aware that it
is not easy to define what “these two cases are the same except that one has more source
nodes than the other” means. The reason is that as the number of source nodes increases,
the whole network design problem changes, and comparisons become unclear. In this
paper we are limited to cases we can solve to optimality. That prevents checking the
fate of Comparison C for really large cases. Within what we could check, we found that
Comparison C got worse as the number of source nodes increased, but remained very
good throughout, the deterministic solution never being more than 10% worse than the
stochastic one.

So, it seems, taking the deterministic design and adding edges and capacities produces
good solutions. Note again, however, that since Comparison C is also a stochastic integer
program, it it likely to be as unsolvable as the original stochastic program for large realistic
cases.

Fixed costs

We want to make sure that the observations of how the stochastic solutions differ from
the deterministic ones do not depend on the cost structures we have used. So we turn
to testing these results when we vary the way setup costs are distributed between fixed
setup cost Gk and variable setup cost Hk. Let L be some large positive number, selected
conveniently. Here we take it to be 25% of M. For each of the 20 test cases, we calculate
for each edge Ck = Gk +LHk. Then we redistribute Ck in five different ways:

a Fixed setup cost 0.1% of Ck and variable setup cost 99.9% of Ck/L

b Fixed setup cost 5% of Ck and variable setup cost 95% of Ck/L

c Fixed setup cost 25% of Ck and variable setup cost 75% of Ck/L

d Fixed setup cost 50% of Ck and variable setup cost 50% of Ck/L
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e Fixed setup cost 99.9% of Ck, and variable setup cost 0.1% of Ck/L.

All tests described earlier are now performed for each of these five cases and results
are shown in Figure 5. The tests are performed with 100 scenarios. Some test instances
which CPLEX could not solve within 15 days are ignored.

We find that the deterministic design is, as before, rather bad in the stochastic environ-
ment (with errors up to nearly 2700%), while Comparisons B and C are getting somewhat
worse, in particular when the fixed setup cost is low and the capacity cost is high. This
is natural since in that case the cost of opening one edge with a given capacity costs ba-
sically the same as opening two edges with the same total capacity. Hence, the structures
enforced upon the solutions in Comparisons B and C become more costly. We see errors
up to nearly 700% in the case of Comparison B, and up to 11% in the case of Comparison
C—still quite good. The results seems little dependent on correlations. The details of the
results are presented in the Appendix.
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Figure 5: Results of the Comparison tests for different distributions of setup
costs. Ratios between the expected objective value, obtained from importing
the deterministic solution into the stochastic settings, and the expected objective
function value for the stochastic solution.

3.4 Structural differences

So far we have discussed different ways to bring the deterministic design into the stochas-
tic environment to understand to what extent the deterministic design is useful in creating
good solutions. Now we shall pass to a more direct comparison of the the structures of
the stochastic and deterministic designs, instead of just looking at their expected costs.

The optimal structures in single-commodity network design seem to be more compli-
cated to understand than those of the corresponding multi-commodity cases. The main
reason is that in the multi-commodity case the commodities only share edge capacities
whereas in the single-commodity case there is also the phenomenon of flow cancellation.
So while it is easier to solve single-commodity flow problems (as standard network flow
theory can be applied directly), the optimal design is harder to characterize.
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As already pointed out, the stochastic designs tend to have more capacity and more
edges than the deterministic counterparts. For the cases of uncorrelated and mixed corre-
lated demands, the extra edges and capacities are mainly there to cater for capacity shar-
ing. This results in loop formations, leave connections, and connections between different
clusters of nodes. The trees with few short arms, typical of the deterministic skeletons,
will generally not allow sharing based on some demands being large when others are
small simply because there are few demand nodes in each tree, and there is no particular
reason why demand nodes with negatively correlated demand end up in the same tree.

In the cases of positive correlations, the edges and capacities are mostly there to
cater for the high-demand scenarios. Two phenomena occur: The high demand scenar-
ios (which now have high probabilities attached to them) need much more capacity than
the deterministic (expected value) case, and the limited capacity of the individual source
nodes makes it necessary to connect them so that all supply is used well. These connec-
tions are simply to few (if at all) in the deterministic designs. In other words, even though
the demands are positively correlated, there is some variation, and connections are needed
to utilize overall supply.

Let us now turn to a more direct study of the stochastic designs rather than primarily
comparing stochastic and deterministic designs to understand the qualities of the deter-
ministic ones. We know that good designs stem from flexibility in the routing of flow,
and the goal is then to understand how this is achieved. We shall do this by studying the
problems from Section 3.1. Some of the results are “obvious” meaning that good robust
designs are, at least structurally, not so difficult to understand. We consider this a strength.

Similarity in designs

The deterministic skeletons are trees (not spanning trees) with arms emerging from the
different source nodes. If the supply capacities are tight, the trees might be connected
to each other so that the supply nodes can help each other satisfy demand in “their” de-
mand nodes. These skeletons are contained within the stochastic designs under certain
conditions. Remember that the trees from the deterministic designs represent the cheap-
est way to connect to the demand nodes in the average case. Hence, if the capacities of
the source nodes are high enough to handle high demand scenarios, then we often see
that the deterministic skeletons are part of (or even the same as) the stochastic skele-
tons. Figure 6 compares the deterministic design with two stochastic designs, one with
high demand variation and one with low. (Solid edges (blue) are installed with the given
capacities, light (grey) edges are not installed. The dark (yellow) square nodes are the
supply nodes, the shaded (green) circular nodes are demand nodes, and the white circular
ones transshipment nodes. This color scheme is followed in all subsequent figures.) The
low variation case has the same skeleton as the deterministic design. This is because with
lower variation the source nodes still have sufficient capacities to fulfill the demand in
most scenarios (there is some unsatisfied demand). The higher variation case results in
high demand scenarios, where some source nodes may have insufficient capacity to fulfill
the demands of “their” demand nodes and hence we see a re-alignment of the distribution
patterns to fulfill more demand than would be possible from the deterministic skeleton.

Also when setup costs are substantially lower than flow costs, the deterministic skele-
tons are contained in the stochastic skeletons. This is because the deterministic design
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Figure 6: Comparison between deterministic and stochastic structure. Deter-
ministic (top left), stochastic with high variance (top right) and low variance
(bottom) solutions of the NY 02 test case showing that the stochastic solution
structures are similar to the deterministic ones in the low variation demand case,
but rather different in the case of high variation.

represents the cheapest way to transport the bulk of the demand. Longer routes will result
in substantially higher flow costs. On top of the deterministic solution, new edges needed
to facilitate high demand scenarios and coordination of source nodes are cheap to add. In
Figure 7 we see that both the mixed correlated and uncorrelated cases contain the deter-
ministic skeleton, and add a few extra edges to meet higher demands. For example, the
demand node 15 connects to source node 2 (for uncorrelated case) and node 15 & 3 get
connected to source node 12 (for mixed correlated case ) in the stochastic solution. This
helps satisfying the higher demands. But the deterministic skeleton is fully used in the
stochastic designs.

When source nodes are far from the demand nodes, we also find the deterministic
skeletons, more or less fully, within the stochastic ones. Consider Figure 8. In the first
column we see a case where the deterministic skeleton is almost kept. This is because
source nodes 2 and 12 are in the corners of the graph and both are far from demand nodes
22 and 20. Hence, the paths needed to reach those demand nodes are long. In that case
it is usually better to keep these cheapest connections even in the stochastic case. But
even so, the mixed correlated case is different. This is caused by another feature of the
stochastic solution which we shall discuss later in the section on negative correlations.
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For the case in the second column, the skeleton is not retained, as here the source nodes
are very near to the demand nodes and hence have the possibilities to utilize variation of
demand and re-align the design.

Consolidated paths
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Figure 9: Consolidated paths. Deterministic (top) and stochastic (bottom) so-
lutions of Molde and Nobel EU test cases, showing that the stochastic solution
structures have consolidated paths which are not in the deterministic solutions.

In the stochastic design we sometimes observe that there are paths which act like
highways carrying supply and demand for many nodes. This is more evident in the cases
where the setup costs are very high, especially when variable setup costs are proportion-
ally very high. This can be explained by the fact that as the setup costs are high, it becomes
beneficial to consolidate demand of different nodes in order to reduce the total installed
capacity. In Figure 9, we show two cases where variable setup costs are comparatively
much higher than other costs. The first set of figures shows a consolidated path 22–21–
20–15–14–13 efficiently connecting nodes on the path and one edge away. The path is
also part of a loop (see later). This is better according to the out-of-sample evaluation,
even though most individual demand nodes now have longer paths to the source nodes.
Here it is possible, for example, to use free capacity available on the path to reach demand
nodes 16, 18 and 8 from source node 22.

In the second set of figures we see that demand nodes 20 and 16 are connected with
source node 12 via transshipment node 1 instead of the shorter (in terms of fixed and
variable setup costs) path via node 10, as in the deterministic design. If we look at the
stochastic design in more detail, we observe that edge 1–13 has 200 units of capacity

Single-commodity SND with multiple sources and sinks 77



installed, while 1–7 and 7–20 have 388 units of capacity. These add to 588 units of
capacity usable for source node 12. But only 421 units of capacity are installed on edge
12–1. This makes sense since by consolidating the flow from source node 12 to nodes 20
and 16 with the flow to node 13 (and onward), the capacity into node 1 can be set 167
units lower than the outgoing capacity (this statement makes sense even though the edges
are not directed). Thus, consolidating flow saves costs in total even though the paths used
may be longer and costlier than in the deterministic case.

But this feature may not be attractive when the setup costs becomes low i.e., when
flow costs matter much for the optimal design. Then sharing does not create sufficient
savings as flow costs more than offset the savings in setup costs.

Loops

The stochastic design sometimes has loops. That will never happen in the deterministic
case as long as there are no effective upper bounds on edge capacities. Two types of loops
are seen, one where the source node(s) are part of them and the other is where the loops
are formed with nodes excluding source nodes. In Figure 10 we see both types of loops.
In the second chart of the figure, we see that loops 3–5–4–2–3, 11–12–7–9–11, and 11–
16–14–17–7–9–11 are formed having a source node in them. The third chart shows a loop
16–13–15–18–14–16 without a source node in it.

The first kind of loop takes advantage of free capacity available in one of the arms
of the deterministic skeleton to fulfill demand of some demand node lying on a different
arm. An extra edge, connecting the two arms, makes a loop and helps satisfy demand.
For the second chart of the figure, demand node 4 has a maximal demand of 1803 in one
of the scenarios, whereas the path serving it (edges connecting 3, 2, and 4) has 1421 units
of capacity. Here, the free capacity available on the path 3–5–12 is utilized by building
an extra edge 5–4 to form a loop to serve most of this higher demands of node 4. In
the third chart of the figure, we see a loop created by adding an extra edge 16–14 to the
deterministic solution. Here the loop is formed to fulfill higher demand scenarios of node
14. This loop provides more supply to demand node 14 than the capacity we see in path
11–16–14, as extra capacity of the path 16–13–15 is utilized to serve node 14.

And if we look back at the second network in Figure 7, we see that node 28, a leaf
in the deterministic design, gets connected to the path 12–13–29–25 by an edge 28–29 to
form a loop. This is because it is cheaper to add the extra edge 28–29 with some capacity
than increase capacities all the way on the paths 12–6–23–17–28 and 12–13–29 to satisfy
demand of nodes 28 and 29 respectively. This edge is valuable as it can be use in both
directions, to supplement demand needs of nodes 28 and 29.

Negative correlations

A very basic hedging principle is seen when source and sink nodes are linked. This
principle does not show in the deterministic solutions. A source node is typically linked
with demand nodes with negatively correlated demands, so that variation in demand can
be utilized. In Figure 11, we see that in the mixed correlation case demand node 16 is
connected to source node 10 which is also supplying demand node 11. This is because
demand nodes 11 and 16 have negatively correlated demands. In the other cases, demand
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Figure 10: Loop formation in stochastic solution. Deterministic (top), uncorre-
lated (middle) and positively correlated (bottom) stochastic solutions of US 02
showing that the stochastic solution structures have loops which are not in the
deterministic solutions. Note that the values in the figures are one-tenth of ac-
tual.
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Figure 11: Pairing of negatively correlated demand nodes. Deterministic (top
left) and three correlated cases of stochastic solutions–zero (top right), mixed
(bottom left) and positive (bottom right)–of NY 04 test case showing that in the
stochastic solution negatively correlated demand nodes 11 and 16 get connected
to same source node.

node 16 is served by source node 15. Similarly, we observe that positively correlated
demand nodes are disconnected. Refer to the bottom-right chart of Figure 9 of Nobel 01
mixed correlated case where positively correlated demand nodes 20 and 24 are no longer
connected the way they were in the uncorrelated case.

4 Conclusion

The purpose of this paper has been to understand what constitutes a good robust design for
a single-commodity stochastic network design problem with multiple sources and sinks.
This paper discusses only randomness in demand.

We observe that the deterministic solution can be very bad with respect to expected
behavior. But still we see certain structural patterns re-emerging in the stochastic solu-
tions. First we observe that the deterministic solution behaves worse in the stochastic
environment as the number of source nodes increases. With many source node, the de-
terministic solution, which is a forest, typically of many trees, decreases the ability to
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share capacity in a stochastic environment. Also, as correlations are of no concern in a
deterministic setting, the assignment of demand nodes to source nodes may be rather far
off what is optimal.

If the variation in demand is moderate or low, the deterministic skeleton (being a
forest) can be used to carry a major portion of the flow, needing very few additional
edges in the stochastic environment. As the variation increases, the source nodes will
have insufficient capacity to fulfill demand using the deterministic skeleton (irrespective
of installed capacities), and hence will need more edges. Therefore, a re-alignment of
distribution patterns will emerge. However, when the fixed and variable setup costs are
low compared to the flow costs, the deterministic skeleton is contained in the stochastic
one, with only few extra edges added, even in cases of higher variation in demand.

For uncorrelated and positively correlated demands existing far from the source nodes,
we keep the portion of the deterministic skeleton that contains paths leading up to clusters
of demand nodes. However, within a cluster of demand nodes we observe changes from
that of the deterministic solution, in order to benefit from demand variations.

With high variable setup cost, we see consolidation of capacities in paths reaching
downstream demand nodes. These paths will emerge more so between demand nodes
which are negatively correlated. However, with increasing proportion of flow cost in
deciding the optimal solution, this consolidation will be weaker.

Networks with all types of possible correlations among demands show loops in the
stochastic solution. The loop formation gets stronger with increasing variable setup costs.

Source nodes choose demands to serve according to the possibility for hedging among
them. Hence, everything else being equal, negatively correlated demand nodes are most
likely to be served from the same source node. This also results in the breaking or weak-
ening of links between positively correlated demand nodes relative to the deterministic
solution, which has no such concerns.

In total, the main observations of optimal designs are therefore as follows. Note that
the observations are connected, and to some extent see the same phenomena from different
perspectives.

• Especially with high setup costs, the deterministic design tends to be a forest of
small trees. This is particularly bad in a stochastic environment. The good robust
designs will contain many more connections than the deterministic counterpart, and
the design will contain loops.

• From a demand node perspective: When negative correlations in demand are present,
the design should be such that nodes with negatively correlated demands share paths
to one or more source nodes. If there are no negative correlations, it is still impor-
tant to utilize variation in demand to reduce investments by looking for as small
(albeit positive) correlations as possible.

• From a source node perspective: If supply capacity is limited, a source node needs
to be connected to several demand nodes, preferably nodes with as small correla-
tions (negative if feasible) in demand as possible, so as to be able to use its supply
capacity well in all scenarios.
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• Especially with high setups costs and source and demand nodes concentrated in
different areas, it is good to build a high capacity path – a highway – from the area
of the source nodes to the area of the demand nodes. The source and demand nodes
are then connected to the highway using the principles of the previous two items.

• A single loop may be seen as two paths plus a crossover edge (or path). The
crossover must be placed such that demand along either the two upstream or the
two downstream sub-paths are negatively correlated. If no negative correlations are
possible, the same correlations should be as small as possible. This will reduce the
overall investments. The same logic applies if the crossover edge (path) connects
two disjoint paths.

Future work. We plan to follow up this work by studying the case of random arc
capacities.
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A Results of the numerical tests
This appendix provides detailed results from the tests in Section 3. Table 2 provides the
numbers used to generate Figure 3, in Section 3.3. The analysis in Section 3.4 is also
based on these computations, but the individual cases cannot be reproduced from these
tables. Tables 3 to 5 present the full computational results for Figure 1, while those of
Figure 5 are found in Tables 6 to 8.
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Table 2: The numbers corresponding to Figure 3

Fixed setup cost Variable setup cost

A B C A B C

Minimum value 0.54 0.54 0.91 0.56 0.76 0.96
Geometric mean 0.74 0.74 1.00 0.62 0.95 1.03
Maximum value 0.93 0.93 1.14 0.68 1.09 1.12

Table 3: Results of Comparison A corresponding to Figure 1, split by correlation
structure.

Deterministic solution Stochastic solution

Test Name ρ = 0 ρ > 0 ρ ≷ 0 ρ = 0 ρ > 0 ρ ≷ 0

Germany 01 17165 18525 17504 13410 14838 16038
Germany 02 18077 18749 18047 13774 15728 17210
Germany 04 17372 18048 17711 12182 13569 14822

Molde 01 89318 89814 89844 6968 21110 6794
Molde 02 90920 90791 90831 7470 21767 7032
Molde 04 90746 90618 90657 6987 21248 6769

Montreal r06.1 01 157972 157974 157969 112619 111764 113638
Montreal r06.1 02 147886 147892 147884 102292 104391 102577
Montreal r10.1 01 116165 117029 115614 103571 105251 102774
Montreal r10.1 02 80913 81512 81325 59662 61636 59078
Montreal r10.1 03 92081 92666 92496 71747 73474 71545

Nobel-EU 01 1209410 1332870 1237110 128951 192455 123499
Nobel-EU 02 1269300 1339410 1243730 110903 172271 108688
Nobel-EU 03 1262480 1332590 1236910 100219 163244 97482

NY 01 24860500 26023300 26012800 1851100 3366850 1786500
NY 02 25761800 26256300 26239100 1726640 3423220 1545050
NY 04 24693000 25856600 25846100 1629720 3268480 1553470
US 01 414391 414559 414378 371013 388984 360429
US 02 348460 353104 345384 314188 333334 303797
US 04 394493 400384 390647 354348 373575 345213
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Table 4: Results of Comparison B corresponding to Figure 1, split by correlation
structure.

Deterministic solution Stochastic solution

Test Name ρ = 0 ρ > 0 ρ ≷ 0 ρ = 0 ρ > 0 ρ ≷ 0

Germany 01 13772 16130 13552 13388 14812 13077
Germany 02 14246 15922 13565 13732 15710 13190
Germany 04 12448 13566 12645 12139 13556 12213

Molde 01 28210 63165 17824 6449 20898 6156
Molde 02 28727 63623 18177 7046 21340 6574
Molde 04 28643 63527 18102 6595 21088 6278

Montreal r06.1 01 118847 121655 116083 101285 105398 95922
Montreal r06.1 02 108009 110727 105391 87818 93341 85182
Montreal r10.1 01 104465 108639 103366 103536 105220 102748
Montreal r10.1 02 62477 66216 60969 59605 61577 59002
Montreal r10.1 03 74936 78331 73921 71676 73418 71505

Nobel-EU 01 163710 517543 117573 122131 189166 116968
Nobel-EU 02 204476 305544 130275 105638 168372 103345
Nobel-EU 03 300252 639796 143485 96720 160822 94153

NY 01 5813210 10931900 5899210 1675610 3281980 1700720
NY 02 3850040 8315310 2995700 1629340 3225060 1501700
NY 04 5586750 10731400 5691810 1516610 3128730 1483130
US 01 379657 389969 373204 369994 388887 360025
US 02 318592 334225 308236 313412 333110 303356
US 04 358255 373970 349697 353351 373159 344944
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Table 5: Results of Comparison C corresponding to Figure 1, split by correlation
structure.

Deterministic solution Stochastic solution

Test Name ρ = 0 ρ > 0 ρ ≷ 0 ρ = 0 ρ > 0 ρ ≷ 0

Germany 01 13588 15807 13180 13406 14836 13101
Germany 02 13752 16053 13172 13751 15717 13186
Germany 04 12114 13684 11968 12170 13563 11992

Molde 01 6582 21104 6175 6520 20911 6216
Molde 02 7168 21616 6667 7034 21352 6607
Molde 04 6908 21491 6380 6606 21076 6321

Montreal r06.1 01 97268 102469 94633 97280 102753 94745
Montreal r06.1 02 86172 91202 84293 86232 91237 84299
Montreal r10.1 01 107376 109207 106848 103546 105228 102765
Montreal r10.1 02 64556 66634 64130 59659 61593 59018
Montreal r10.1 03 71833 73624 71604 71718 73431 71534

Nobel-EU 01 124432 191719 117573 125304 190475 116983
Nobel-EU 02 106971 170755 103847 105794 169633 103365
Nobel-EU 03 101393 165388 98930 97405 162022 94310

NY 01 1738870 3326650 1761180 1676470 3286030 1705290
NY 02 1632510 3246760 1534730 1629740 3225230 1501700
NY 04 1524290 3143840 1472440 1521280 3128920 1483130
US 01 377252 401183 366298 370814 388883 360311
US 02 317048 341646 306368 313987 333100 303691
US 04 353590 373386 345223 353987 373186 345195

Table 6: The ratios corresponding to Figure 5 split by correlation structure.

Comparison A Comparison B Comparison C

Test Name gk/Ck ρ =0 ρ >0 ρ ≷0 ρ =0 ρ >0 ρ ≷0 ρ =0 ρ >0 ρ ≷0

Germany 01 0.001 1.32 1.29 1.36 1.04 1.01 1.08 1.01 1.06 1.01
0.05 1.27 1.27 1.33 1.02 1.09 1.03 1.01 1.07 1.01
0.25 1.30 1.25 1.33 1.05 1.06 1.12 1.02 1.03 1.01
0.5 1.33 1.29 1.35 1.07 1.07 1.15 1.00 1.00 1.00

0.999 1.40 1.35 1.39 1.03 1.01 1.00 1.00 1.00 1.00

Germany 02 0.001 1.37 1.23 1.42 1.07 1.02 1.09 1.00 1.03 1.00
0.05 1.32 1.20 1.36 1.03 1.01 1.03 1.00 1.03 1.00
0.25 1.31 1.24 1.38 1.01 1.04 1.05 1.00 1.01 1.00
0.5 1.31 1.26 1.34 1.03 1.06 1.09 1.01 1.03 1.01

0.999 1.37 1.33 1.37 1.03 1.01 1.00 1.00 1.00 1.00

Germany 04 0.001 1.47 1.36 1.49 1.05 1.01 1.07 1.00 1.01 1.00
0.05 1.39 1.34 1.45 1.05 1.11 1.11 1.00 1.02 1.00
0.25 1.39 1.34 1.43 1.04 1.10 1.07 1.01 1.03 1.01
0.5 1.40 1.35 1.44 1.02 1.09 1.05 1.02 1.04 1.03

0.999 1.45 1.38 1.45 1.03 1.01 1.00 1.00 1.00 1.00
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Table 7: Ratios corresponding to Figure 5 split by correlation structure, cont.
The asterisk (*) denotes cases where the solver did not finished within 15 days.

Comparison A Comparison B Comparison C

Test Name gk/Ck ρ =0 ρ >0 ρ ≷0 ρ =0 ρ >0 ρ ≷0 ρ =0 ρ >0 ρ ≷0

Molde 01 0.001 16.10 4.57 16.11 2.19 2.01 3.71 1.04 1.01 1.01
0.05 13.69 4.41 14.38 2.53 1.11 1.79 1.02 1.01 1.01
0.25 12.04 4.25 12.06 4.16 1.40 3.00 1.01 1.00 1.00
0.5 10.45 4.04 10.55 3.66 1.35 2.67 1.01 1.00 1.00

0.999 8.52 3.72 9.14 3.05 1.27 2.37 1.00 1.00 1.02

Molde 02 0.001 14.96 4.50 15.10 3.16 3.18 4.77 1.05 1.02 1.02
0.05 13.67 4.40 14.03 2.84 3.10 4.44 1.03 1.02 1.02
0.25 11.49 4.19 11.90 2.45 2.96 3.82 1.03 1.02 1.03
0.5 9.22 3.91 9.64 1.93 1.33 1.86 1.02 1.00 1.04

0.999 8.02 * * 3.02 * * 1.00 * *

Molde 04 0.001 15.92 4.55 15.87 3.27 3.20 5.01 1.08 1.03 1.02
0.05 14.60 4.46 14.57 3.03 3.14 4.62 1.07 1.03 1.03
0.25 11.84 4.20 11.93 4.13 1.39 3.01 1.02 1.00 1.04
0.5 10.15 3.99 10.44 3.59 1.34 2.68 1.02 1.00 1.05

0.999 8.17 3.68 8.05 2.30 1.33 2.41 1.03 1.01 1.04

Montreal r06.1 01 0.001 1.40 1.36 1.43 1.05 1.05 1.02 1.00 1.00 1.00
0.05 1.39 1.36 1.43 1.04 1.04 1.01 1.00 1.00 1.00
0.25 1.39 1.35 1.42 1.03 1.03 1.01 1.00 1.00 1.00
0.5 1.38 1.34 1.42 1.02 1.03 1.00 1.00 1.00 1.00

0.999 1.38 1.34 1.44 1.01 1.02 1.00 1.00 1.00 1.00

Montreal r06.1 02 0.001 1.50 1.46 1.53 1.06 1.06 1.02 1.00 1.00 1.00
0.05 1.50 1.45 1.53 1.05 1.06 1.02 1.00 1.00 1.00
0.25 1.49 1.45 1.52 1.04 1.05 1.01 1.00 1.00 1.00
0.5 1.48 1.44 1.52 1.03 1.04 1.00 1.00 1.00 1.00

0.999 1.48 1.43 1.53 1.02 1.03 1.00 1.00 1.00 1.00

Montreal r10.1 01 0.001 1.14 1.13 1.14 1.03 1.05 1.02 1.00 1.00 1.00
0.05 1.13 1.12 1.13 1.02 1.03 1.01 1.00 1.00 1.00
0.25 1.13 1.12 1.13 1.02 1.02 1.00 1.00 1.00 1.00
0.5 1.13 1.12 1.14 1.02 1.02 1.00 1.00 1.01 1.00

0.999 1.15 1.14 1.15 1.01 1.01 1.00 1.00 1.00 1.00

Montreal r10.1 02 0.001 1.35 1.32 1.36 1.08 1.10 1.06 1.00 1.00 1.00
0.05 1.34 1.31 1.36 1.03 1.03 1.02 1.00 1.00 1.00
0.25 1.33 1.30 1.35 1.02 1.02 1.01 1.00 1.00 1.00
0.5 1.33 1.30 1.35 1.01 1.02 1.00 1.00 1.00 1.00

0.999 1.34 1.31 1.36 1.00 1.01 1.00 1.00 1.00 1.00

Montreal r10.1 03 0.001 1.33 1.30 1.33 1.02 1.02 1.01 1.00 1.00 1.00
0.05 1.33 1.30 1.33 1.03 1.02 1.03 1.00 1.00 1.00
0.25 1.32 1.29 1.32 1.03 1.03 1.03 1.00 1.00 1.00
0.5 1.31 1.29 1.31 1.02 1.03 1.02 1.00 1.00 1.00

0.999 1.31 1.29 1.31 1.02 1.02 1.01 1.00 1.00 1.00

Nobel-EU 01 0.001 12.50 9.02 14.59 1.21 1.51 1.36 1.02 1.01 1.01
0.05 11.24 8.58 13.58 1.16 1.26 1.11 1.02 1.01 1.00
0.25 9.89 7.88 11.04 1.35 3.22 1.00 1.02 1.02 1.00
0.5 8.58 7.43 10.12 4.28 6.81 3.00 1.03 1.02 1.07

0.999 7.61 6.81 9.11 3.80 6.23 2.74 1.01 1.00 1.11
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Table 8: The remaining ratios corresponding to Figure 5 split by correlation
structure

Comparison A Comparison B Comparison C

Test Name gk/Ck ρ =0 ρ >0 ρ ≷0 ρ =0 ρ >0 ρ ≷0 ρ =0 ρ >0 ρ ≷0

Nobel-EU 02 0.001 16.17 10.45 16.01 3.70 4.95 4.99 1.02 1.01 1.01
0.05 14.74 10.03 14.85 3.06 4.20 1.50 1.01 1.00 1.00
0.25 12.52 9.13 12.87 2.55 2.40 1.39 1.02 1.01 1.00
0.5 10.83 8.33 11.58 2.24 2.21 1.30 1.00 1.00 1.00

0.999 9.34 7.51 9.89 1.98 2.03 1.18 1.00 1.00 1.00

Nobel-EU 03 0.001 16.68 10.78 16.95 4.41 5.59 6.19 1.01 1.01 1.01
0.05 15.68 10.41 15.96 3.19 4.32 1.56 1.00 1.00 1.02
0.25 13.35 9.52 13.90 2.66 2.46 1.43 1.04 1.02 1.02
0.5 11.65 8.74 12.28 2.35 2.28 1.31 1.03 1.02 1.01

0.999 9.82 7.72 10.27 2.04 2.06 1.17 1.00 1.01 1.01

NY 01 0.001 22.52 8.73 23.11 5.17 3.65 5.24 1.03 1.01 1.01
0.05 20.55 8.45 21.39 4.74 3.54 4.86 1.03 1.01 1.01
0.25 17.71 7.97 17.91 4.13 3.36 4.13 1.03 1.02 1.03
0.5 14.97 7.46 16.11 6.02 3.70 7.95 1.00 1.00 1.01

0.999 12.58 6.77 14.13 5.22 3.41 7.08 1.02 1.01 1.02

NY 02 0.001 25.80 9.14 25.09 4.73 4.46 1.67 1.05 1.02 1.00
0.05 23.63 8.88 23.11 6.96 4.55 2.98 1.06 1.02 1.01
0.25 18.79 8.21 20.10 4.81 2.70 3.04 1.03 1.01 1.01
0.5 16.44 7.66 17.71 2.63 2.66 2.19 1.01 1.01 1.03

0.999 14.12 7.02 15.10 5.53 3.48 7.47 1.01 1.00 1.02

NY 04 0.001 27.91 9.34 26.74 5.95 3.81 5.66 1.02 1.01 1.03
0.05 25.38 9.07 24.78 5.43 3.71 5.26 1.01 1.00 1.02
0.25 20.58 8.38 20.73 4.55 3.50 4.69 1.03 1.01 1.05
0.5 17.75 7.82 18.24 3.98 3.29 4.18 1.00 1.00 1.03

0.999 14.73 7.10 15.61 3.55 3.04 3.69 1.00 1.00 1.00

US 01 0.001 1.12 1.06 1.15 1.03 1.00 1.03 1.02 1.03 1.02
0.05 1.09 1.06 1.13 1.01 1.00 1.02 1.00 1.00 1.00
0.25 1.08 1.06 1.11 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.09 1.07 1.12 1.00 1.00 1.00 1.00 1.00 1.00

0.999 1.15 1.11 1.16 1.03 1.02 1.07 1.03 1.02 1.07

US 02 0.001 1.11 1.05 1.14 1.02 1.00 1.01 1.01 1.02 1.01
0.05 1.11 1.07 1.13 1.02 1.01 1.01 1.01 1.03 1.01
0.25 1.10 1.07 1.13 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.11 1.07 1.13 1.00 1.00 1.00 1.00 1.00 1.00

0.999 1.14 1.10 1.17 1.00 1.00 1.00 1.00 1.00 1.00

US 04 0.001 1.11 1.07 1.13 1.02 1.00 1.01 1.00 1.00 1.00
0.05 1.08 1.07 1.11 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.09 1.07 1.12 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.12 1.08 1.15 1.02 1.00 1.04 1.02 1.00 1.02

0.999 1.16 1.13 1.18 1.00 1.00 1.00 1.00 1.00 1.00
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Abstract

This paper examines the single-commodity network design problem with stochas-
tic edge capacities. We characterize the structures of the optimal designs and com-
pare with the deterministic counterparts. We do this primarily to understand what
constitutes robust network designs, but hope that the results can be used also to de-
velop better heuristics than those available today.

Keywords: Single-commodity network design, Survivable networks, Edge fail-
ure, Correlations, Robustness

1 Introduction
Many important physical networks, such as distribution networks for water, oil and gas
pipelines, road system, or distribution channels are integral parts of our lives. These net-
works are made to last for a long time and are often subjected to daily routine operational
decisions. If any parts of these networks are down, major portion of society will be af-
fected. Focus on cost savings tends to make these networks sparser, and hence also more
vulnerable to any kind of disruption, failure, maintenance, congestion, etc that may occur
(see discussions in Ball, Colbourn, and Provan (1995) and Balakrishnan, Magnanti, and
Mirchandani (1998)). The owners of these networks must therefore design and maintain
them, often under strict budgetary regimes, so that they work well even in the case of re-
duced capacities or broken links in the network. Hence, in our view, there is an increased
need to understand what constitutes a good design in light of random capacities. In partic-
ular, we wish to see if it is important to use models explicitly expressing the randomness
in capacities when designing the networks. And if the answer is yes, we would like to un-
derstand in what ways the designs from deterministic design models fall short of designs
from models explicitly considering the uncertainty.
∗Molde University College, biju.k.thapalia@himolde.no
†University of Quebec at Montreal
‡Molde University College
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Two terms which are used frequently in case of network failures are reliability and
survivability. Reliability is the probability that a network functions according to a speci-
fication. Survivability is the ability of a network to perform according to a specification
after it has been damaged. Reliability is a measure of the service provided by the network
and survivability is a measure of the network itself. Hence, higher level of reliability
depends upon higher degree of survivability.

Good robust designs trade off deterministic initial costs versus expected future costs
in a good way. Most often, by increasing initial costs, the network is provided with more
operational flexibility, and expected future costs decrease. Optimality is achieved when
additional initial investments cost more than what is gained operationally. (Note though,
that at times uncertainty induces lower initial investments. This may for example take the
form of postponements of decisions.) The best way to have a high degree of survivability
in a network is to have many links between the nodes of the network, i.e., a dense network,
but this increases the cost to built the network. So it is expensive to built a network with a
high level of survivability, but of course, the operational costs in light of disturbances will
decrease. More important to this paper, though, is that many networks, having the same
initial investment costs, may react very differently to disturbances. So even though it is
clear that many links will increase the quality of a network, we would like to understand
what characterizes a good way to increase the number of links. And, again, we would like
to understand if deterministic models will guide us well in designing the networks, or if
they will lead us astray.

Stochastics in a network may arise both in terms of supply/demand and edge capaci-
ties. The latter, which is what we discuss in this paper, may be in the form of edges being
on/off or in terms of capacities being a random fraction of the maximal capacity, repre-
senting such as broken cables and damaged roads. The on/off situation may cover both
capacitated and uncapacitated edges. Clearly, for capacitated edges, the on/off situation
is a special case of the random capacity case where there are only two possibilities, no ca-
pacity or full capacity. The latter is sometimes referred to as a binary state system, while
with many possible capacities it is referred to as a multi-state system. For more informa-
tion about the multi-state system refer to the book by Lisnianski and Levitin (2003). We
consider the case of capacitated edges with random edge capacities, and hence includes
also the on/off capacitated case.

There are many application areas where network design with random edge capaci-
ties are important. Possibly the most famous one is the design of survivable networks
in telecommunications. Much of this work originates with Suurballe and Tarjan (1984).
Refer to Balakrishnan et al. (1998), Clarke and Anandalingam (1995) and Myung, Hyun-
joon., and Dong-wan. (1999) for a more detailed understanding and many variations and
extensions. Water, oil, and gas distribution system are other central cases. If we drop the
pressure constraints, these pipeline design problems simplify and can be expressed as sin-
gle commodity design problems with underlying linear single commodity flow problems
(Brimberg, Hansen, Lih, Maldenović, and Breton, 2003).

A water pipeline network spans different consumers, of which some are very sensi-
tive to disruption in supply, such as hospitals and certain industries. Disruption in the
supply arise due to pipeline ruptures, leakages or blockage, which affect the overall flow
in the network. Many studies are done on designing optimal and reliable water distribu-
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tion systems (Chung, Lansey, and Bayraksan, 2009, di Pierro, Khu, Savić, and Berardi,
2009, Montalvo, Izquı́erdo, Pérez, and Tung, 2008). A seminal paper in gas distribution
is by Rothfarb, Frank, Rosenbaum, Steiglitz, and Kleitman (1970). The papers by Wolf
and Smeers (1996), Martin, Möller, and Moritz (2006) and Brimberg et al. (2003) show
the design issues of oil\gas distribution networks. The work by Midthun, Bjørndal, and
Tomasgard (2009) shows how the network structure and the physical properties effects the
operation and development of natural gas transportation networks. Logistics network de-
sign with robustness consideration (Meepetchdee and Shah, 2007) is another application
area. The paper by Chen, Yang, Lo, and Tang (1999) discuss the reliability of transport
networks with random link capacity. Many applications are also seen in network inter-
diction problems (Cormican, Morton, and Wood, 1998, Ramirez-Marquez and Rocco S.,
2009, Smith, Lim, and Sudargho, 2007), as well as the protection of network systems
from natural disasters. Examples of the latter are retrofit of highway bridges for increased
robustness of the transportation system (Liu, Fan, and Ordonez, 2009), and evacuation
planning for emergencies (Andreas and Smith, 2009).

In their work on fleet management (see for example Cheung and Powell (1996)) Pow-
ell and his co-authors use random edge capacities to represent random demand. Bounds
on the recourse problem in this situation is discussed in Wallace (1987).

It is evident that a network with random edge capacities must function reasonably
well in many situations with partial or full breakdown of capacities. A common way to
investigate this situation is to perform single- or multi-parameter sensitivity analysis in
order to understand how the optimal solution changes as a function of these breakdowns.
This approach might seem appropriate, but in fact it is not. This is outlined in detail in
Wallace (2000) and Higle and Wallace (2003). Logically, when performing sensitivity
analysis one is assuming that the design can be postponed until after breakdowns have
become known. This is hardly ever pointed out, though. So, whether sensitivity analysis
is performed or not, one ends up with a solution not created for robustness, and hence,
may have to face difficult operational decisions when breakdowns occur.

Much of the literature in the field of survivable networks discuss different heuristics
but do not address the resulting network structure. We know that a deterministic solution
might perform very badly when used in a stochastic environment, that is, when subjected
to the uncertainties that were suppressed when the deterministic model was solved, see
for example Thapalia, Crainic, Kaut, and Wallace (2009a). The reason is simply that
it is not made to handle uncertainties in a good way. This paper studies the structural
differences between stochastic and deterministic designs, in order to understand what
flexibility means in the optimal network structure for a single commodity flow problem
with single or multiple sources and sinks. We also hope that this can be used to develop
heuristics for the stochastic case.

The remainder of the paper is organized as follows. Section 2 explains the problem in
detail with the mathematical formulation. Section 3 explains the experimentation set-ups
and scenario generation. Section 4 lists the computational results with discussions and
finally Section 5 will conclude the paper.

Single-commodity ND with random edge capacities 93



2 Problem description and Modeling issues

Given a set of nodes (divided into source nodes, demand nodes, and transshipment nodes)
and a set of potential edges connecting these nodes, the single-commodity network design
problem with random edge capacities is the problem of determining a subset of the edges
to open (including the edges’ capacities), so as to fulfill the demand at the demand nodes at
minimal cost, taking into account capacities of the source nodes and the potential failures
of the edges.

The design is based on minimizing the sum of the fixed costs of selecting edges con-
necting the nodes; linear costs to open capacities in the edges; per unit flow costs on the
edges; and per unit penalty costs for not satisfying demand. Not satisfying demand can
have many interpretations, such as sending the flow at a later point in time, with another
mode, or a straightforward rejection. In any case, in the model, it takes the form of a
penalty cost per unit of unsatisfied demand. We find it crucial to include the possibility of
not satisfying all the demand, as it is unlikely to have a network which satisfies all demand
in all situations (see Thapalia et al. (2009a) for more discussion). The same formulation
is used in both the stochastic and deterministic models, to make the results comparable.
We view supply as a capacity, and hence, do not consider unused supply as a problem.

When we wish to compare a stochastic network design model with its deterministic
counterpart, we need to be careful about how we define the deterministic model. For
random demand, this is not so difficult. If historical data is available, for example, demand
will usually be the average observed demand (or possibly some other forecasted demand
based on the history). Hence, it is not unreasonable to compare the stochastic model with
a deterministic model where all demands are replaced with their mean values.

It is not quite as easy for the case of random edge capacities. If the starting point
is the stochastic model, and we ask ”What is the natural deterministic counterpart?”, the
answer is most likely a model where edge capacities are replaced by their means. But
if the starting point is that of setting up a deterministic network design model (possibly
realizing that edges might fail, but not wanting to model it), it is rather likely that edges
will be treated with capacities equal to their capacities when they are fully operational,
that is, their maximal capacities from a stochastic perspective. One will argue: This edge
costs a$ and has a capacity of b. One will not use expected capacity taking possible
failures into account. So in what follows, for each stochastic case, we shall consider two
deterministic cases: average capacity and maximal (design) capacity.

We shall let all source nodes (in the case of multiple sources) have the same capacity.
Hence, our assumption is that a set of demand nodes will have their demands satisfied
from a set of equally-sized source nodes through edges with random capacities. We have
chosen this approach to prevent our optimal designs from being affected by variations
(across nodes) in a parameter which is not the primary focus of the paper. So, the first
stage decisions in this problem are to decide which edges to open and what capacities
to install. The second stage decisions are the flow decisions in the given network. The
recourse action here is described by a penalty cost incurred for not satisfying demand.

A word of warning might be in place here. If a stochastic optimization problem, as
well as its deterministic counterpart (where all random variables are replaced by their
means or some other related values), use hard constraints in the formulation (for example
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requiring that demand must be met), the optimal design from the deterministic program
will normally be infeasible in the stochastic program, and hence, its expected cost be in-
finitely large. In our context that will be caused by the network not having enough capac-
ity to satisfy all demand in scenarios with many edges at low capacity. On the other hand,
if soft constraints are used (allowing demand to be rejected at a cost), the deterministic
solution will normally be feasible in the stochastic model, but its expected performance
can be made arbitrarily bad by choosing large penalties on the soft constraints (unsatisfied
demand). Hence, if the goal is to make the deterministic solution look bad, that is easy to
achieve. However, that is not our goal. So we set the penalties at reasonable levels, and
our goal is not to (again) show how bad the deterministic solution is, but to understand
its relationship to its stochastic counterpart. So, we shall certainly present numbers, and
we do believe the numbers are informative. However, there will never be really objective
results in this setting. There will always be a subjective element.

2.1 Mathematical formulation
Let G = (N ,E ) be a network defined by a set N of n nodes and set E of m edges
(undirected arcs), where

E ⊂ {k = (i, j) : i ∈N , j ∈N and i < j} .
Each edge is indexed either by i, j or by k.
The randomness in the edges is described by a set of scenarios S , where each indi-

vidual scenario s ∈ S has one capacity realization for each edge. We shall discuss in
Section 3.2 how the scenarios were generated. The notations for the sets, parameters, and
variables associated with this problem are as follows:

Sets:
C set of all source nodes;
D set of all demand nodes;
T set of all nodes with zero demand (transshipment nodes); T = N \ (C ⋃D);
S set of all scenarios s.

Parameters:
M “big M”;
R unit cost of unsatisfied demand;
Ps probability of scenario s ∈S ;
Ck flow cost on edge k ∈ E ;
Gk fixed setup cost for edge k ∈ E ;
Hk variable setup cost; the cost for adding one unit of capacity to edge k ∈ E ;
Vk initial/ existing capacity on edge k ∈ E , if any;
Di demand (Di < 0) in node i ∈D ;
D supply in each source node, D > 0;
∆s

k the portion of capacity on edge k ∈ E that works in scenario s.
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Variables:
xs

k = xs
i j flow on edge k = (i, j) ∈ E going in direction i→ j, in scenario s ∈S ;

zs
k = zs

i j flow on edge k = (i, j) ∈ E going in direction j→ i, in scenario s ∈S ;
uk new capacity that is developed on edge k ∈ E ;
es

i for i ∈D , this is the unsatisfied/lost demand in node i in scenario s ∈S ;
for i ∈ C , this is the unused capacity of source node i in scenario s ∈S ;

yk 1 if edge k ∈ E is developed, 0 otherwise.

We assume that total supply, coming from equally-sized source nodes equals maximal
demand in the network, so that

D = {− ∑
j∈D
{D j}}/|C | (1)

where |C | is the number of source nodes.

Our overall problem is hence:

min∑
k

Gkyk +∑
k

Hkuk +∑
s

Ps

{
∑
k

Ck (xs
k + zs

k)+R ∑
i∈D

es
i

}
(2)

Subject to:

∑
j:(i j)∈E

(
xs

i j− zs
i j
)
− ∑

j:( ji)∈E

(
xs

ji− zs
ji
)
=





0 ∀i ∈T ,∀s ∈S

D− es
i ∀i ∈ C ,∀s ∈S

Di + es
i ∀i ∈D ,∀s ∈S

(3)

xs
k + zs

k ≤ ∆s
k (uk +Vk) ∀k ∈ E ∀s ∈S (4)

uk ≤Myk ∀k (5)
0≤ es

i ≤−Di ∀i ∈D ; ∀s (6)
xs

k,z
s
k,uk,es

i ≥ 0 and yk ∈ {0,1} ∀k;∀i;∀s (7)

The objective function (2) minimizes the total costs of the network. The first part is
the costs of constructing all new edges, the second part the costs of building all the new
capacities, the third part the expected flow costs through all the edges and the fourth part
is the expected penalty costs of not fulfilling demand. Constraints (3) model conservation
of flow at nodes. The left-hand side is the net outflow from node i, which must be zero
for all the transshipment nodes i ∈T and is equal to the unused capacity for source node
i ∈C . For the demand nodes, the net outflow must be equal to the satisfied demand; since
Di is negative in this case, the right-hand side is the a difference between the scenario
demand Di and the (positive) unsatisfied demand es

i .
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Constraints (4) represent the flow limit in each edge. The left hand side of the equation
is the net flow on the edge k which should be less then or equal to the total capacity of the
edge. Since we do not start with any initial/existing capacity, we always have Vk = 0. Note
that in an optimal solution, an edge will never have flow in both directions. Constraints
(5) show that new capacity uk can be developed only if edge k is built. Constraints (6) give
bounds for the rejection amount and finally, (7) insure that all variables are non-negative
and the edge constructions binary.

For the deterministic counterpart (as mentioned in Section 2) we replace the stochastic
edge capacities by their expectations and their maximal values, resulting in two separate
deterministic cases.

We model the problem in AMPL and solve it to optimality using CPLEX 9.0. The
solution time varies from few seconds to 5 hours depending on the case, on a PC with
3 GHz Intel R© CPU and 8 GB of RAM.

3 Experimentation and Scenario generation

In this section we first discuss the test cases and their sources before turning to scenario
generation and the question of stability relative to the chosen scenarios. Our tests are
designed to achieve two goals: Firstly, we wish to understand how deterministic designs
perform in stochastic environments and to what extent information from deterministic de-
signs are useful for the stochastic problem. Secondly, our goal with these tests is to be able
to characterize the stochastic designs, so we can qualitatively describe good designs and
use this knowledge to evaluate a given design without making any serious calculations.

3.1 Test instance generation

We took five different networks used in Thapalia et al. (2009a) and Thapalia, Crainic,
Kaut, and Wallace (2009b). The networks named Germany, Nobel-EU, France, and Pdh
are telecommunication examples from the SNDlib library (Orlowski, Pióro, Tomaszewski,
and Wessäly, 2009), and Montreal r06 is obtained from CIRRELT (Interuniversity Re-
search Centre on Enterprise Networks, Logistics and Transport), Montreal. The names,
as such, of the test networks do not mean anything in our computational setup.

In total 76 test instances are constructed using the above five networks. These test
instances are created in the following way: for each of the five networks, we created
single-source and multi-source test cases by selecting one or multiple source nodes. This
way we created 38 test instances of which 20 are single-source and 18 are multi-source.
Since we know that correlations may play important roles in the design of a network,
we created positive correlated and uncorrelated cases for each instance. In the case of
positive correlation, adjacent edges are given correlations of 0.5, while edges which are
separated by one edge are given correlations of 0.2. Edges which are separated by two
edges have a correlation of 0.1. This is a natural setting for natural calamities. Whenever
one edge is hit hard, there is a chance that also nearby edges are hit, see for example Che,
Yang, Lo, and Tang (2002). In this way we get 76 test instances, of which 40 are for the
single-source case and 36 are for the multi-source case.
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It is worth noting that all these networks are multi-commodity network design prob-
lems, so to suit our problem only some parameter values are used. We only kept the
coordinates (where available) for the nodes and the fixed setup cost Gk for the edges. The
values for the other parameters – variable setup costs Hk and flow costs Ck – are all chosen
proportional to the Euclidean distance between the node pairs. The cost of unfulfilled de-
mand R is derived for each test cases using some multiple of the highest value of the fixed
setup cost, variable setup cost, and unit flow cost together for an edge in the network. We
made sure that R is not driving the solution. The results in the first part of section 4.1 are
based on test cases with these cost structures.

The Montreal test instance does not have node coordinates, so we used Graphviz
(Gansner and North, 2000) to draw the graph using fixed setup cost as distance measure.
The graphs of the test instances coming from Nobel-EU are planar whereas the other
graphs are non-planar. A closer description of the test instances are found in Table 1.

Table 1: The different test cases. The basic names are kept as in the source, even
though the cases are adjusted to our needs.

Problem name # nodes # edges # demand nodes # sources # test instances

Germany SS 29 48 10 1 4
Germany MS 29 48 10 3 4
France SS 16 30 10 1 4
France MS 16 30 10 3 3
Montreal r06.1 SS 10 38 5 1 4
Montreal r06.1 MS 10 38 7 3 3
Pdh SS 11 30 7 1 4
Pdh MS 11 30 7 4 4
Nobel-EU SS 28 38 8 1 4
Nobel-EU MS 28 38 8 4 4

In the case of single-source networks, we selected four potential source nodes. When
one of them is source node, the rest are transshipment nodes. And for the cases of multi-
source networks we selected four (or three for Montreal r06 and France) sets of source
nodes to make four (or three for Montreal r06 and France) test instances from each net-
work. The number of source nodes for each case is listed in the fifth column of Table 1.
In the pictures that will follow, the distance between two nodes reflects not only the actual
distance, but also the levels of the variable setup costs and flow costs. If an edge is twice
as long as another, it is also twice as costly with respect to these two costs.

Given the difficulty of solving the stochastic network design problem to optimality
we kept n (the number of nodes) below 30 and m (the number of edges) below 50 for the
cases.

3.2 Scenario generation and Stability test
Stochastic programs need discrete probability distributions. A scenario is a vector of
length m containing a possible capacity for each edge. We have created scenarios with
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equal probabilities of occurring, using a variant of the moment-matching method from
Høyland, Kaut, and Wallace (2003).

Lacking specific knowledge, we have chosen a triangular distribution on the [0,1]
interval, with mode at one, which gives an expected value of 0.67. Note that a mode below
one would imply that the edge (in the continuous case) has an extremely low probability of
being close to fully operational. We feel the chosen distribution is a reasonable description
of edge failures.

The decision on the number of scenarios used to represent the stochastics is critical
as we want to be sure we study the effects of randomness on our model, and not some
random side-effect of the scenario generating procedure. For a given scenario generation
procedure, there is normally a trade-off between the number of scenarios representing the
underlying distribution and the time needed to solve the stochastic program to optimality.
As we increase the number of scenarios, we increase the quality of the representation of
the distribution, but also decrease the chance to solve the model to optimality within a
manageable time. The task is thus to find the smallest number of scenarios that still gives
solutions that are both in- and out-of-sample stable, in the sense described in Kaut and
Wallace (2007).

We ran our in-sample stability test with different numbers of scenarios and ended up
with 200, considering the solution time and stability. The deviation (measured by standard
deviation of the objective values of all runs divided by the mean of the objective values)
in all cases are less then 1% except for the case of Montreal r06, where it is 1.5% for
single-source cases and 2% for multi-source cases. Out-of-sample stability tests, using a
reference tree with 2000 scenarios, are all within 1%. With these values, we are satisfied
that we have stability.

3.3 Comparison Tests
As outlined in the Introduction, the deterministic solution, by construction, has a worse
expected behavior than its stochastic counterpart. However, we would like to understand
more about why this is the case, and in what sense it is worse. This is partly motivated
by what we found in Thapalia et al. (2009a) and Thapalia et al. (2009b) where we dis-
cussed random demand: The edges (if not their capacities) from the deterministic solution
provided a good starting point for the stochastic case. This is unusual.

In order to check the quality of the deterministic designs, as well as comparing them
to the stochastic ones, we have set up two tests, named comparisons. Whenever a com-
parison is performed, we take the deterministic and stochastic designs – or parts thereof
– (i.e. the first-stage solutions) and evaluate them using reference trees – in our case trees
with 2000 scenarios, to make sure we have good approximations of the true distributions.
The costs from the design and evaluation phases are added up, making the reported costs
comparable across all tests.

A The classical test where the whole first-stage solution is evaluated out-of-sample.
This amounts to solving a 2000-scenario stochastic program with all first-stage vari-
ables (designs and capacities) fixed, so in fact this equals the solution of 2000 inde-
pendent second-stage problems. Since the second stage does not involve any integer
variables, this is very fast.
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B Only information on which edges should be opened is imported from the first stage.
So, in a 2000-scenario stochastic program, all discrete variables y describing opened
and closed edges—we call it a skeleton—are fixed and the stochastic program is run.
So the model is allowed to install any capacity on the opened edges (also lower than
in the deterministic case), but not to open new ones.

Applied on the deterministic solution, Comparison A is the classical test of the quality
of the deterministic solution. The purpose of Comparisons B is to check if the determinis-
tic solution possibly has a good structure, but badly chosen capacities (typically too low).
If this is the case, the skeleton can be found using a deterministic model, and then capac-
ities set in a stochastic linear model. Algorithmically, this is much simpler than solving
a stochastic mixed-integer model. Of course, if the skeleton is good, it also provides in-
formation about the relationship between the stochastic and deterministic models of the
same problem.

In what follows, we discuss the major findings, details are given in the Appendix.
Our first need is to understand the relationship between the stochastic and deterministic
solutions.

For each of the 38 test instances, we solve two deterministic problems, one with full
capacity available and the other with the mean (in our case 67% of full) capacity on each
edge. These choices were motivated in Section 2. In addition, we solve two stochastic
versions of each instance, one with uncorrelated and one with positively correlated edge
failures. For each stochastic versions, we take the solution of the stochastic model and
the two deterministic solutions and evaluate them out-of-sample on the reference tree, i.e.
a tree with 2000 scenarios and the same correlations as those used to solve the stochastic
programs.

Our measure of the quality of a solution (or a partial solution like a skeleton) will be
the ratio between the expected costs using the deterministic solution and the expected
costs using the stochastic solution. As the expected costs are never close to zero in
our problems, there is no danger of running into problems amounting to a division by
zero. Note that since both the stochastic and deterministic solutions are evaluated out-of-
sample, the ratio might become slightly smaller than 1.

We also want to explore the relationship between the variable setup cost and the per-
formance of the deterministic skeleton in the stochastic environment. The hypothesis is
that as the variable setup costs increase, the stochastic skeleton will look increasingly like
the deterministic one (which is a tree) due to the cost of opening more capacity than what
is absolutely necessary. Similarly, as the variable setup costs increase, the deterministic
skeleton will tend toward the stochastic one, in terms of number of open edges, as it is
(relatively speaking) governed more and more by installed capacity and less and less by
the number of opened edges. In other words, we postulate that as variable setup costs
decrease, the expected behavior of the deterministic skeleton in a stochastic setting be-
comes increasingly bad, and this is true for both multi- and single-source cases. And as
the variable setup costs increase the deterministic skeleton will perform better, more so
for multi-source case than the single-source case.

For this, we start with the above discussed test cases which we define as base cases.
From each base case we make five additional test cases by taking 33%, 66%, 133%, 166%
and 200% of the variable setup cost of the base case.
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Figure 1: Results of the Comparison A Tests. Quality of the solutions to the de-
terministic problems with full (top) and mean (bottom) edge capacities, measured
as a ratio of their out-of-sample costs relative to the costs of the corresponding
stochastic solutions.

Certainly, the mean-capacity deterministic problem is equivalent to the full-capacity
deterministic problem with 1/0.67 = 1.5 times higher variable setup costs. So this para-
metric analysis of variable setup costs contains the analysis of the relationship between
the two deterministic cases. However, to keep the interpretations apart, we have chosen
this approach instead of reading one set of deterministic results from within the results of
the other.

4 Computational Results
We present our computational results with discussion.

4.1 Inheritance from the deterministic solutions
The deterministic solution behaves badly in the stochastic environment, while inheriting
the deterministic structures, the skeletons, is rather good for both the single- and multi-
source cases, see Figures 1 and 2. In Figure 1 we see that both deterministic designs
are bad but there are some differences. We observe clearly that when mean capacities
are used, results are better (around 2.5 times higher on average for both the single- and
multi-source cases) than when the full capacities are used (around 4 to 4.25 times higher
on average). The reason is simply that when mean capacities are used, the edges seem
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Figure 2: Results of the Comparison B Tests. Quality of the solutions to the de-
terministic problems with full (top) and mean (bottom) edge capacities, measured
as a ratio of their out-of-sample costs relative to the costs of the corresponding
stochastic solutions.

to have less capacity, and hence more is installed. And as we have observed in earlier
papers—and that will be confirmed here—deterministic designs do not only suffer in
terms of structure (skeletons) but also in terms of too low capacities. So doing what many
practitioners do—run deterministic models with a pessimistic view on edge capacities—is
indeed a good idea.

From Figure 1, we also observe that the single-source case performs better than the
multi-source one for Comparison A for both deterministic versions. This observation is in
line with our previous work on random demand (Thapalia et al., 2009b), where we found
that as the number of source nodes increases, the deterministic network designs behave
steadily worse. The reason is that while the deterministic skeleton is a tree for the single-
source case, it is generally a forest with rather shallow trees in the multi-source case.
And in a stochastic environment the forest simply does not provide enough connections
to satisfy demand in the case of highly variable capacities. The negative effects of a forest
are less pronounced than in the case of random demands, though, as the demand within a
tree does not change.

Figure 2 shows that when we use the deterministic skeleton and apply a stochastic
program to set capacities, the results are rather good, implying that the skeletons perform
quite well. We can also see that the multi-source cases do better than the single-source
cases. This observation holds for most of the tested levels of variable costs, as shown in
Figure 3. There, we can also observe that when variable setup costs are only 33% of the
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Figure 3: Graph of Comparison B test values for different variable setup cost.
The X-axis shows the percentage of variable setup cost as compared to the base
case and the Y -axis the quality of the solutions to the deterministic problems with
full (top) and mean (bottom) edge capacities, measured as a ratio of their out-of-
sample costs relative to the costs of the corresponding stochastic solutions.
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base case costs, the losses are comparable and higher than for higher variable setup costs.
As the variable setup costs increase, the loss of using a deterministic skeleton decreases,
and more so for the multi-source case. This is true for both maximal and mean value
edge capacities. This observation confirms that the quality of a design is a function of
both connectivity and capacity. When the variable setup cost is low, the deterministic
designs are guided by the shortest routes in terms of fixed costs of opening the edges,
and the resulting skeletons perform relatively badly in a stochastic environment. But
when variable setup costs increase the deterministic designs change. They are no longer
primarily guided by the shortest routes in terms of fixed setup costs (mostly implying as
few edges as possible), but also edge capacity costs. This results in more edges being
opened as total installed capacity, rather than the number of edges with capacity is the
primary driver of costs. These skeletons, when used in a stochastic environment, perform
better as they contain more connections. In the multi-source case this happens more
quickly because there are more edges than in the single-source case. Again, since the
demand does not vary within each small tree in the forest, contrary to the case with random
demand, the fact that the trees effectively cut the design into smaller parts is not a problem.
So what is needed here is high density (many paths) and enough installed capacity within
each tree to make sure the demand within the tree is satisfied with a high probability so as
to achieve low penalty costs.

4.2 Structural Characteristics

This section examines the structures of the deterministic and stochastic network designs
from the tests mentioned in Section 3.1 and focuses on a few important observations
which shed light on the characteristics of the stochastic designs under random edge ca-
pacities.

Deterministic structures with maximal and mean value capacities

Though not very surprising, it is interesting to note that there are some differences be-
tween the skeletons based on maximal edge capacity and those based on mean capacity.
The designs with mean capacity have higher installed capacities. This is natural since the
reduction in actual edge capacities causes higher installed capacities.

As mentioned before, the mean-capacity deterministic problem is equivalent to the
full-capacity deterministic problem with 1/0.67 = 1.5 times higher variable setup costs.
Hence, also Figure 3 sheds light on the relationship between the two deterministic solu-
tions.

Network Density

We observe that stochastic designs (multi-source as well as single-source cases) have
more edges than their deterministic counterparts and also have higher installed capacities
per open edge. In Table 2, the second, third, and fourth columns show that stochastic de-
signs have more edges than their deterministic counterparts. Similarly, columns five, six,
and seven show that installed capacity per open edge is higher in the stochastic designs ex-
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Table 2: Average number of edges and average capacities installed per open
edge for all tests in each case. SS and MS denotes single-source and multi-source
cases. The parameter ρ refers to correlations in stochastic cases.

Number of edges Capacity per edge

det. ρ≥0 ρ =0 det. ρ≥0 ρ =0

France SS 11.75 16.25 18 624 1096 843
Germany SS 16.75 28.75 32.75 7 5 4

Montreal r06 SS 5.5 9.5 10 104 162 111
Nobel-EU SS 13.62 25.25 29 28 24 18

Pdh SS 7.37 9.5 10.5 131 186 154

France MS 13 17 17.67 475 745 646
Germany MS 19 32.25 36 5 4 3

Montreal r06 MS 7 9 9.33 53 188 130
Nobel-EU MS 15.75 23 25.5 13 19 15

Pdh MS 7.89 8.75 9 87 170 159

cept for the cases of Germany (both for multi- and single-source case) and Nobel-EU SS.
However, in all cases we find a higher total installed capacity in the stochastic designs.

The reasons for this is firstly that with more edges in the network, there are alternative
ways to reach demand nodes in the event of reduced edge capacities. And secondly, higher
installed capacities insure that there are reasonably high capacities reaching the demand
nodes even when there are faults in the edges.
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Figure 4: Network Density. Uncorrelated (left) and positively correlated (right)
stochastic structure of Nobel-EU showing higher number of edges for the uncor-
related case and generally higher installed capacities on edges for the positively
correlated case.

Also we can see from Table 2 (third and fourth columns), that designs for the uncorre-
lated cases generally have more edges than the corresponding positively correlated cases.
This can be explained by the fact that in the uncorrelated cases it is very useful to have
alternate paths by setting up extra edges. So when one path leading to a demand node has
reduced capacity, another might work well — capacities are uncorrelated. In the positive
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correlation case, all edges incident to a node are positively correlated, so even though
there may be many paths, they would tend to have difficulties at the same time. This
reduces the value of alternative paths. But still some alternate paths are present, which is
discussed later. The positive correlation cases compensate by installing more capacities
on the edges (see sixth and seventh columns of Table 2). The latter is of course a function
of how we defined edge failures – as a percentage of installed capacity. These effects can
be seen in Figure 4, where the uncorrelated case has more edges than the positively cor-
related one and the positively correlated case generally has higher installed capacities on
the edges. In the figure, solid (blue) edges are installed with the given capacities, dotted
edges are not installed. The dark (red) nodes are the source nodes, the white ones trans-
shipment nodes. The shaded (yellow) nodes are demand nodes. The same color scheme
is followed throughout the paper.
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Figure 5: Alternate Paths. Deterministic (top) and stochastic structures(bottom)
of Germany SS 04 showing the alternative paths in the stochastic structure.

In the stochastic structures we observe the creation of alternative paths, even for the
case of positively correlated edge failures. This is due to the fact that with alternative
paths, the network increases the chance that demand is at least partly satisfied even when
one of the paths fails or works at low capacity. We can see this aspect in Figure 5. De-
mand node 16 in the stochastic structure is served by three paths, one approaching via
transshipment node 19, one via transshipment node 6 and finally one via a collection of
other demand nodes (through node 17). In this way alternative paths help fulfill demand
when one of the paths may be down or have low capacities. Even though this is less use-
ful when failures are positively correlated, the alternative paths still provide some extra
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chance of reaching demand node 16.
When studying optimal designs under random demand (see Thapalia et al. (2009b))

we observed that consolidation was the major tool for hedging against uncertainty. By
having several demand nodes share paths, one node could use the path when the others
didn’t need it. With random edge capacities, this need does not emerge since demand is
known. Instead hedging comes from having alternative paths, and of course, generally
higher installed capacities since edges may fail. Consolidation-like phenomena are hence
observed in some cases, but they come from the same phenomena as in deterministic
cases: Paths to demand nodes share edges (even if the paths become slightly longer) so
that fewer fixed setup costs need to be paid, and, of course, two shortest paths (including
both variable and fixed setup costs) may simply happen to share edges.

Loops

The formation of loops is quite visible in networks designed for stochastic edge capacities.
Loops are formed among the demand nodes, including or excluding the source nodes, or
by joining the leaves of the trees. When we compare this with the networks for stochastic
demand (Thapalia et al., 2009b), it is far more prominent here. The main reason for loop
formation is the need to provide alternate paths to fulfill demand when some edges are
(partly) down. Loops have the advantage that they can be used both ways. So somewhat
high capacities (which characterizes the stochastic designs) combined with loops provide
alternative paths to demand nodes. We can see this in Figures 5. Here loops are seen in
the stochastic network design which is not in the deterministic structures.

Removing edges

It is observed from the test results that in almost all cases, the stochastic skeleton contains
the deterministic one. The additional edges are providing flexibility to the network struc-
ture. But as we increase the fixed or variable setup costs compared to the base case, the
additional edges which were seen in the stochastic skeletons disappear and finally very
few are left. We can observe this in Figure 6. When fixed costs are increased, keeping the
rest of the cost the same (left column figures), we see that edges or partial paths which
were seen only in the stochastic design, but with rather low capacities, like 16-17, 18-10-
21, or 3-27-19-16 disappear, making it similar to the deterministic design (top structure of
Figure 5). Also we see this effect when we increase the variable setup costs (right column
figures). This points toward the suggestion that the deterministic structures are the base
for the stochastic network structures. The reason behind this phenomenon is that as the
fixed or variable setup costs increase, maintaining the same structure is no longer optimal
given the cost of opening the edges and building the capacities compared to the rejection
cost. Thus as the fixed or variable setup costs increase, it becomes profitable to remove
the edges, which are not core to the basic backbone. The edges which are removed are
the ones which are not seen in the deterministic structures and\or with lower capacities
or the ones which are far from the source nodes.
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Figure 6: Disappearing Edges. Stochastic structures of Germany SS with in-
creasing fixed setup costs (left column) and with increasing variable setup costs
(right column) showing that stochastic the stochastic designs eliminate edges to
emerge as similar to deterministic ones.

5 Conclusion

We have seen that optimal stochastic designs for both the single- and multi-source cases
differ from the deterministic ones in both skeletons and capacities. The flexibility, which
gives the stochastic designs better expected performance, comes from a higher number
of edges and higher installed capacities. With a higher number of edges there exist more
paths to demand nodes and hence it also becomes easier to find alternative routes to the
demand nodes in the case of edge failures. So while the sharing of paths is the main ve-
hicle for hedging in the case of random demand, here it comes from providing alternative
paths from sources to demand nodes.

The deterministic structures as such are not good in the stochastic setting as their
expected performance is bad. But borrowing the skeleton from the deterministic structure
is rather good. The reason is that the deterministic structure often forms a backbone in
the stochastic one. With increased costs for adding edges or for adding capacities in the
edges, the stochastic skeletons start to look more and more like the deterministic ones.
This happens by shedding installed capacities and edges which are not observed in the
deterministic structures. Thus it seems that for cases of this type, using a deterministic
method to set the skeleton, and solving a stochastic linear program to set capacities is a
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very promising approach. Naturally, we cannot test this for larger cases, since we cannot
solve the stochastic versions to optimality.

Using the deterministic skeleton is slightly better if based on average edge capacities
rather than maximal ones. The reason is somewhat subtle: Using average rather than
maximal edge capacities is equivalent to increasing variable setup costs. That reduces the
importance of the fixed setup costs, generally leading to more edges being opened, and
hence a better starting point for the stochastic linear program.

Correlations have important effects on the structure of the design. With uncorrelated
edge failures, the stochastic designs have more edges than when edge failures are posi-
tively correlated. With positively correlated edge failures, the networks have higher in-
stalled capacities. The reason is simply that with positively correlated failures, all paths
to a node tend to have difficulties at the same time, providing less hedging from multiple
paths.

Loops are present in the stochastic networks due to a combination of two phenomena.
The first is the one we observe for consolidation in the deterministic problem: avoid
paying too many fixed setup costs. The second is the characteristics of a ring network.
It provides two connections between any pair of nodes in the ring, and the ring can be
used in both directions. For these reasons, loops are much more prominent here than with
random demand.

So, network designs for stochastic edge capacities are fundamentally different from
network designs for stochastic demand. With stochastic edge capacities there are more
edges, more loops, and more installed capacities as compared to the design for stochastic
demand. A major reason is that there is less consolidation. For stochastic edge capacities
we only see consolidation of the type we see in deterministic designs, mostly caused by
savings in the fixed setup costs. Instead, alternative connections become more important
as a hedge against edges having reduced capacities. Skeletons generally do better here
than with random demand as trees in the forests – typical for deterministic designs – no
longer have the need to contact each other when randomness strikes, as each tree has
enough supply.

Future work. We have now studies random demand and random arc capacities sepa-
rately. A potential future project is to understand how they interact.
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Table 3: The ratios for the single source cases corresponding to Figures 1 and 2,
split by correlation structure.

Full capacity Mean value capacity

comp. A comp. B comp. A comp. B

Test Name ρ =0 ρ≥0 ρ =0 ρ≥0 ρ =0 ρ≥0 ρ =0 ρ≥0

Germany SS 04 1.76 1.62 1.20 1.11 1.39 1.26 1.18 1.09
Germany SS 10 1.71 1.57 1.17 1.08 1.34 1.22 1.17 1.08
Germany SS 13 2.12 1.92 1.20 1.10 1.57 1.39 1.20 1.10
Germany SS 27 1.99 1.81 1.21 1.10 1.55 1.37 1.21 1.10

France SS 06 6.31 5.46 1.27 1.13 3.15 3.23 1.27 1.13
France SS 10 4.82 4.41 1.56 1.43 2.74 2.66 1.39 1.28
France SS 13 5.04 4.42 1.31 1.18 3.44 2.74 1.31 1.18
France SS 16 5.91 5.30 1.22 1.11 3.98 2.91 1.22 1.11

Montreal r06 SS 01 12.29 11.45 1.24 1.17 6.17 5.71 1.24 1.17
Montreal r06 SS 03 11.16 9.35 1.30 1.10 5.92 4.89 1.30 1.10
Montreal r06 SS 04 12.62 11.17 1.33 1.15 6.61 5.69 1.33 1.15
Montreal r06 SS 08 13.04 10.84 1.32 1.14 6.85 5.65 1.32 1.14

Pdh 01 SS 1.97 1.81 1.10 1.03 1.49 1.33 1.10 1.03
Pdh 02 SS 2.48 2.36 1.07 1.03 1.67 1.56 1.07 1.03
Pdh 04 SS 2.36 2.25 1.04 1.01 1.62 1.51 1.04 1.01
Pdh 08 SS 2.15 2.00 1.13 1.07 1.53 1.40 1.13 1.07

Nobel EU SS 04 3.88 3.56 1.42 1.32 2.81 2.54 1.39 1.29
Nobel EU SS 05 4.86 4.24 1.34 1.19 3.28 2.79 1.34 1.19
Nobel EU SS 15 4.02 3.53 1.33 1.18 2.87 2.45 1.37 1.21
Nobel EU SS 18 4.83 4.27 1.31 1.18 3.14 2.74 1.31 1.18
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Table 4: The ratios for the multi-source cases corresponding to Figures 1 and 2,
split by correlation structure.

Full capacity Mean value capacity

comp. A comp. B comp. A comp. B

Test Name ρ =0 ρ≥0 ρ =0 ρ≥0 ρ =0 ρ≥0 ρ =0 ρ≥0

Germany 1 MS 2.05 1.89 1.14 1.07 1.54 1.40 1.14 1.07
Germany 2 MS 2.23 2.00 1.22 1.12 1.63 1.43 1.22 1.12
Germany 3 MS 2.10 1.95 1.17 1.09 1.52 1.38 1.17 1.09
Germany 4 MS 2.15 1.96 1.12 1.04 1.57 1.41 1.12 1.04

France MS 1 6.57 5.98 1.17 1.08 3.56 3.20 1.17 1.08
France MS 2 5.83 5.35 1.38 1.26 3.59 3.30 1.38 1.26
France MS 3 6.33 5.72 1.47 1.35 3.48 3.10 1.22 1.13

Montreal r06 MS 1 15.33 14.78 1.09 1.04 6.90 6.76 1.09 1.04
Montreal r06 MS 2 14.29 13.23 1.20 1.10 6.88 6.36 1.20 1.10
Montreal r06 MS 3 15.31 14.04 1.14 1.02 7.32 6.69 1.14 1.02

Pdh 1 MS 2.50 2.42 1.02 1.00 1.60 1.52 1.02 1.00
Pdh 2 MS 2.43 2.30 1.03 1.00 1.58 1.48 1.03 1.00
Pdh 3 MS 2.65 2.58 1.02 1.00 1.65 1.59 1.02 1.00
Pdh 4 MS 2.65 2.49 1.08 1.03 1.74 1.60 1.08 1.03

Nobel EU MS plus 01 4.50 4.21 1.28 1.18 2.88 2.70 1.17 1.10
Nobel EU MS plus 02 4.61 4.32 1.20 1.13 2.72 2.54 1.20 1.13
Nobel EU MS plus 03 5.05 4.67 1.26 1.17 2.94 2.70 1.26 1.17
Nobel EU MS plus 04 4.89 4.52 1.23 1.13 3.08 2.77 1.23 1.13

Table 5: The ratios for Comparison B corresponding to Figure 3, for full capac-
ities and mean capacities at different variable setup costs.

Single source Multi-source

Var. setup cost Full Cap. Mean Cap. Full Cap. Mean Cap.

0.33 1.18 1.18 1.2 1.17
0.66 1.19 1.19 1.15 1.16

1 1.19 1.18 1.12 1.1
1.33 1.16 1.16 1.11 1.1
1.66 1.16 1.15 1.1 1.09

2 1.14 1.14 1.09 1.09
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